Реакцией нейтрализации можно назвать взаимодействие. Реакция нейтрализации

Cтраница 2


Реакции нейтрализации, в которых участвует слабая кислота или слабое основание, протекают не полностью, только до установления равновесия.  

Реакции нейтрализации являются экзотермическими процессами (Н ОН-Н2О 57 3 кДж), следовательно, гидролиз солей эн-дотермичен.  

Реакции нейтрализации являются экзотермическими процессами (Н ОН - Н2О 57 3 кДж), следовательно, гидролиз солей эндотермичен.  

Реакция нейтрализации - это химическая реакция между веществом, имеющим свойства кислоты, и веществом, имеющим свойства основания, которая приводит к потере характерных свойств обоих соединений. Наиболее типичная реакция нейтрализации в водных растворах происходит между гидратированными ионами водорода и ионами гидро-ксила, содержащимися соответственно в сильных кислотах и основаниях: Н ОН-Н2О.  

Реакция нейтрализации протекает не только в водных, но и в неводных растворах. Химическая природа неводного растворителя влияет на состояние ионов в растворе и на степень диссоциации. Одно и то же вещество может быть в одном растворителе солью, в другом кислотой, в третьем основанием.  

Реакция нейтрализации сопровождается выделением теплоты; поэтому термометр Бекмана предварительно устанавливают таким образом, чтобы в начале опыта ртуть в капилляре термометра была в нижней части шкалы. После того как будет собран калориметр, определяют его постоянную (см. предыдущую работу), вставив в крышку калориметра пустую ампулу.  

Реакции нейтрализации протекают с выделением тепла. Однако количество тепла, высвобождаемого при смешении разбавленных кислот и щелочей, трудно оценить на ощупь. Концентрированные же кислоты и основания ни в коем случае не следует смешивать друг с другом. Такая смесь становится настолько горячей, что начинает кипеть и сильно расплескиваться.  

Реакции нейтрализации играют решающую роль при формовании, так как они предопределяют кинетику осаждения и структуру образующейся нити. Кроме того, в результате реакции нейтрализации ряд продуктов переходит в неустойчивую форму и разлагается.  

Реакция нейтрализации щелочью нафтеновых кислот и фенолов имеет обратимый характер. Нафтенаты и феноляты в присутствии воды гидролизуются, образуя исходные продукты. Степень гидролиза зависит от условий процесса. Она увеличивается с повышением температуры и понижается с ростом концентрации раствора щелочи. Щелочную очистку целесообразно проводить при невысоких температурах, используя концентрированные растворы.  

Реакции нейтрализации, протекающие в водных растворах, аналогичны реакциям, происходящим в неводных средах.  

Реакция нейтрализации представляет собой ионообменную реакцию и проходит моментально. В отличие от нее реакция этерификации не является ионообменной и протекает медленнее. И реакция образования этилатов, и реакция этерификации обратимы, а следовательно, ограничены состоянием равновесия.  

Видов реакции нейтрализации. Сама реакция подразумевает под собой гашение очагов (микробов, кислот и токсинов).

Реакция нейтрализации в медицине

В реакция нейтрализации используется в микробиологии. Основано это на том, что некоторые соединения способны связать возбудители различных заболеваний, или их метаболизмы. В итоге микроорганизмы лишаются возможности использовать свои биологические свойства. Сюда же можно отнести реакции торможения вирусов.

Нейтрализация токсинов происходит по подобному принципу. В качестве основного компонента используют различные антитоксины, которые блокируют действие токсинов, не давая проявить им свои свойства.

Реакция нейтрализации в неорганической химии

Реакции нейтрализации - одна из основ неорганической . Нейтрализация относится к типу реакции обмена. На выходе реакции получается соль и вода. Для реакции используют кислоты и основания. Реакции нейтрализации обратимые и необратимые.

Необратимые реакции

Обратимость реакции зависит от степени диссоциации составляющих. Если используются два сильных соединения, то реакция нейтрализации не сможет вернуться до исходных веществ. Это можно увидеть, например, при реакции гидроксида калия с азотной кислотой:
КОН + HNO3 – KNO3 + Н2O;

Реакция нейтрализации в конкретном случае переходит в реакцию гидролиза соли.

В ионном виде реакция выглядит так:
Н(+) + OН(-) > Н2O;

Отсюда можно сделать вывод, что при реакции сильной кислоты с сильным основанием обратимости быть не может.

Обратимые реакции

Если реакция происходит между слабым основанием и сильной кислотой, либо слабой кислотой и сильным основанием, либо между слабой кислотой и слабым основанием, то процесс этот обратим.

Обратимость происходит в результате смещения вправо в системе равновесия. Обратимость реакции можно увидеть при использовании в качестве исходных веществ, например, или синильной кислоты, а также аммиака.

Слабая кислота и сильное основание:
HCN+KOH=KCN+H2O;

В ионном виде:
HCN+OH(-)=CN(-)+H2O.

Слабое основание и

Нейтрализация – химическая реакция, происходящая между двумя составами, имеющими свойства кислоты и основания. В результате их взаимодействия происходит потеря свойств обоих веществ, что приводит к выделению соли и воды.

Сфера применения нейтрализации

Вычисления по этой реакции особенно часто используются:

  • в агрохимических лабораториях;
  • в химическом производстве;
  • при обработке отходов.

Метод нейтрализации применяется в клинических лабораториях для определения буферной емкости плазмы крови, кислотности желудочного сока. Активно используется и в фармакологии, когда нужно провести количественный анализ неорганических и органических кислот. Проводить этот процесс можно по всем правильно составленным уравнениям.

Внешние проявления нейтрализации

Процесс нейтрализации кислоты можно наблюдать, если вначале к раствору добавить несколько капель индикатора, который позволит изменить окраску раствора. Когда к этой смеси добавляется щелочь, то окраска полностью исчезает. Но стоит учитывать, что индикаторы меняют свою окраску не строго в эквивалентной точке, а с отклонением. Поэтому даже при правильном выборе индикатора допускается погрешность. Если же он был выбран неправильно, то все результаты оказываются искаженными.

В условиях школьной программы для этого применяют лимонную кислоту и нашатырный спирт. В качестве примера можно рассмотреть процесс реакции между соляной кислотой и едким натром. В результате их взаимодействия образовывается известный всем раствор пищевой соли в воде. Также в качестве индикаторов могут выступать:

  • метиловый оранжевый;
  • лакмус;
  • метиловый красный;
  • фенолфталеин.

Необходимо отметить, что реакция, обратная нейтрализации, называется гидролизом. Его результатом является образование слабой кислоты или основания.

При выборе нейтрализующего вещества обязательно учитываются:

  • промышленные свойства соединения;
  • доступность;
  • себестоимость.

Раньше в качестве нейтрализатора применяли окись магния. Сейчас она не пользуется популярностью, поскольку имеет высокую стоимость и вступает в реакцию достаточно медленно.

Виды реакции нейтрализации

В процессе взаимодействия сильного основания такой же сильной кислотой происходит смещение реакции в сторону образования воды. Вместе с тем этот процесс не доходит до конца, поскольку начинается гидролиз соли.

При нейтрализации слабой кислоты сильным основанием можно говорить об обратимой реакции. Как правило, в таких системах протекание реакции смещается в сторону образования соли, поскольку вода является более слабым электролитом, чем, например, синильная, уксусная кислота или аммиак.

Скорость процесса нейтрализации изменяется в зависимости от специфики используемых веществ. Например, при применении NaOH необходимая степень кислотности появляется практически сразу же. СаО приводит к возникновению нужной реакции только через 15-20 минут, а MgO – через 45 минут. При этом в последних двух случаях наиболее сильное понижение кислотности наблюдается в первые 5 минут после того как было внесено нейтрализующее вещество. Если скорость процесса не очень высокая, то еще больше его начинает тормозить вторичное окисление.

Выделение тепла в процессе нейтрализации

Часто это происходит под воздействием азотной кислоты. Чем выше ее количество, тем больше выделяется тепла. При получении поваренной соли воздействие тепла приводит к нежелательным последствиям, поскольку она начинает разлагаться с выделением хлора. Из-за выделения тепла можно говорить о том, что все реакции нейтрализации являются экзотермическими. Его выделение происходит из-за возникновения разницы между суммарной энергией ионов Н+ и ОН-, а также энергией образования молекул воды.

Реакция между кислотой и основанием, в результате которой образуется соль и вода, называется реакцией нейтрализации.

Мы изучили реакции взаимодействия кислот с металлами и окислами металлов. При этих реакциях образуется соль соответствующего металла. Основания также содержат металлы. Можно предположить, что кислоты будут взаимодействовать с основаниями тоже с образованием солей. Прильем к раствору гидроокиси натрия NaOH раствор соляной кислоты HCl.

Раствор остается бесцветным и прозрачным, но на ощупь можно установить, что при этом выделяется теплота. Выделение теплоты показывает, что между щелочью и кислотой произошла химическая реакция .

Чтобы выяснить сущность этой реакции, проделаем такой опыт. В раствор щелочи поместим бумажку, окрашенную фиолетовым лакмусом. Она, конечно, посинеет. Теперь из бюретки начнем приливать к раствору щелочи малыми порциями раствор кислоты, пока окраска лакмуса опять изменится из синей в фиолетовую. Если лакмус из синего стал фиолетовым, то это означает, что в растворе не стало щелочи. Не стало в растворе и кислоты, так как в ее присутствии лакмус должен был бы окраситься в красный цвет. Раствор сделался нейтральным. Выпарив раствор, мы получили соль – хлористый натрий NaCl.

Образование хлористого натрия при взаимодействии гидроокиси натрия с соляной кислотой выражается уравнением:

NaOH + HCl = NaCl + H 2 O + Q

Сущность этой реакции заключается в том, что атомы натрия и водорода обмениваются местами. В результате водородный атом кислоты соединяется с гидроксильной группой щелочи в молекулу воды, а атом металла натрия соединяется с остатком кислоты – Cl, образуя молекулу соли. Эта реакция относится к знакомому нам типу реакций обмена .

Вступают ли в реакции с кислотами нерастворимые основания ? Насыплем в стакан голубую гидроокись меди. Прибавим воды. Гидроокись меди не растворится. Теперь прильем к ней раствор азотной кислоты. Гидроокись меди растворится и получится прозрачный раствор азотнокислой меди голубого цвета. Реакция выражается уравнением:

Cu(OH) 2 + 2HNO 3 = Cu(NO 3) 2 + 2H 2 O

Нерастворимые в воде основания, как и щелочи, взаимодействуют с кислотами с образованием соли и воды.

С помощью реакции нейтрализации определяют опытным путем нерастворимые кислоты и основания. Гидраты окислов, вступающие в реакцию нейтрализации со щелочами, относятся к кислотам. Убедившись на опыте, что данный гидрат окисла нейтрализуется щелочами, мы пишем его формулу, как формулу кислоты, записывая химический знак водорода на первое место: HNO3, H 2 SO 4 .

Кислоты друг с другом с образованием солей не взаимодействуют.

Гидраты окислов, вступающие з реакцию нейтрализации с m лотами, относятся к основаниям. Убедившись на опыте, что данный гидрат окисла нейтрализуется кислотами, мы пишем его формулу в виде Ме(ОН) n , т. е. подчеркиваем присутствие в нем гидроксильных групп.

Основания друг с другом с образованием солей не взаимодействуют.

Взаимодействие кислоты и основания с образованием соли и воды называется реакцией нейтрализации. Обычно подобные реакции протекают с выделением тепла.

Общее описание

Суть нейтрализации состоит в том, что кислота и основание, обмениваясь активными частями, нейтрализуют друг друга. В результате образуется новое вещество (соль) и нейтральная среда (вода).

Простым и наглядным примером реакции нейтрализации является взаимодействие соляной кислоты и гидроксида натрия:

HCl + NaOH → NaCl + H 2 O.

Если опустить лакмусовую бумажку в раствор соляной кислоты и гидроксида натрия, то она окрасится в фиолетовый цвет, т.е. покажет нейтральную реакцию (красный - кислая среда, синий - щелочная среда).

Раствор двух активных соединений превратился в воду за счёт обмена натрием и хлором, поэтому ионное уравнение данной реакции выглядит следующим образом:

H + + OH - → H 2 O.

После нагревания получившегося раствора вода испарится, а в пробирке останется поваренная соль - NaCl.

Рис. 1. Образование соли после выпаривания.

В подобных реакциях вода - обязательный продукт.

Примеры

Реакция нейтрализации может происходить между сильными и слабыми кислотами и щелочами. Рассмотрим два типа реакций:

  • необратимые реакции - образованная соль не распадается на составляющие вещества - кислоту и щёлочь (протекают в одну сторону);
  • обратимые реакции - образованные соединения способны распадаться на изначальные вещества и вновь взаимодействовать (протекают в обе стороны).

Примером первого вида реакций является взаимодействие сильной кислоты с сильным основанием:

  • H 2 SO 4 + 2KOH → K 2 SO 4 + 2H 2 O;
  • HNO 3 + KOH → KNO 3 + H 2 O.

Обратимые реакции протекают при нейтрализации слабой кислоты сильным основанием, а также слабого основания слабой кислотой:

  • H 2 SO 3 + 2NaOH ↔ Na 2 SO 3 + 2H 2 O;
  • Fe(OH) 3 + H 3 PO 4 ↔ FePO 4 + 3H 2 O.

Слабые нерастворимые или слаборастворимые основания (Fe(OH) 3 , Fe(OH) 2 , Mg(OH) 2 , Zn(OH) 2) также нейтрализуются сильной кислотой. Например, гидроокись меди не растворяется в воде, но при взаимодействии с азотной кислотой образует соль (нитрат меди) и воду:

Cu(OH) 2 + 2HNO 3 ↔ Cu(NO 3) 2 + 2H 2 O.

Рис. 2. Взаимодействие гидроокиси меди с кислотой.

Реакции нейтрализации экзотермичные, они протекают с выделением тепла.

Использование

Реакции нейтрализации - основа титриметрического анализа или титрования. Это метод количественного анализа концентрации веществ. Метод используется в медицине, например, для определения кислотности желудочного сока, а также в фармакологии.

Рис. 3. Титрование.

Кроме того, важно практическое применение нейтрализации в лаборатории: при проливе кислоты её можно нейтрализовать щёлочью.

Что мы узнали?

Реакция, при которой кислота и основание образуют соль и воду, называется нейтрализацией. Эта реакция возможна между любыми кислотами и основаниями: сильной кислотой и сильной щёлочью, слабой кислотой и слабым основанием, сильным основанием и слабой кислотой, слабым основанием и сильной кислотой. Реакция протекает с выделением тепла. Нейтрализация применяется в медицине и фармакологии.