Случайная величина задана рядом распределения. Дискретные случайные величины (ДСВ)

Назначение сервиса . Онлайн-калькулятор используется для построения таблицы распределения случайной величины X – числа произведенных опытов и вычисления всех характеристик ряда: математического ожидания, дисперсии и среднеквадратического отклонения. Отчет с решением оформляется в формате Word .
Пример 1 . В урне белых и черных шара. Шары наудачу достают из урны без возвращения до тех пор, пока не появится белый шар. Как только это произойдет, процесс прекращается.
Данный тип заданий относится к задаче построения геометрического распределения .

Пример 2 . Два Три стрелка делают по одному выстрелу в мишень. Вероятность попадания в нее первым стрелком равна , вторым – . Составить закон распределения случайной величины Х – числа попаданий в мишень.

Пример 2a . Стрелок делает по два три четыре выстрела. Вероятность попадания при соответствующем выстреле равна , . При первом промахе стрелок в дальнейших состязаниях не участвует. Составить закон распределения случайной величины Х - число попаданий в мишень.

Пример 3 . В партии из деталей бракованных стандартных. Контролер наудачу достает детали. Составить закон распределения случайной величины Х – числа бракованных годных деталей в выборке.
Аналогичное задание : В корзине m красных и n синих шаров. Наудачу вынимают k шаров. Составить закон распределения ДСВ X – появление синих шаров.
см. другие примеры решений .

Пример 4 . Вероятность появления события в одном испытании равна . Производится испытаний. Составить закон распределения случайной величины Х – числа появлений события.
Аналогичные задания для этого вида распределения :
1. Составить закон распределения случайной величины Х числа попаданий при четырех выстрелах, если вероятность попадания в цель при одном выстреле равна 0.8 .
2. Монету подбрасывают 7 раз. Найти математическое ожидание и дисперсию числа появлений герба. Составить таблицу распределения Х – числа появлений герба.

Пример №1 . Бросаются три монеты. Вероятность выпадения герба при одном бросании равна 0.5. Составьте закон распределения случайной величины X - числа выпавших гербов.
Решение.
Вероятность того, что не выпало ни одного герба: P(0) = 0,5*0,5*0,5= 0,125
P(1) = 0,5 *0,5*0,5 + 0,5*0,5 *0,5 + 0,5*0,5*0,5 = 3*0,125=0,375
P(2) = 0,5 *0,5 *0,5 + 0,5 *0,5*0,5 + 0,5*0,5 *0,5 = 3*0,125=0,375
Вероятность того, что выпало три герба: P(3) = 0,5*0,5*0,5 = 0,125

Закон распределения случайной величины X:

X 0 1 2 3
P 0,125 0,375 0,375 0,125
Проверка: P = P(0) + P(1) + P(2) + P(3) = 0,125 + 0,375 + 0,375 + 0,125 = 1

Пример №2 . Вероятность попадания в мишень одного стрелка при одном выстреле для первого стрелка равна 0.8, для второго стрелка – 0.85. Стрелки произвели по одному выстрелу в мишень. Считая попадание в цель для отдельных стрелков событиями независимыми, найти вероятность события А – ровно одно попадание в цель.
Решение.
Рассмотрим событие A - одно попадание в цель. Возможные варианты наступления этого события следующие:

  1. Попал первый стрелок, второй стрелок промахнулся: P(A/H1)=p 1 *(1-p 2)=0.8*(1-0.85)=0.12
  2. Первый стрелок промахнулся, второй стрелок попал в мишень: P(A/H2)=(1-p 1)*p 2 =(1-0.8)*0.85=0.17
  3. Первый и второй стрелки независимо друг от друга попали в мишень: P(A/H1H2)=p 1 *p 2 =0.8*0.85=0.68
Тогда вероятность события А – ровно одно попадание в цель, будет равна: P(A) = 0.12+0.17+0.68 = 0.97

Как известно, случайной величиной называется переменная величина, которая может принимать те или иные значения в зависимости от случая. Случайные величины обозначают заглавными буквами латинского алфавита (X, Y, Z), а их значения – соответствующими строчными буквами (x, y, z). Случайные величины делятся на прерывные (дискретные) и непрерывные.

Дискретной случайной величиной называется случайная величина, принимающая лишь конечное или бесконечное (счетное) множество значений с определенными ненулевыми вероятностями.

Законом распределения дискретной случайной величины называется функция, связывающая значения случайной величины с соответствующими им вероятностями. Закон распределения может быть задан одним из следующих способов.

1 . Закон распределения может быть задан таблицей:

где λ>0, k = 0, 1, 2, … .

в) с помощью функции распределения F(x) , определяющей для каждого значения x вероятность того, что случайная величина X примет значение, меньшее x, т.е. F(x) = P(X < x).

Свойства функции F(x)

3 . Закон распределения может быть задан графически – многоугольником (полигоном) распределения (смотри задачу 3).

Отметим, что для решения некоторых задач не обязательно знать закон распределения. В некоторых случаях достаточно знать одно или несколько чисел, отражающих наиболее важные особенности закона распределения. Это может быть число, имеющее смысл «среднего значения» случайной величины, или же число, показывающее средний размер отклонения случайной величины от своего среднего значения. Числа такого рода называют числовыми характеристиками случайной величины.

Основные числовые характеристики дискретной случайной величины :

  • Mатематическое ожидание (среднее значение) дискретной случайной величины M(X)=Σ x i p i .
    Для биномиального распределения M(X)=np, для распределения Пуассона M(X)=λ
  • Дисперсия дискретной случайной величины D(X)= M 2 или D(X) = M(X 2)− 2 . Разность X–M(X) называют отклонением случайной величины от ее математического ожидания.
    Для биномиального распределения D(X)=npq, для распределения Пуассона D(X)=λ
  • Среднее квадратическое отклонение (стандартное отклонение) σ(X)=√D(X) .

Примеры решения задач по теме «Закон распределения дискретной случайной величины»

Задача 1.

Выпущено 1000 лотерейных билетов: на 5 из них выпадает выигрыш в сумме 500 рублей, на 10 – выигрыш в 100 рублей, на 20 – выигрыш в 50 рублей, на 50 – выигрыш в 10 рублей. Определить закон распределения вероятностей случайной величины X – выигрыша на один билет.

Решение. По условию задачи возможны следующие значения случайной величины X: 0, 10, 50, 100 и 500.

Число билетов без выигрыша равно 1000 – (5+10+20+50) = 915, тогда P(X=0) = 915/1000 = 0,915.

Аналогично находим все другие вероятности: P(X=0) = 50/1000=0,05, P(X=50) = 20/1000=0,02, P(X=100) = 10/1000=0,01, P(X=500) = 5/1000=0,005. Полученный закон представим в виде таблицы:

Найдем математическое ожидание величины Х: М(Х) = 1*1/6 + 2*1/6 + 3*1/6 + 4*1/6 + 5*1/6 + 6*1/6 = (1+2+3+4+5+6)/6 = 21/6 = 3,5

Задача 3.

Устройство состоит из трех независимо работающих элементов. Вероятность отказа каждого элемента в одном опыте равна 0,1. Составить закон распределения числа отказавших элементов в одном опыте, построить многоугольник распределения. Найти функцию распределения F(x) и построить ее график. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение дискретной случайной величины.

Решение. 1. Дискретная случайная величина X={число отказавших элементов в одном опыте} имеет следующие возможные значения: х 1 =0 (ни один из элементов устройства не отказал), х 2 =1 (отказал один элемент), х 3 =2 (отказало два элемента) и х 4 =3 (отказали три элемента).

Отказы элементов независимы друг от друга, вероятности отказа каждого элемента равны между собой, поэтому применима формула Бернулли . Учитывая, что, по условию, n=3, р=0,1, q=1-р=0,9, определим вероятности значений:
P 3 (0) = С 3 0 p 0 q 3-0 = q 3 = 0,9 3 = 0,729;
P 3 (1) = С 3 1 p 1 q 3-1 = 3*0,1*0,9 2 = 0,243;
P 3 (2) = С 3 2 p 2 q 3-2 = 3*0,1 2 *0,9 = 0,027;
P 3 (3) = С 3 3 p 3 q 3-3 = р 3 =0,1 3 = 0,001;
Проверка: ∑p i = 0,729+0,243+0,027+0,001=1.

Таким образом, искомый биномиальный закон распределения Х имеет вид:

По оси абсцисс откладываем возможные значения х i , а по оси ординат – соответствующие им вероятности р i . Построим точки М 1 (0; 0,729), М 2 (1; 0,243), М 3 (2; 0,027), М 4 (3; 0,001). Соединив эти точки отрезками прямых, получаем искомый многоугольник распределения.

3. Найдем функцию распределения F(x) = Р(Х

Для x ≤ 0 имеем F(x) = Р(Х<0) = 0;
для 0 < x ≤1 имеем F(x) = Р(Х<1) = Р(Х = 0) = 0,729;
для 1< x ≤ 2 F(x) = Р(Х<2) = Р(Х=0) + Р(Х=1) =0,729+ 0,243 = 0,972;
для 2 < x ≤ 3 F(x) = Р(Х<3) = Р(Х = 0) + Р(Х = 1) + Р(Х = 2) = 0,972+0,027 = 0,999;
для х > 3 будет F(x) = 1, т.к. событие достоверно.

График функции F(x)

4. Для биномиального распределения Х:
- математическое ожидание М(X) = np = 3*0,1 = 0,3;
- дисперсия D(X) = npq = 3*0,1*0,9 = 0,27;
- среднее квадратическое отклонение σ(X) = √D(X) = √0,27 ≈ 0,52.

Случайной величиной называется переменная, которая может принимать те или иные значения в зависимости от различных обстоятельств, и в свою очередь, случайная величина называется дискретной , если множество её значений конечно или счётно.

Кроме дискретных случайных величин существуют также непрерывные случайные величины.

Рассмотрим более подробно понятие случайной величины. На практике часто встречаются величины, которые могут принимать некоторые значения, но нельзя достоверно предсказать, какое именно значение каждая из них примет в рассматриваемом опыте, явлении, наблюдении. Например, число мальчиков, которые родятся в Москве в ближайший день, может быть различным. Оно может быть равным нулю (не родится ни одного мальчика: родятся все девочки или вообще не будет новорождённых), одному, двум и так далее до некоторого конечного числа n . К подобным величинам относятся: масса корнеплода сахарной свеклы на участке, дальность полёта артиллерийского снаряда, количество бракованных деталей в партии и так далее. Такие величины будем называть случайными. Они характеризуют все возможные результаты опыта или наблюдения с количественной стороны.

Примерами дискретных случайных величин с конечным числом значений могут служить число родившихся детей в течение дня в населённом пункте, число пассажиров автобуса, число пассажиров, перевезённых московским метро за сутки и т. п.

Число значений дискретной случайной величины может быть и бесконечным, но счётным множеством. Но в любом случае их можно в каком-то порядке пронумеровать, или, более точно - установить взаимно-однозначное соответствие между значениями случайной величины и натуральными числами 1, 2, 3, ..., n .

Внимание: новое, очень важное понятие теории вероятностей - закон распределения . Пусть X может принимать n значений: . Будем считать, что они все различны (в противном случае одинаковые должны быть объединены) и расположены в возрастающем порядке. Для полной характеристики дискретной случайной величины должны быть заданы не только все её значения, но и верояности , с которыми случайная величина принимает каждое из значений, т. е. .

Законом распределения дискретной случайной величины называется любое правило (функция, таблица) p (x ), позволяющее находить вероятности всевозможных событий, связанных со случайной величиной (например, вероятность того, что она пример какое-то значение или попадёт в какой-то интервал).

Наиболее просто и удобно закон распределения дискретной случайной величины задавать в виде следующей таблицы:

Значение ...
Вероятность ...

Такая таблица называется рядом распределения дискретной случайной величины . В верхней строке ряда распределения перечислены в порядке возрастания все возможные значения дискретной случайной величины (иксы), а в нижней - вероятности этих значений (p ).

События являются несовместимыми и единственно возможными: они образуют полную систему событий. Поэтому сумма их вероятностей равна единице:

.

Пример 1. В студенческой группе организована лотерея. Разыгрывается две вещи стоимостью по 1000 руб. и одна стоимостью по 3000 руб. Составить закон распределения суммы чистого выигрыша для студента, который приобрёл один билет за 100 руб. Всего продано 50 билетов.

Решение. Интересующая нас случайная величина X может принимать три значения: - 100 руб. (если студент не выиграет, а фактически проиграет 100 руб., уплаченные им за билет), 900 руб. и 2900 руб. (фактический выигрыш уменьшается на 100 руб. - на стоимость билета). Первому результату благоприятствуют 47 случаев из 50, второму - 2, а третьему - один. Поэтому их вероятности таковы: P (X =-100)=47/50=0,94 , P (X =900)=2/50=0,04 , P (X =2900)=1/50=0,02 .

Закон распределения дискретной случайной величины X имеет вид

Сумма выигрыша -100 900 2900
Вероятность 0,94 0,04 0,02

Функция распределения дискретной случайной величины: построение

Ряд распределения может быть построен только для дискретной случайной величины (для недискретной он не может быть построен хотя бы потому, что множество возможных значений такой случайной величины несчётно, их нельзя перечислить в верхней строке таблицы).

Наиболее общей формой закона распределения, пригодной для всех случайных величин (как дискретных, так и недискретных), является функция распределения.

Функцией распределения дискретной случайной величины или интегральной функцией называется функция , которая определяет вероятность, что значение случайной величины X меньше или равно граничному значению х .

Функция распределения любой дискретной случайной величины есть разрывная ступенчатая функция, скачки которой происходят в точках, соответствующих возможным значениям случайной величины, и равны вероятностям этих значений.

Пример 2. Дискретная случайная величина X - число очков, выпавших при бросании игральной кости. Постоить её функцию распределения.

Решение. Ряд распределения дискретной случайной величины X имеет вид:

Значение 1 2 3 4 5 6
Вероятность 1/6 1/6 1/6 1/6 1/6 1/6

Функция распределения F (x ) имеет 6 скачков, равных по величине 1/6 (на рисунке внизу).

Пример 3. В урне 6 белых шаров и 4 чёрных шара. Из урны вынимают 3 шара. Число белых шаров среди вынутых шаров - дискретная случайная величина X . Составить соответствующий ей закон распределения.

X может принимать значения 0, 1, 2, 3. Соответствующие им вероятности проще всего вычислисть по правилу умножения вероятностей . Получаем следующий закон распределения дискретной случайной величины:

Значение 0 1 2 3
Вероятность 1/30 3/10 1/2 1/6

Пример 4. Составить закон распределения дискретной случайной величины - числа попаданий в цель при четырёх выстрелах, если вероятность попадания при одном выстреле равна 0,1.

Решение. Дискретная случайная величина X может принимать пять различных значений: 1, 2, 3, 4, 5. Соответствующие им вероятности найдём по формуле Бернулли . При

n = 4 ,

p = 1,1 ,

q = 1 - p = 0,9 ,

m = 0, 1, 2, 3, 4

получаем

Следовательно, закон распределения дискретной случайной величины X имеет вид

Если вероятности значений дискретной случайной величины можно определить по формуле Бернулли, то случайная величина имеет биномиальное распределение .

Если число испытаний достаточно велико, то вероятность того, что в этих испытаниях интересующее событие наступит именно m раз, подчиняется закону распределения Пуассона .

Функция распределения дискретной случайной величины: вычисление

Чтобы вычислить функцию распределения дискретной случайной величины F (х ), требуется сложить вероятности всех тех значений, которые меньше или равны граничному значению х .

Пример 5. В таблице данные о зависимости числа расторгнутых в течение года браков от длительности брака. Найти вероятность того, что очередной расторгнутый брак имел длительность менее или равную 5 годам.

Длительность брака (лет) Число Вероятность F (x )
0 10 0,002 0,002
1 80 0,013 0,015
2 177 0,029 0,044
3 209 0,035 0,079
4 307 0,051 0,130
5 335 0,056 0,186
6 358 0,060 0,246
7 413 0,069 0,314
8 432 0,072 0,386
9 402 0,067 0,453
10 и более 3287 0,547 1,000
Всего 6010 1

Решение. Вероятности вычислены путём деления числа соответствующих расторгнутых браков на общее число 6010. Вероятность того, что очередной расторгнутый брак был длительностью в 5 лет, равна 0,056. Вероятность, что длительность очередного расторгнутого брака меньше или равна 5 годам, равна 0,186. Мы получили её, прибавив к значению F (x ) для браков с длительностью по 4 года включительно вероятность для браков с длительностью в 5 лет.

Связь закона распределения дискретной случайной величины с математическим ожиданием и дисперсией

Часто не все значения дискретной случайной величины известны, но известны некоторые значения или вероятности из ряда, а также математическое ожидание и (или) дисперсия случайной величины , которым посвящён отдельный урок.

Приведём здесь некоторые формулы из этого урока, которые могут выручить при составлении закона распределения дискретной случайной величины и разберём примеры решения таких задач.

Математическое ожидание дискретной случайной величины - сумма произведений всех возможных её значений на вероятности этих значений:

(1)

Формула дсперсии дискретной случайной величины по определению:

Часто для вычислений более удобна следующая формула дисперсии:

, (2)

где .

Пример 6. Дискретная случайная величина X может принимать только два значения. Меньшее значение она принимает с вероятностью p = 0,6 . Найти закон распределения дискретной случайной величины X , если известно, что её математическое ожидание и дисперсия .

Решение. Вероятность того, что случайная величина примет бОльшее значение x 2 , равна 1 − 0,6 = 4 . Используя формулу (1) математического ожидания, составим уравнение, в котором неизвестные - значения нашей дискретной случайной величины:

Используя формулу (2) дисперсии, составим другое уравнение, в котором неизвестные - также значения дискретной случайной величины:

Систему из двух полученных уравнений

решаем методом подстановки. Из первого уравнения получаем

Подставив это выражение во второе уравнение, после несложных преобразований получим квадратное уравнение

,

которое имеет два корня: 7/5 и −1 . Первый корень не отвечает условиям задачи, так как x 2 < x 1 . Таким образом, значения, которые может принимать дискретная случайная величина X по условиям нашего примера, равны x 1 = −1 и x 2 = 2 .

Одним из важнейших понятий теории вероятностей является понятие случайной величины .

Случайной называют величину , принимающую в результате испытаний те или иные возможные значения, наперед неизвестные и зависящие от случайных причин, которые заранее не могут быть учтены.

Случайные величины обозначаются заглавными буквами латинского алфавита X , Y , Z и т. д. или заглавными буквами латинского алфавита с правым нижним индексом , а значения, которые могут принимать случайные величины - соответствующими малыми буквами латинского алфавита x , y , z и т. д.

Понятие случайной величины тесно связано с понятием случайного события. Связь со случайным событием заключается в том, что принятие случайной величиной некоторого числового значения есть случайное событие, характеризуемое вероятностью .

На практике встречаются два основных типа случайных величин:

1. Дискретные случайные величины;

2. Непрерывные случайные величины.

Случайной величиной называется числовая функция от случайных событий.

Например, случайной величиной является число очков, выпавших при бросании игральной кости, или рост случайно выбранного из учебной группы студента.

Дискретными случайными величинами называются случайные величины, принимающие только отдаленные друг от друга значения, которые можно заранее перечислить.

Закон распределения (функция распределения и ряд распределения или плотность вероятности) полностью описывают поведение случайной величины. Но в ряде задач достаточно знать некоторые числовые характеристики исследуемой величины (например, ее среднее значение и возможное отклонение от него), чтобы ответить на поставленный вопрос. Рассмотрим основные числовые характеристики дискретных случайных величин.

Законом распределения дискретной случайной величины называется всякое соотношение , устанавливающее связь между возможными значениями случайной величиныи соответствующими им вероятностями .

Закон распределения случайной величины может быть представлен в виде таблицы :

Сумма вероятностей всех возможных значений случайной величины равна единице, т. е. .

Закон распределения можно изобразить графически : по оси абсцисс откладывают возможные значения случайной величины, а по оси ординат - вероятности этих значений; полученные точки соединяют отрезками. Построенная ломаная называется многоугольником распределения .

Пример . Охотник, имеющий 4 патрона, стреляет по дичи до первого попадания или расходования всех патронов. Вероятность попадания при первом выстреле равна 0,7, при каждом следующем выстреле уменьшается на 0,1. Составить закон распределения числа патронов, израсходованных охотником.


Решение. Так как охотник, имея 4 патрона, может сделать четыре выстрела, то случайная величина X - число патронов, израсходованных охотником, может принимать значения 1, 2, 3, 4. Для нахождения соответствующих им вероятностей введем события:

- “попадание при i - ом выстреле”, ;

- “промах при i - ом выстреле”, причем события и - попарно независимы.

Согласно условию задачи имеем:

,

По теореме умножения для независимых событий и теореме сложения для несовместных событий, находим:

(охотник попал в цель с первого выстрела);

(охотник попал в цель со второго выстрела);

(охотник попал в цель с третьего выстрела);

(охотник попал в цель с четвертого выстрела либо промахнулся все четыре раза).

Проверка: - верно.

Таким образом, закон распределения случайной величины X имеет вид:

0,7 0,18 0,06 0,06

Пример. Рабочий обслуживает три станка. Вероятность того, что в течение часа первый станок не потребует регулировки - 0,9, второй - 0,8, третий - 0,7. Составить закон распределения числа станков, которые в течение часа потребуют регулировки.

Решение. Случайная величина X - число станков, которые в течение часа потребуют регулировки, может принимать значения 0,1, 2, 3. Для нахождения соответствующих им вероятностей введем события:

- “i - ый станок в течение часа потребует регулировки”, ;

- “i - ый станок в течение часа не потребует регулировки”, .

По условию задачи имеем:

, .

Определение 2.3. Случайная величина, обозначаемая X, называется дискретной, если она принимает конечное либо счетное множество значений, т.е. множество – конечное либо счетное множество.

Рассмотрим примеры дискретных случайных величин.

1. Однократно бросают две монеты. Число выпадений гербов в этом эксперименте – случайная величина Х . Ее возможные значения 0,1,2, т. е. – конечное множество.

2. Регистрируется число вызовов "Скорой помощи" в течение некоторого заданного промежутка времени. Случайная величина Х – число вызовов. Ее возможные значения 0, 1, 2, 3, ...,т.е. ={0,1,2,3,...}– счетное множество.

3. В группе 25 студентов. В какой-то день регистрируется число студентов, пришедших на занятия, – случайная величина Х . Ее возможные значения: 0, 1, 2, 3, ...,25 т.е. ={0, 1, 2, 3, ..., 25}.

Хотя все 25 человек в примере 3 пропустить занятия не могут, но случайная величина Х принимать это значение может. Это означает, что значения случайной величины обладают различной вероятностью.

Рассмотрим математическую модель дискретной случайной величины.

Пусть проводится случайный эксперимент, которому соответствует конечное или счетное пространство элементарных событий . Рассмотрим отображение этого пространства на множество действительных чисел, т. е. каждому элементарному событию поставим в соответствие некоторое действительное число , . Множество чисел при этом может быть конечным или счетным, т. е. или

Система подмножеств, в которую входит любое подмножество , в том числе одноточечное, образует -алгебру числового множества ( – конечно или счетно).

Поскольку любому элементарному событию поставлены в соответствие определенные вероятности р i (в случае конечного все ), причем , то и каждому значению случайной величины можем поставить в соответствие определенную вероятность р i , такую, что .

Пусть х – произвольное действительное число. Обозначим Р Х (х) вероятность того, что случайная величина Х приняла значение, равное х , т.е. Р Х (х)=Р(Х=х) . Тогда функция Р Х (х) может принимать положительные значения лишь при тех значениях х , которые принадлежат конечному либо счетному множеству , а при всех остальных значениях вероятность этого значения Р Х (х)=0.

Итак, мы определили множество значений , -алгебру как систему любых подмножеств и каждому событию {X = х } сопоставили вероятность дпя любых , т.е. построили вероятностное пространство .

Например, пространство элементарных событий эксперимента, состоящего в двукратном подбрасывании симметричной монеты, состоит из четырех элементарных событий: , где



При двукратном подбрасывании монеты выпали две решетки ; при двукратном подбрасывании монеты выпали два герба ;

При первом подбрасывании монеты выпала решетка, а при втором – герб ;

При первом подбрасывании монеты выпал герб, а при втором – решетка .

Пусть случайная величина Х – число выпадений решетки. Она определена на и множество ее значений . Все возможные подмножества , в том числе и одноточечные, образуют - алгебру, т.е. ={Ø, {1}, {2}, {0,1}, {0,2}, {1,2}, {0,1,2}}.

Вероятность события {Х=х i }, і = 1,2,3 , определим как вероятность появления события, являющегося его прообразом:

Таким образом, на элементарных событиях {X = х i } задали числовую функцию Р Х , так, что .

Определение 2.4. Законом распределения дискретной случайной величины называется совокупность пар чисел (х i , р i), где х i – возможные значения случайной величины, а р i – вероятности, с которыми она принимает эти значения, причем .

Простейшей формой задания закона распределения дискретной случайной величины является таблица, в которой перечислены возможные значения случайной величины и соответствующиеим вероятности:

Такая таблица называется рядом распределения. Чтобы придать ряду распределения более наглядный вид, его изображают графически: на оси Ох наносят точки х i и проводят из них перпендикуляры длиной р i . Полученные точки соединяют и получают многоугольник, который является однойиз форм закона распределения (рис. 2.1).

Таким образом, для задания дискретной случайной величины нужно задать ее значения и соответствующиеим вероятности.

Пример 2.2. Денежный приемник автомата срабатывает при каждом опускании монеты с вероятностью р . Как только он сработал, монеты не опускают. Пусть Х – число монет, которые надо опустить до срабатывания денежного приемника автомата. Построить ряд распределения дискретной случайной величины Х .



Решение. Возможные значения случайной величины Х : х 1 = 1, х 2 = 2,..., х к =к, … Найдем вероятности этих значений: р 1 – вероятность того, что денежный приемник сработает при первом опускании, и р 1 =р; р 2 – вероятность того, что будут произведены две попытки. Для этого нужно, чтобы: 1) при первой попытке денежный приемник не сработал; 2) при второй попытке – сработал. Вероятность этого события равна (1–р)р . Аналогично и так далее, . Ряд распределения Х примет вид

1 2 3 к
р qp q 2 p q r -1 p

Заметим, что вероятности р к образуют геометрическую прогрессию со знаменателем: 1–p=q , q<1, поэтому такое распределение вероятностей называется геометрическим .

ІІредположим далее, что построена математическая модель эксперимента, описываемого дискретной случайной величиной Х , и рассмотрим вычисление вероятностей наступления произвольных событий .

Пусть произвольное событие содержит конечное либо счетное множество значений х i : A= {х 1 , х 2 ,..., х i , ... } .Событие А можно представить в виде объединения несовместных событий вида : . Тогда, применяя аксиому Колмогорова 3, получаем

так как вероятности наступления событий мы определили равными вероятностям появления событий, являющихся их прообразами. Это значит, что и вероятность любого события , , можно вычислить по формуле , так как это событие представимо в виде, объединения событий , где .

Тогда и функция распределения F(х) = Р(– <Х<х) находится по формуле . Отсюда следует, что функция распределения дискретной случайной величины Х разрывна и возрастает скачками, т. е. является ступенчатой функцией (рис. 2.2):

Если множество конечно, то число слагаемых в формуле конечно, если же счётно, то и число слагаемых счетно.

Пример 2.3. Техническое устройство состоит из двух элементов, работающих независимо друг от друга. Вероятность выходаиз строя первого элемента за время Т равна 0,2, а вероятность выхода второго элемента – 0,1. Случайная величина Х – число отказавших элементов за время Т. Найти функцию распределения случайнойвеличины и построить ее график.

Решение. Пространство элементарных событий эксперимента, состоящего в исследовании надежности двух элементов технического устройства, определяется четырьмя элементарными событиями , , , : – оба элемента исправны; – первый элемент исправен, второй неисправен; – первый элемент неисправен, второй исправен; – оба элемента неисправны. Каждоеиз элементарных событий можно выразить через элементарные события пространств и , где – первый элемент исправен; – первый элемент вышел из строя; – второй элемент исправен; – второй элемент вышел из строя. Тогда , и таккак элементы технического устройства работают независимо друг от друга, то

8. Чему равна вероятность того, что значения дискретной случайной величины принадлежат промежутку ?