Растворимость веществ в воде биология. Растворы

Раствор – это гомогенная система, состоящая из двух или более веществ, содержание которых можно изменять в определенных пределах без нарушения однородности.

Водные растворы состоят из воды (растворителя) и растворенного вещества. Состояние веществ в водном растворе при необходимости обозначается нижним индексом (р), например, KNO 3 в растворе – KNO 3(p) .

Растворы, которые содержат малое количество растворенного вещества, часто называют разбавленными, а растворы с высоким содержанием растворенного вещества – концентрированными. Раствор, в котором возможно дальнейшее растворение вещества, называется ненасыщенным, а раствор, в котором вещество перестает растворяться при данных условиях, – насыщенным. Последний раствор всегда находится в контакте (в гетерогенном равновесии) с нерастворившимся веществом (один кристалл или более).

В особых условиях, например при осторожном (без перемешивания) охлаждении горячего ненасыщенного раствора твердого вещества, может образоваться пересыщенный раствор. При введении кристалла вещества такой раствор разделяется на насыщенный раствор и осадок вещества.

В соответствии с химической теорией растворов Д. И. Менделеева растворение вещества в воде сопровождается, во-первых, разрушением химических связей между молекулами (межмолекулярные связи в ковалентных веществах) или между ионами (в ионных веществах), и, таким образом, частицы вещества смешиваются с водой (в которой также разрушается часть водородных связей между молекулами). Разрыв химических связей совершается за счет тепловой энергии движения молекул воды, при этом происходит затрата энергии в форме теплоты.

Во-вторых, попав в воду, частицы (молекулы или ионы) вещества подвергаются гидратации. В результате образуются гидраты – соединения неопределенного состава между частицами вещества и молекулами воды (внутренний состав самих частиц вещества при растворении не изменяется). Такой процесс сопровождается выделением энергии в форме теплоты за счет образования новых химических связей в гидратах.

В целом раствор либо охлаждается (если затрата теплоты превосходит ее выделение), либо нагревается (в противном случае); иногда – при равенстве затраты теплоты и ее выделения – температура раствора остается неизменной.

Многие гидраты оказываются настолько устойчивыми, что не разрушаются и при полном выпаривании раствора. Так, известны твердые кристаллогидраты солей CuSO 4 5Н 2 O, Na 2 CO 3 10Н 2 O, KAl(SO 4) 2 12Н 2 O и др.

Содержание вещества в насыщенном растворе при Т = const количественно характеризует растворимость этого вещества. Обычно растворимость выражается массой растворенного вещества, приходящейся на 100 г воды, например 65,2 г КBr/100 г Н 2 O при 20 °C. Следовательно, если 70 г твердого бромида калия ввести в 100 г воды при 20 °C, то 65,2 г соли перейдет в раствор (который будет насыщенным), а 4,8 г твердого КBr (избыток) останется на дне стакана.

Следует запомнить, что содержание растворенного вещества в насыщенном растворе равно , в ненасыщенном растворе меньше и в пересыщенном растворе больше его растворимости при данной температуре. Так, раствор, приготовленный при 20 °C из 100 г воды и сульфата натрия Na 2 SO 4 (растворимость 19,2 г/100 г Н 2 O), при содержании

15,7 г соли – ненасыщенный;

19.2 г соли – насыщенный;

2O.3 г соли – пересыщенный.

Растворимость твердых веществ (табл. 14) обычно увеличивается с ростом температуры (КBr, NaCl), и лишь для некоторых веществ (CaSO 4 , Li 2 CO 3) наблюдается обратное.

Растворимость газов при повышении температуры падает, а при повышении давления растет; например, при давлении 1 атм растворимость аммиака составляет 52,6 (20 °C) и 15,4 г/100 г Н 2 O (80 °C), а при 20 °C и 9 атм она равна 93,5 г/100 г Н 2 O.

В соответствии со значениями растворимости различают вещества:

хорошо растворимые, масса которых в насыщенном растворе соизмерима с массой воды (например, КBr – при 20 °C растворимость 65,2 г/100 г Н 2 O; 4,6М раствор), они образуют насыщенные растворы с молярностью более чем 0,1М;

малорастворимые, масса которых в насыщенном растворе значительно меньше массы воды (например, CaSO 4 – при 20 °C растворимость 0,206 г/100 г Н 2 O; 0,015М раствор), они образуют насыщенные растворы с молярностью 0,1–0,001М;

практически нерастворимые, масса которых в насыщенном растворе пренебрежимо мала по сравнению с массой растворителя (например, AgCl – при 20 °C растворимость 0,00019 г на 100 г Н 2 O; 0,0000134М раствор), они образуют насыщенные растворы с молярностью менее чем 0,001М.

По справочным данным составлена таблица растворимости распространенных кислот, оснований и солей (табл. 15), в которой указан тип растворимости, отмечены вещества, не известные науке (не полученные) или полностью разлагающиеся водой.

Условные обозначения, используемые в таблице:

«р» – хорошо растворимое вещество

«м» – малорастворимое вещество

«н» – практически нерастворимое вещество

«-» – вещество не получено (не существует)

«» – вещество смешивается с водой неограниченно




Примечание. Данная таблица отвечает приготовлению насыщенного раствора при комнатной температуре путем внесения вещества (в соответствующем агрегатном состоянии) в воду. Следует учесть, что получение осадков малорастворимых веществ с помощью реакций ионного обмена возможно не всегда (подробнее см. 13.4).

13.2. Электролитическая диссоциация

Растворение любого вещества в воде сопровождается образованием гидратов. Если при этом в растворе не происходит формульных изменений у частиц растворенного вещества, то такие вещества относят к неэлектролитам. Ими являются, например, газ азот N 2 , жидкость хлороформ СНCl 3 , твердое вещество сахароза C 12 Н 22 О 11 , которые в водном растворе существуют в виде гидратов их молекул.

Известно много веществ (в общем виде МА), которые после растворения в воде и образования гидратов молекул MA nН 2 O претерпевают существенные формульные изменения. В результате в растворе появляются гидратированные ионы – катионы М + nН 2 O и анионы А nН 2 O:




Такие вещества относят к электролитам.

Процесс появления гидратированных ионов в водном растворе называется электролитической диссоциацией (С. Аррениус, 1887).

Электролитическая диссоциация ионных кристаллических веществ (М +)(А -) в воде является необратимой реакцией:



Такие вещества относятся к сильным электролитам, ими являются многие основания и соли, например:



Электролитическая диссоциация веществ MA, состоящих из полярных ковалентных молекул, является обратимой реакцией:



Такие вещества относят к слабым электролитам, ими являются многие кислоты и некоторые основания, например:





В разбавленных водных растворах слабых электролитов мы всегда обнаружим как исходные молекулы, так и продукты их диссоциации – гидратированные ионы.

Количественная характеристика диссоциации электролитов называется степенью диссоциации и обозначается? , всегда? > 0.

Для сильных электролитов? = 1 по определению (диссоциация таких электролитов полная).

Для слабых электролитов степень диссоциации – отношение молярной концентрации продиссоциировавшего вещества (с д) к общей концентрации вещества в растворе (с):



Степень диссоциации – это доля от единицы или от 100 %. Для слабых электролитов? « С 1 (100 %).

Для слабых кислот Н n А степень диссоциации по каждой следующей ступени резко уменьшается по сравнению с предыдущей:




Степень диссоциации зависит от природы и концентрации электролита, а также от температуры раствора; она растет при уменьшении концентрации вещества в растворе (т. е. при разбавлении раствора) и при нагревании .

В разбавленных растворах сильных кислот Н n А их гидроанионы Н n-1 А не существуют, например:




B концентрированных растворах содержание гидроанионов (и даже исходных молекул) становится заметным:



(суммировать уравнения стадий обратимой диссоциации нельзя!). При нагревании значения? 1 и? 2 возрастают, что способствует протеканию реакций с участием концентрированных кислот.

Кислоты – это электролиты, которые при диссоциации поставляют в водный раствор катионы водорода и никаких других положительных ионов не образуют:



Распространенные сильные кислоты:




В разбавленном водном растворе (условно до 10 %-ного или 0,1-молярного) эти кислоты диссоциируют полностью. Для сильных кислот Н n А в список вошли их гидроанионы (анионы кислых солей), также диссоциирующие полностью в этих условиях.

Распространенные слабые кислоты:




Основания – это электролиты, которые при диссоциации поставляют в водный раствор гидроксид-ионы и никаких других отрицательных ионов не образуют:



Диссоциация малорастворимых оснований Mg(OH) 2 , Cu(OH) 2 , Mn(OH) 2 , Fe(OH) 2 и других практического значения не имеет.

К сильным основаниям (щелочам ) относятся NaOH, КОН, Ва(ОН) 2 и некоторые другие. Самым известным слабым основанием является гидрат аммиака NH 3 Н 2 O.

Средние соли – это электролиты, которые при диссоциации поставляют в водный раствор любые катионы, кроме Н + , и любые анионы, кроме ОН - :



Речь идет только о хорошо растворимых солях. Диссоциация малорастворимых и практически нерастворимых солей значения не имеет.

Аналогично диссоциируют двойные соли:



Кислые соли (большинство из них растворимы в воде) диссоциируют полностью по типу средних солей:



Образующиеся гидроанионы подвергаются, в свою очередь, воздействию воды:

а) если гидроанион принадлежит сильной кислоте, то он сам диссоциирует также полностью:



и полное уравнение диссоциации запишется в виде:



(растворы таких солей обязательно будут кислыми, как и растворы соответствующих кислот);

б) если гидроанион принадлежит слабой кислоте, то его поведение в воде двойственно – либо неполная диссоциация по типу слабой кислоты:



либо взаимодействие с водой (называемое обратимым гидролизом):



При? 1 > ? 2 преобладает диссоциация (и раствор соли будет кислым), а при? 1 > ? 2 – гидролиз (и раствор соли будет щелочным). Так, кислыми будут растворы солей с анионами HSO 3 - , H 2 PO 4 - , H 2 AsO 4 - и HSeO 3 - , растворы солей с другими анионами (их большинство) будут щелочными. Другими словами, название «кислые» для солей с большинством гидроанионов не предполагает, что эти анионы будут вести себя в растворе как кислоты (гидролиз гидроанионов и расчет отношения между? 1 и а 2 изучаются только в высшей школе).

Оснoвные соли MgCl(OH), Cu 2 CO 3 (OH) 2 и другие в своем большинстве практически нерастворимы в воде, и обсуждать их поведение в водном растворе невозможно.

13.3. Диссоциация воды. Среда растворов

Сама вода – это очень слабый электролит:



Концентрации катиона Н + и аниона ОН - в чистой воде весьма малы и составляют 1 10 -7 моль/л при 25 °C.

Катион водорода Н + представляет собой простейшее ядро – протон р + (электронная оболочка катиона Н + – пустая, 1s 0). У свободного протона велики подвижность и проникающая способность, в окружении полярных молекул Н 2 O он не может оставаться свободным. Протон тут же присоединяется к молекуле воды:



В дальнейшем для простоты оставляется запись Н + (но подразумевается Н 3 O +).

Типы среды водных растворов:





Для воды при комнатной температуре имеем:



следовательно, в чистой воде:



Это равенство справедливо и для водных растворов:



Практическая шкала рН отвечает интервалу 1-13 (разбавленные растворы кислот и оснований):




В практически нейтральной среде с рН = 6–7 и рН = 7–8 концентрация Н + и ОН - очень мала (1 10 -6 – 1 10 -7 моль/л) и почти равна концентрации этих ионов в чистой воде. Такие растворы кислот и оснований считаются предельно разбавленными (содержат очень мало вещества).

Для практического установления типа среды водных растворов служат индикаторы – вещества, которые окрашивают в характерный цвет нейтральные, кислые и/или щелочные растворы.

Распространенные в лаборатории индикаторы – это лакмус, метилоранж и фенолфталеин.

Метилоранж (индикатор на кислотную среду) становится розовым в сильнокислом растворе (табл. 16), фенолфталеин (индикатор на щелочную среду) – малиновым в сильнощелочном растворе, а лакмус используется во всех средах.



13.4. Реакции ионного обмена

В разбавленных растворах электролитов (кислот, оснований, солей) химические реакции протекают обычно при участии ионов . При этом все элементы реагентов могут сохранять свои степени окисления (обменные реакции) или изменять их (окислительно-восстановительные реакции). Примеры, приводимые далее, относятся к обменным реакциям (о протекании окислительно-восстановительных реакций см. разд. 14).

В соответствии с правилом Бертолле, ионные реакции протекают практически необратимо, если образуются твердые малорастворимые вещества (они выпадают в осадок), легколетучие вещества (они выделяются в виде газов) или растворимые вещества – слабые электролиты (в том числе и вода). Ионные реакции изображаются системой уравнений - молекулярным, полным и кратким ионным. Ниже полные ионные уравнения опущены (читателю предлагается составить их самому).

При написании уравнений ионных реакций надо обязательно руководствоваться таблицей растворимости (см. табл. 8).

Примеры реакций с выпадением осадков:





Внимание! Указанные в таблице растворимости (см. табл. 15) малорастворимые («м») и практически нерастворимые («н») соли выпадают в осадок именно в том виде, как они представлены в таблице (СаF 2 v, PbI 2 v, Ag 2 SO 4 v, AlPO 4 v и т. д.).

В табл. 15 не указаны карбонаты – средние соли с анионом CO 3 2- . Следует иметь в виду, что:

1) К 2 СO 3 , (NH 4) 2 CO 3 и Na 2 CO 3 растворимы в воде;

2) Ag 2 CO 3 , ВаСO 3 и СаСO 3 практически нерастворимы в воде и выпадают в осадок как таковые, например:



3) соли остальных катионов, такие как MgCO 3 , CuCO 3 , FeCO 3 , ZnCO 3 и другие, хотя и нерастворимы в воде, но не осаждаются из водного раствора при проведении ионных реакций (т. е. их нельзя получить этим способом).

Например, карбонат железа (II) FeCO 3 , полученный «сухим путем» или взятый в виде минерала сидерит, при внесении в воду осаждается без видимого взаимодействия. Однако при попытке его получения по обменной реакции в растворе между FeSO 4 и К 2 СO 3 выпадает осадок основной соли (приведен условный состав, на практике состав более сложный) и выделяется углекислый газ:



Аналогично FeCO 3 , сульфид хрома (III) Cr 2 S 3 (нерастворимый в воде) не осаждается из раствора:



В табл. 15 не указаны также соли, которые разлагаются водой - сульфид алюминия Al 2 S 3 (а также BeS) и ацетат хрома (III) Cr(СН 3 СОО) 3:



Следовательно, эти соли также нельзя получить по обменной реакции в растворе:




(в последней реакции состав осадка более сложный; подробнее такие реакции изучают в высшей школе).

Примеры реакций с выделением газов:




Примеры реакций с образованием слабых электролитов:




Если реагенты и продукты обменной реакции не являются сильными электролитами, ионный вид уравнения отсутствует, например:


13.5. Гидролиз солей

Гидролиз соли – это взаимодействие ее ионов с водой, приводящее к появлению кислотной или щелочной среды, но не сопровождающееся образованием осадка или газа (ниже речь идет о средних солях).

Процесс гидролиза протекает только с участием растворимых солей и состоит из двух этапов:

1) диссоциация соли в растворе – необратимая реакция (степень диссоциации? = 1, или 100 %);

2) собственно гидролиз, т. е. взаимодействие ионов соли с водой, – обратимая реакция (степень гидролиза? < 1, или 100 %).

Уравнения 1-го и 2-го этапов – первый из них необратим, второй обратим – складывать нельзя!

Отметим, что соли, образованные катионами щелочей и анионами сильных кислот, гидролизу не подвергаются, они лишь диссоциируют при растворении в воде. В растворах солей КCl, NaNO 3 , Na 2 SO 4 и BaI 2 среда нейтральная .

В случае взаимодействия аниона гидролизом соли по аниону.



Диссоциация соли KNO 2 протекает полностью, гидролиз аниона NO 2 – в очень малой степени (для 0,1М раствора – на 0,0014 %), но этого оказывается достаточно, чтобы раствор стал щелочным (среди продуктов гидролиза присутствует ион ОН -), в нем рН = 8,14.

Гидролизу подвергаются анионы только слабых кислот (в данном примере – нитрит-ион NO 2 - , отвечающий слабой азотистой кислоте HNO 2). Анион слабой кислоты притягивает к себе катион водорода, имеющийся в воде, и образует молекулу этой кислоты, а гидроксид-ион остается свободным:



Список гидролизующихся анионов:









Обратите внимание, что в примерах (в – д) нельзя увеличивать число молекул воды и вместо гидроанионов (HCO 3 - , HPO 4 2- , HS -) писать формулы соответствующих кислот (Н 2 СO 3 , Н 3 РO 4 , H 2 S). Гидролиз – обратимая реакция, и протекать «до конца» (до образования кислоты Н n А) он не может.

Если бы такая неустойчивая кислота, как Н 2 СO 3 , образовалась в растворе своей соли Na 2 CO 3 , то наблюдалось бы выделение из раствора газа СO 2 (Н 2 СO 3 = СO 2 v + Н 2 O). Однако при растворении соды в воде образуется прозрачный раствор без газовыделения, что является свидетельством неполноты протекания гидролиза аниона СО| с появлением в растворе только гидроаниона угольной кислоты HCOg.

Степень гидролиза соли по аниону зависит от степени диссоциации продукта гидролиза – кислоты (HNO 2 , НClO, HCN) или ее гидроаниона (HCO 3 - , HPO 4 2- , HS -); чем слабее кислота, тем выше степень гидролиза. Например, ионы СО 3 2- , РО 4 3- и S 2- подвергаются гидролизу в большей степени (в 0,1 М растворах ~ 5 %, 37 % и 58 % соответственно), чем ион NO 2 , так как диссоциация Н 2 СO 3 и H 2 S по 2-й ступени, а Н 3 РO 4 по 3-й ступени (т. е. диссоциация ионов HCO 3 - , HS - и HPO 4 2-) протекает значительно меньше, чем диссоциация кислоты HNO 2 . Поэтому растворы, например, Na 2 CO 3 , К 3 РO 4 и BaS будут сильнощелочными (в чем легко убедиться по мылкости раствора соды на ощупь). Избыток ионов ОН в растворе легко обнаружить индикатором или измерить специальными приборами (рН-метрами).

Если в концентрированный раствор сильно гидролизующейся по аниону соли, например Na 2 CO 3 , внести алюминий, то последний (вследствие амфотерности) прореагирует с ОН -



и будет наблюдаться выделение водорода. Это – дополнительное доказательство протекания гидролиза иона СО 3 2- (ведь в раствор Na 2 CO 3 мы не добавляли щелочь NaOH!).

В случае взаимодействия катиона растворенной соли с водой процесс называется гидролизом соли по катиону:



Диссоциация соли Ni(NO 3) 2 протекает полностью, гидролиз катиона Ni 2+ – в очень малой степени (для 0,1 М раствора – на 0,001 %), но этого оказывается достаточно, чтобы раствор стал кислым (среди продуктов гидролиза присутствует ион Н +), в нем рН = 5,96.

Гидролизу подвергаются катионы только малорастворимых основных и амфотерных гидроксидов и катион аммония NH 4 + . Гидролизуемый катион притягивает к себе анион ОН - , имеющийся в воде, и образует соответствующий гидроксокатион, а катион Н + остается свободным:



Катион аммония в этом случае образует слабое основание – гидрат аммиака:



Список гидролизующихся катионов:




Примеры:





Обратите внимание, что в примерах (а – в) нельзя увеличивать число молекул воды и вместо гидроксокатионов FeOH 2+ , CrOH 2+ , ZnOH + писать формулы гидроксидов FeO(OH), Cr(OH) 3 , Zn(OH) 2 . Если бы гидроксиды образовались, то из растворов солей FeCl 3 , Cr 2 (SO 4) 3 и ZnBr 2 выпали бы осадки, чего не наблюдается (эти соли образуют прозрачные растворы).

Избыток катионов Н + легко обнаружить индикатором или измерить специальными приборами. Можно также

проделать такой опыт. В концентрированный раствор сильно гидролизующейся по катиону соли, например AlCl 3:



вносится магний или цинк. Последние прореагируют с Н + :



и будет наблюдаться выделение водорода. Этот опыт – дополнительное свидетельство протекания гидролиза катиона Al 3+ (ведь в раствор AlCl 3 мы не добавляли кислоту!).

Примеры заданий частей А, В

1. Сильный электролит – это

1) С 6 Н 5 ОН

2) СН 3 СООН

3) С 2 Н 4 (ОН) 2


2. Слабый электролит – это

1) иодоводород

2) фтороводород

3) сульфат аммония

4) гидроксид бария


3. В водном растворе их каждых 100 молекул образуется 100 катионов водорода для кислоты

1) угольной

2) азотистой

3) азотной


4-7. В уравнении диссоциации слабой кислоты по всем возможным ступеням

сумма коэффициентов равна


8-11. Для уравнений диссоциации в растворе двух щелочей набора

8. NaOH, Ва(ОН) 2

9. Sr(OH) 2 , Са(ОН) 2

10. КОН, LiOH

11. CsOH, Са(ОН) 2

общая сумма коэффициентов составляет


12. В известковой воде содержится набор частиц

1) СаОН+, Са 2+ , ОН -

2) Са 2+ , ОН - , Н 2 O

3) Са 2+ , Н 2 O, О 2-

4) СаОН + , О 2- , Н+


13-16. При диссоциации одной формульной единицы соли

14. К 2 Cr 2 O 7

16. Cr 2 (SO 4) 3

число образующихся ионов равно


17. Наибольшее количество иона РО 4 -3 можно обнаружить в растворе, содержащем 0,1 моль


18. Реакция с выпадением осадка – это

1) MgSO 4 + H 2 SO 4 >…

2) AgF + HNO 3 >…

3) Na 2 HPO 4 + NaOH >…

4) Na 2 SiO 3 + HCl >…


19. Реакция с выделением газа – это

1) NaOH + СН 3 СООН >…

2) FeSO 4 + КОН >…

3) NaHCO 3 + HBr >…

4) Pl(NO 3) 2 + Na 2 S >…


20. Краткое ионное уравнение ОН - + Н + = Н 2 O отвечает взаимодействию

1) Fe(OH) 2 + НCl >…

2) NaOH + HNO 2 >…

3) NaOH + HNO 3 >…

4) Ва(ОН) 2 + KHSO 4 >…


21. В ионном уравнении реакции

SO 2 + 2OН = SO 3 2- + Н 2 O

ион ОН - может отвечать реагенту

4) С 6 Н 5 ОН


22-23. Ионное уравнение

22. ЗСа 2+ + 2РO 4 3- = Са 3 (РO 4) 2 v

23. Са 2+ + НРO 4 2- = СаНРO 4 v

соответствует реакции между

1) Са(ОН) 2 и К 3 РO 4

2) СаCl 2 и NaH 2 PO 4

3) Са(ОН) 2 и Н 3 РО 4

4) СаCl и К 2 НРO 4


24-27. В молекулярном уравнении реакции

24. Na 3 PO 4 + AgNO 3 >…

25. Na 2 S + Cu(NO 3) 2 >…

26. Ca(HSO 3) 2 >…

27. K 2 SO 3 + 2HBr >… сумма коэффициентов равна


28-29. Для реакции полной нейтрализации

28. Fe(OH) 2 + HI >…

29. Ва(ОН) 2 + H 2 S >…

сумма коэффициентов в полном ионном уравнении составляет


30-33. В кратком ионном уравнении реакции

30. NaF + AlCl 3 >…

31. К 2 СO 3 + Sr(NO 3) 2 >…

32. Mgl 2 + К 3 РO 4 >…

33. Na 2 S + H 2 SO 4 >…

сумма коэффициентов равна


34-36. В водном растворе соли

34. Са(ClO 4) 2

36. Fe 2 (SO 4) 3

образуется среда

1) кислотная

2) нейтральная

3) щелочная


37. Концентрация гидроксид-иона увеличивается после растворения в воде соли


38. Нейтральная среда будет в конечном растворе после смешивания растворов исходных солей в наборах

1) ВаCl 2 , Fe(NO 3) 3

2) Na 2 CO 3 , SrS

4) MgCl 2 , RbNO 3


39. Установите соответствие между солью и ее способностью к гидролизу.




40. Установите соответствие между солью и средой раствора.




41. Установите соответствие между солью и концентрацией катиона водорода после растворения соли в воде.



Растворы играют ключевую роль в природе, науке и технике. Вода – основа жизни, всегда содержит растворенные вещества. Пресная вода рек и озер содержит мало растворенных веществ, в то время как морская вода содержит около 3,5% растворенных солей.

Первичный океан (во время зарождения жизни на Земле), по предположениям, содержал всего 1% растворенных солей.

«Именно в этой среде впервые развивались живые организмы, из этого раствора они черпали ионы и молекулы, которые необходимы для их дальнейшего роста и развития… Со временем живые организмы развивались и преображались, поэтому они смогли оставить водную среду и перебраться на сушу и затем подняться в воздух. Они получили эти способности, сохранив в своих организмах водный раствор в виде жидкостей, которые содержат жизненно важный запас ионов и молекул» – именно такими словами описывает роль растворов в природе знаменитый американский химик, лауреат Нобелевской премии Лайнус Полинг. Внутри каждого из нас, в каждой клетке нашего организма – содержатся воспоминания о первичном океане, месте в котором зародилась жизнь, - водном растворе, обеспечивающем саму жизнь.

В любом живом организме постоянно течет по сосудам – артериям, венам и капиллярам – необычный раствор, который составляет основу крови, массовая доля солей в нем такая же, как в первичном океане, – 0,9%. Сложные физико-химические процессы, протекающие в организме человека и животного, также взаимодействуют в растворах. Процесс усвоения пищи связан с переводом высокопитательных веществ в раствор. Природные водные растворы напрямую связаны с процессами почвообразования, снабжением растений питательными веществами. Такие технологические процессы в химической и многих других отраслях промышленности, например производство удобрений, металлов, кислот, бумаги, происходят в растворах. Современная наука занимается изучением свойств растворов. Давайте выясним, что же такое раствор?

Растворы отличаются от других смесей тем, что частицы составных частей располагаются в них равномерно, и в любом микрообъеме подобной смеси состав будет одинаков.

Именно поэтому под растворами понимали однородные смеси, которые состоят из двух или более однородных частей. Такое представление исходило из физической теории растворов.

Приверженцы физической теории растворов, которой занимались Вант-Гофф, Аррениус и Оствальд, считали, что процесс растворения является результатом диффузии.

Д. И. Менделеев и сторонники химической теории считали, что растворение является результатом химического взаимодействия растворенного вещества с молекулами воды. Таким образом, будет точнее определить раствор как однородную систему, которая состоит из частиц растворенного вещества, растворителя, а также продуктов их взаимодействия.

Вследствие химического взаимодействия растворенного вещества с водой образуются соединения – гидраты. Химическое взаимодействие обычно сопровождается тепловыми явлениями. К примеру, растворение серной кислоты в воде проходит с выделением такого колоссального количества тепла, что раствор может закипеть, именно поэтому кислоту льют в воду, а не наоборот. Растворение таких веществ как хлорид натрия, нитрат аммония, сопровождается поглощением тепла.

М. В. Ломоносов доказал, что растворы превращаются в лед при более низкой температуре, чем растворитель.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Сегодня мы поговорим о веществе – воде!


А видел ли кто-нибудь из вас воду?

Вопрос показался вам нелепым? Но он относится к совершенно чистой воде, в которой нет никаких примесей. Если быть честным и точным в ответе, то придется сознаться, что такую воду ни я, ни вы пока не видели. Именно поэтому на стакане с водой после надписи «Н 2 О» стоит знак вопроса. Значит, в стакане не чистая вода, а что тогда?

В этой воде растворены газы: N 2 , O 2 , CO 2 , Ar, соли из почвы, катионы железа из водопроводных труб. Кроме того, в ней взвешены мельчайшие частицы пыли. Вот что мы называем ч и с т о й в о д о й! Много ученых работает над решением трудной проблемы – получить абсолютно чистую воду. Но пока получить такую ультрачистую воду не удалось. Однако вы можете возразить, что есть дистиллированная вода. Кстати, что она собой представляет?

На самом деле мы получаем такую воду, когда стерилизуем банки перед консервированием. Переворачиваем банку вверх дном, помещаем ее над кипящей водой. На донышке банки появляются капельки, это и есть дистиллированная вода. Но как только мы перевернем банку, в нее заходят газы из воздуха, и снова в банке – раствор. Поэтому грамотные хозяйки стараются сразу после стерилизации заполнить банки нужным содержимым. Говорят, что продукты в этом случае будут храниться дольше. Возможно, они правы. Можете поэкспериментировать! Именно потому, что вода способна растворять в себе различные вещества, ученые не могут до сих пор получить идеально чистую воду в больших объемах. А она бы так пригодилась, например, в медицине для приготовления лекарств.

Кстати, находясь в стакане, вода «растворяет» стекло. Поэтому чем толще стекло, тем дольше прослужат стаканы. А что такое морская вода?

Это раствор, в котором содержится много веществ. Например, поваренная соль. А как можно выделить поваренную соль из морской воды?

Выпариванием.Кстати, именно так поступали наши предки. В Онеге были солеварни, где из морской воды выпаривали соль. Соль продавали новгородским купцам, покупали своим невестам и женам дорогие украшения, шикарные ткани. Таких нарядов, как у поморок, не было даже у московских модниц. А все лишь благодаря знаниям свойств растворов! Итак, сегодня мы с вами говорим о растворах и растворимости. Запишем в тетради определение раствора.

Раствор – однородная система, состоящая из молекул растворителя и растворённого вещества, между которыми происходят физические и химические взаимодействия.

Раccмотрим схемы 1–2 и разберем, какие бывают растворы.


Какой из растворов вы предпочтете, готовя суп? Почему?

Определите, где разбавленный раствор, где концентрированный раствор медного купороса?

Если в определённом объёме раствора содержится мало растворённого вещества, то такой раствор называют разбавленным , если много – концентрированным .





Определите, где какой раствор?

Не следует смешивать понятия «насыщенный» и «концентрированный» раствор, «ненасыщенный» и «разбавленный» раствор.

Одни вещества хорошо растворяются в воде, другие мало, а третьи – не растворяются совсем. Посмотрите видео "РАСТВОРИМОСТЬ ТВЁРДЫХ ВЕЩЕСТВ В ВОДЕ"

Выполните задание в тетради: Распределите предложенные вещества - СO 2 , H 2 , O 2 , H 2 SO 4 , Уксус, NaCl,Мел, Ржавчина, Растительное масло, Спирт в пустые столбики таблицы 1, используя свой жизненный опыт.

Таблица 1

Растворенное
вещество

Примеры веществ

Растворимые

Малорастворимые

Газ



Жидкость



Твердое вещество



А можете ли вы сказать о растворимости FeSO 4 ?

Как же быть?

Для того чтобы определить растворимость веществ в воде, мы будем пользоваться таблицей растворимости солей, кислот и оснований в воде. Она находится в приложениях к уроку.

В верхней строке таблицы – катионы, в левом столбце – анионы; ищем точку пересечения, смотрим букву – это и есть растворимость.

Определим растворимость солей: AgNO 3 , AgCl, CaSO 4 .

Растворимость увеличивается с ростом температуры (бывают исключения). Вы прекрасно знаете, что удобнее и быстрее растворять сахар в горячей, а не в холодной воде. Посмотрите "Тепловые явления при растворении"

Попробуйте сами, пользуясь таблицей, определить растворимость веществ.

Задание. Определить растворимость следующих веществ: AgNO 3 , Fe(OH) 2 , Ag 2 SO 3 , Ca(OH) 2 , CaCO 3 , MgCO 3 , KOH.

ОПРЕДЕЛЕНИЯ по теме «Растворы»

Раствор – однородная система, состоящая из молекул растворителя и растворённого вещества, между которыми происходят физические и химические взаимодействия.

Насыщенный раствор – это раствор, в котором данное вещество при данной температуре больше не растворяется.

Ненасыщенный раствор - это раствор, в котором при данной температуре вещество ещё может растворяться.

Суспензией называют взвесь, в которой мелкие частицы твёрдого вещества равномерно распределены между молекулами воды.

Эмульсией называют взвесь, в которой мелкие капельки какой-либо жидкости распределены между молекулами другой жидкости.

Разбавленные растворы - растворы с небольшим содержанием растворенного вещества.

Концентрированные растворы - растворы с большим содержанием растворенного вещества.

ДОПОЛНИТЕЛЬНО:

По соотношению преобладания числа частиц, переходящих в раствор или удаляющихся из раствора, различают растворы на­сыщенные, ненасыщенные и пересыщенные . По относительным количествам растворенного вещества и растворителя растворы подразделяют на разбавленные и концентрированные .

Раствор, в котором данное вещество при данной температуре больше не растворяется, т.е. раствор, находящийся в равновесии с растворяемым веществом, называют насыщенным , а раствор, в котором еще можно растворить добавочное количество данного вещества, - ненасыщенным .

Насыщенный раствор содержит максимально возможное (для данных условий) количество растворенного вещества. Следова­тельно, насыщенным раствором является такой раствор, который находится в равновесии с избытком растворенного вещества. Концентрация насыщенного раствора (растворимость) для данно­го вещества при строго определенных условиях (температура, растворитель) - величина постоянная.

Раствор, содержащий растворенного вещества больше, чем его должно быть в данных условиях в насыщенном растворе, на­зывается пересыщенным . Пересыщенные растворы представляют собой неустойчивые, неравновесные системы, в которых наблю­дается самопроизвольный переход в равновесное состояние. При этом выделяется избыток растворенного вещества, и раствор ста­новится насыщенным.

Насыщенный и ненасыщенный растворы нельзя путать с разбавленным и концентрированным. Разбавленные растворы - растворы с небольшим содержанием растворен­ного вещества; концентрированные растворы - растворы с большим содержанием растворенного вещества. Необходимо подчеркнуть, что понятие разбавленный и концентрированный растворы являются относительными, выражающими только соот­ношение количеств растворенного вещества и растворителя в растворе.

Одни вещества лучше растворяются в том или ином растворителе, другие хуже. Считается, что абсолютно нерастворимых веществ нет. Каждое вещество способно к растворению, пусть даже в некоторых случаях и в очень незначительных количествах (например, ртуть в воде, бензол в воде).

К сожалению, до настоящего времени, нет теории, с помощью которой можно было бы предсказать и вычислить растворимость любого вещества в соответствующем растворителе. Обусловлено это сложностью и многообразием взаимодействия компонентов раствора между собой и отсутствием общей теории растворов (особенно концентрированных). В связи с этим необходимые данные по растворимости веществ получают, как правило, опытным путем.

Количественно способность вещества к растворению характеризуется чаще всего растворимостью иликоэффициентом растворимости (S ).

Растворимость (S ) показывает сколько граммов вещества может максимально раствориться при данных условиях (температуре, давлении) в 100 г растворителя с образованием насыщенного раствора.

При необходимости коэффициент растворимости определяется и для другого количества растворителя (например, для 1000 г, 100 см 3 , 1000 см 3 и т.д.).

По растворимости все вещества в зависимости от своей природы делятся на 3 группы: 1) хорошо растворимые; 2) мало растворимые; 3) плохо растворимые или нерастворимые.

Коэффициент растворимости для веществ первой группы больше 1 г (на 100 г растворителя), для веществ второй группы лежит в интервале 0,01 – 1,0 г и для веществ третьей группы S< 0,01 г.

На растворимость веществ оказывают влияние многие факторы, главными из которых являются природа растворителя и растворяемого вещества, температура, давление, наличие в растворе других веществ (особенно электролитов).

Влияние природы веществ на растворимость

Установлено опытным путем, что в растворителе, молекулы которого полярны, лучше всего растворяются вещества, образованные ионными или ковалентными полярными связями. А в растворителе, молекулы которого неполярны, лучше растворяются вещества, образованные слабополярными или неполярными ковалентными связями. По другому эту выявленную закономерность можно сформулировать так: «Подобное растворяется в подобном».

Растворимость веществ во многом обуславливается силой и характером их взаимодействия с молекулами растворителя. Чем сильнее выражено это взаимодействие, тем больше растворимость и наоборот.

Известно, что силы, действующие между неполярными и слабополярными молекулами, невелики и неспецифичны, т.е. в количественном выражении существенно не зависят от вида вещества.

Если в неполярную жидкость В ввести однотипные неполярные молекулы А, то энергия взаимодействия частиц А и В между собой не будет значительно отличаться от энергии взаимодействия между частицами А и А или частицами В и В. Поэтому подобно тому как смешиваются любые количества одного и того же вещества, с большой вероятностью будут неограниченно смешиваться друг с другом (т.е. растворяться друг в друге) и различные неполярные жидкости.

По этой же причине и молекулярные кристаллы обычно лучше растворяются в неполярных жидкостях.

Если же энергия взаимодействия молекул А и А или В и В больше чем А и В, то одинаковые молекулы каждого компонента будут предпочтительнее связываться между собой и растворимость их друг в друге понизится (табл. 6).

Полярность любого растворителя часто характеризуют значением его диэлектрической проницаемости (ε), которая легко определяется опытным путем. Чем она больше, тем более полярным является вещество.

Таблица 6. Растворимость KI(мас%) в растворителях различной полярности

Науке к технике. Вода, столь широко распространенная я природе, всегда содержит растворенные вещества. В пресной воде рек и озер их мало, в то время как в морской воде содержится около 3.6% растворенных солей.

В первичном океане (во время появления жизни на Земле) массовая доля солей, по предположениям, была низка, около 1 %.

Именно в этом растворе впервые развились живые организмы, и из ятого рнстнора они получили ноны и молекулы, необходимые дли их роста и жизни... С течением времени живые организмы риз пинались и изменялись. ЧТО позволило им покинуть водную среду и перейти на сушу и затем подняться н воздух. Они приобрели эту способность, сохранин и своих организмах водный раствор в виде жидкостей, содержащих необходимый запас ионов и молекул» - вот так оценивает роль растворов в возникновении и развитии жизни на Земле известный американский химик, лауреат Нобелевской премии Лайнус Полинг Внутри нас, в каждой вашей клеточке - воспоминание о первичном океане, в котором зародилась жизнь, - водном растворе, обеспечивающем саму жизнь.
В каждом живом организме бесконечно течет по сосудам - артериям, венам и капиллярам - волшебный раствор, составляющий основу крови, массовая доля солей в нем такая же, как в первичном океане. - 0,0%. Сложные физико-химические процессы, происходящие в организмах человека и животных, также протекают в растворах. Усвоение нищи связано с переводом питательных веществ в раствор. Природные водные растворы участвуют в процессах почвообразования и снабжают растения питательными веществами. Многие технологические процессы в химической и других отраслях промышленности, например получения соды, удобрений, кислот, металлов, бумаги, протекают в растворах. Изучение свойств растворов занимает очень важное место в современной науке. Так что же такое раствор?

Отличие раствора от других смесей в том. что частицы составных частей распределяются в нем равномерно, и в любом микрообъеме такой смеси состав одинаков.

Поэтому под растворами понимали однородные смеси, состоящие из двух или более однородных частей. Это представление исходило пз физической теории растворов.

Сторонники физической теории растворов, которую развивали Вант Гофф, Лррениус и Оствальд, считали, что процесс растворения является результатом диффузии , то есть проникновения, растворенного вещества в промежутки между молекулами воды.

В противоположность представлениям физической теории растворов. Д. И. Менделеев и сторонники химической теории растворов доказывали, что растворение является результатом химического взаимодействия растворенного вещества с молекулами воды. Поэтому правильнее (точнее) определять раствор как однородную систему, состоящую из частиц растворенною вещества, растворителя и продуктов их взаимодействия.

В результате химического взаимодействия растворенного вещества с водой образуются соединения гидраты. О химическом взаимодействии говорят такие признаки химических реакций, как тепловые явления при растворении. Например, вспомните, что растворение серной кислоты в воде протекает с выделением такого большого количества теплоты, что раствор может закипеть, а потому льют кислоту в воду (а не наоборот). Растворение других веществ, например хлорида натрия, нитрата аммония, сопровождается поглощением теплоты.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки