Суть опыта майкельсона и морли. Опыт Майкельсона — Морли

Введение.

Еще в конце 19-го века, когда развивалась различные теории электрических и магнитных явлений появилась гипотеза о том, что свет распространяется в так называемом "мировом эфире".

Новые открытия в оптике, в корне перевернули раннее устоявшееся мнение, основанное на убежденности Ньютона в том, что света имеет корпускулярную природу. Эксперименты Гюйгенса, Френеля, Юнга и других ученых показали, что явления дифракции, интерференции и дисперсии могут быть объяснены только в рамках волновой теории света. Все попытки объяснить эти явления с позиций корпускулярной теории потерпели поражение.

После установления волновой природы света возник вопрос о среде в которой эти световые волны распространяются. Согласно представлениям, возникшим вскоре, свет распространяется в особой среде, называемой эфиром. Эфир заполняет все пространство, в котором движутся материальные тела, и неподвижен в этом пространстве. Скорость света относительно эфира является постоянной величиной, определяемой таким свойством эфира, как упругость. Эфир, по этим представлениям, является неподвижной и абсолютной системой отсчета.

Поскольку скорость света относительно эфира постоянна, то относительно материальных тел, движущихся в эфире, она переменна и зависит от их скорости относительно эфира. Измеряя скорость света относительно тела, можно определить скорость тела относительно эфира.

Такая попытка определить абсолютную скорость Земли была выполнена Майкельсоном и Морли в 1881 - 1887 г.г.

Идея и схема опыта Майкельсона - Морли.

Идея опыта состоит в сравнении прохождения светом двух путей, из которых один совпадает с направлением движения тела в эфире, а другой ему перпендикулярен. Схема установки изображена на Рис.1.

Рис.1. Схема опыта Майкельсона-Морли.

Представим себе интерферометр в котором свет, поступая из источника A падает на наклоненное под углом 45 градусов плоское полупрозрачное зеркало B и разделяется на два луча. Один из лучей отражается и уходит под углом 90 градусов по отношению к первоначальному направлению к зеркалу D , а другой проходит зеркало B насквозь и идет к зеркалу F . Отразившись от соответствующих зеркал лучи возвращаются к зеркалу B и наблюдаются в окуляр E .

Если интерферометр неподвижен, то в окуляре должны наблюдаться полосы, положение которых зависит от разности хода лучей по двум путям. Пусть длины плеч интерферометра BF=l 1 и BD=l 2 . Рассчитаем разность хода, если система движется в направлении плеча BF со скоростью v .

При этом точка F удаляется от луча света, то есть луч, движущийся из B в F будет двигаться со скоростью c-v , а луч, движущийся из F в B со скоростью c+v . Значит время движения из B в F равно , а время движения из F в B равно . То есть полное время движения туда и обратно в направлении плеча BF равно .

Луч, движущийся в неподвижном случае вдоль BD , в подвижном случае движется сложнее. Его траектория, показаная на рисунке проходит через точки B , D" , B" . При этом, если его скорость равна c , то она раскладывается на параллельную скорости движения системы c || и перпендикулярную c ^ . При этом c || =v и выполняется соотношение c 2 || + c 2 ^ =с 2 , откуда находим . Тогда движение из B в D" займет . Время обратного пролета такое же, то есть .

Вычислим разность хода . Для этого вначале разложим t ^ и t || по малому параметру v 2 /c 2 .

Во второй половине XIX века физические воззрения на характер распространения света, действие гравитации и некоторые другие феномены все более явственно стали наталкиваться на трудности. Связаны они были с господствовавшей в науке эфирной концепцией. Идея проведения опыта, который разрешил бы накопившиеся противоречия, что называется, носилась в воздухе.

В 1880-х годах была поставлена серия экспериментов, весьма сложных и тонких по тем временам, - опыты Майкельсона по исследованию зависимости скорости света от направления движения наблюдателя. Прежде чем более подробно остановиться на описании и результатах этих знаменитых опытов, необходимо вспомнить, что представляла собой концепция эфира и как понималась физика света.

Взгляды XIX столетия на природу света

В начале века восторжествовала волновая теория света, получившая блестящие экспериментальные подтверждения в работах Юнга и Френеля, а позднее - и теоретическое обоснование в труде Максвелла. Свет совершенно бесспорно проявлял волновые свойства, и корпускулярная теория оказалась похоронена под грудой фактов, которые не могла объяснить (возродится она только в начале XX века на совершенно новой основе).

Однако физика той эпохи не могла представить себе распространение волны иначе, чем через механические колебания какой-либо среды. Если свет - волна, и он способен распространяться в вакууме, то ученым не оставалось ничего иного, как предположить, что вакуум заполнен некой субстанцией, благодаря своим колебаниям проводящей световые волны.

Светоносный эфир

Загадочная субстанция, невесомая, невидимая, не регистрируемая никакими приборами, именовалась эфиром. Опыт Майкельсона как раз и призван был подтвердить факт ее взаимодействия с другими физическими объектами.

Гипотезы о существовании эфирной материи высказывали еще Декарт и Гюйгенс в XVII столетии, но она стала необходима как воздух именно в XIX веке, и тогда же привела к неразрешимым парадоксам. Дело в том, что для того, чтобы, вообще, существовать, эфир должен был обладать взаимоисключающими либо, вообще, физически нереальными качествами.

Противоречия эфирной концепции

Чтобы соответствовать картине наблюдаемого мира, светоносный эфир должен быть абсолютно неподвижным - иначе эта картина постоянно искажалась бы. Но неподвижность его входила в непримиримый конфликт с уравнениями Максвелла и принципом относительности Галилея. Ради их сохранения приходилось признавать, что эфир увлекается движущимися телами.

Помимо того, эфирная материя мыслилась абсолютно твердой, непрерывной и одновременно никоим образом не препятствующей движению тел сквозь нее, несжимаемой и притом обладающей поперечной упругостью, иначе она не проводила бы электромагнитные волны. Кроме того, эфир мыслился как всепроникающая субстанция, что, опять-таки, плохо вяжется с идеей о его увлечении.

Идея и первая постановка опыта Майкельсона

Американский физик Альберт Майкельсон заинтересовался проблемой эфира после того, как прочел в журнале Nature письмо Максвелла, опубликованное после смерти последнего в 1879 году, с описанием неудачной попытки обнаружить движение Земли по отношению к эфиру.

В 1881 году состоялся первый опыт Майкельсона по определению скорости света, распространяющегося в различных направлениях относительно эфира, движущимся вместе с Землей наблюдателем.

Земля, перемещаясь по орбите, должна подвергаться действию так называемого эфирного ветра - явления, аналогичного потоку воздуха, набегающего на движущееся тело. Монохроматический световой луч, направленный параллельно этому «ветру», навстречу ему будет двигаться, несколько теряя в скорости, а обратно (отразившись от зеркала) - наоборот. Изменение скорости в том и в другом случае одинаково, но достигается оно за разное время: замедленный «встречный» луч будет дольше находиться в пути. Таким образом, световой сигнал, испущенный параллельно «эфирному ветру», обязательно задержится относительно сигнала, преодолевающего то же расстояние, также с отражением от зеркала, но в перпендикулярном направлении.

Для регистрации этой задержки использовался изобретенный самим Майкельсоном прибор - интерферометр, работа которого основана на явлении наложения когерентных световых волн. При запаздывании одной из волн интерференционная картина смещалась бы из-за возникающей разности фаз.

Первый опыт Майкельсона с зеркалами и интерферометром не дал однозначного результата вследствие недостаточной чувствительности прибора и недоучета многочисленных помех (вибраций) и вызвал критику. Требовалось существенное повышение точности.

Повторный опыт

В 1887 году ученый повторил эксперимент совместно со своим соотечественником Эдвардом Морли. Они использовали усовершенствованную установку и особенно позаботились об исключении влияния побочных факторов.

Суть опыта не изменилась. Световой пучок, собранный при помощи линзы, падал на полупрозрачное зеркало, установленное под углом 45°. Здесь он делился: один луч проникал сквозь делитель, второй уходил в перпендикулярном направлении. Каждый из лучей затем отражался обычным плоским зеркалом, возвращался на светоделитель, после чего частично попадал на интерферометр. Экспериментаторы были уверены в существовании «эфирного ветра» и рассчитывали получить вполне измеряемый сдвиг более чем на треть интерференционной полосы.

Нельзя было пренебрегать движением Солнечной системы в пространстве, поэтому идея опыта предусматривала возможность поворачивать установку с целью точной настройки на направление «эфирного ветра».

Чтобы избежать вибрационных помех и искажений картины при поворотах прибора, вся конструкция была размещена на массивной каменной плите с деревянным тороидальным поплавком, плавающей в чистой ртути. Фундамент под установкой был заглублен до скальной породы.

Результаты опытов

Ученые проводили тщательные наблюдения в течение года, вращая плиту с прибором по часовой стрелке и против. фиксировалась по 16 направлениям. И, несмотря на беспрецедентную для своей эпохи точность, опыт Майкельсона, проведенный в сотрудничестве с Морли, дал отрицательный результат.

Синфазные световые волны, уходящие со светоделителя, достигали финиша без сдвига фаз. Это повторялось всякий раз, при любом положении интерферометра и означало, что скорость света в опыте Майкельсона ни при каких обстоятельствах не менялась.

Проверка результатов эксперимента проводилась неоднократно, в том числе и в XX веке с применением лазерных интерферометров и микроволновых резонаторов, достигающих точности в одну десятимиллиардную скорости света. Итог опыта остается незыблемым: эта величина неизменна.

Значение эксперимента

Из опытов Майкельсона и Морли следует, что «эфирный ветер», а, следовательно, и сама эта неуловимая материя просто не существует. Если какой-либо физический объект принципиально не обнаруживается ни в каких процессах, это равнозначно его отсутствию. Физики, включая и самих авторов блестяще поставленного эксперимента, далеко не сразу осознали крушение концепции эфира, а вместе с ним - и абсолютной системы отсчета.

Непротиворечивое и при этом революционно новое объяснение результатов опыта удалось представить только Альберту Эйнштейну в 1905 году. Рассмотрев эти результаты как есть, без попыток притянуть к ним умозрительный эфир, Эйнштейн получил два вывода:

  1. Никаким оптическим экспериментом нельзя обнаружить прямолинейное и равномерное движение Земли (право считать его таковым дает кратковременность акта наблюдения).
  2. Относительно любой инерциальной системы отсчета скорость света в вакууме неизменна.

Эти выводы (первый - в сочетании с галилеевским принципом относительности) послужили Эйнштейну основой для формулировки его знаменитых постулатов. Так что опыт Майкельсона - Морли послужил прочной эмпирической базой специальной теории относительности.

Описывая опыты по определению скорости света, мы как бы забыли о том, что все эти опыты производятся на Земле, несущейся в мировом пространстве с огромной скоростью, превышающей в десятки раз скорость артиллерийского снаряда. Правда, в этих опытах наблюдатель и источник света неподвижны относительно друг друга, но если считать, что Земля движется по отношению к неподвижному эфиру, в котором распространяются световые волны, то следует ожидать влияния этого движения на результаты наблюдений.

Разберем описанные выше методы определения скорости света, считая мировой эфир неподвижным, а Землю движущейся. В обоих методах - и Физо и Фуко - определялось время, необходимое световому лучу для того, чтобы пройти от какой-то точки А до точки В и вернуться обратно в точку А. Мы считали, что это время равно просто где а - длина отрезка с - скорость света.

Теперь мы должны уточнить наше рассуждение. Прежде всего мы определим с как скорость света по отношению к неподвижному эфиру. Затем надо учесть, что в результате движения Земли, согласно законам механики Ньютона, скорость света по отношению к Земле уже не будет равна с. Если направление распространения светового луча совпадает с направлением движения Земли, то эта скорость должна быть равна если свет и Земля движутся в противоположных направлениях, то где скорость Земли по отношению к эфиру. В первом случае свет должен «догонять» Землю, во втором, наоборот, свет и Земля движутся навстречу друг другу.

Рис. 6 изображает случай, когда отрезок параллелен направлению движения Земли; тогда от А к В луч идет с относительной скоростью а в обратном - со скоростью

Значит, от до В он дойдет за время а от В до А - за время полное же время определится следующим образом:

или с точностью до величин четвертого порядка (относительно

Рис. 6. Распространение света в движущейся системе.

Мы видим, что учет движения Земли привел к некоторой поправке, правда небольшой по величине: следовательно,

Рассмотрим теперь другой случай расположения отрезка А В (рис. 6, справа). Пусть отрезок перпендикулярен к направлению движения Земли и в В помещено плоское зеркало. Скорость света по отношению к Земле в этом случае будет равна и в прямом (от А к В) и в обратном направлениях (от В к А).

В этом случае косое направление скорости с по отношению к определяется тем, что за время прохождения светового сигнала из сама точка В смещается вправо (аналогично будет при обратном пути от В к А).

Полное время распространения света определится как

Извлекая приближенно корень квадратный, получаем;

откуда с точностью до величин четвертого порядка

Сопоставляя и мы видим, что

Таким образом, следует ожидать, что измерение разности времен при двух взаимно-перпендикулярных расположениях А В позволит определить скорость движения Земли по отношению к эфиру.

Неприятным в формуле (10) является то, что в нее входит квадрат отношения искомой скорости к скорости света. Тем самым речь идет об установлении «эффектов второго порядка малости».

Делалось много попыток обнаружить эффекты первого порядка, однако все они были неудачны. Часть из них, основанная на исследовании явлений преломления, интерференции, дифракции и др., покоилась на неверных принципиальных основаниях. Лоренц показал, что во всех этих случаях отсутствие эффектов первого порядка вытекает из теории неподвижного эфира с таким же успехом, как и из теории полностью увлекаемого эфира.

Другие попытки, носившие, правда, характер неосуществленных проектов, были основаны на схемах с часами, расположенными на расстоянии друг от друга. В таких схемах определяется время прохождения светом пути от одних часов до других. Зная расстояние между часами, мы можем вычислить скорость света. Так как в этом случае путь светового луча по отношению к Земле не замкнут (луч идет от к В, но не возвращается опять в Л), можно было надеяться на обнаружение эффектов первого порядка, связанных с движением Земли.

Однако очевидно, что для таких опытов нужно иметь совершенно одинаково (синхронно) идущие часы в точках Майкельсон показал, что самые точные методы синхронизации часов, находящихся в разных точках, практически сводятся к посылке электромагнитных сигналов из одной точки в другую, т. е. ко всем теперь хорошо известной «поверке времени» по радио.

Но эти сигналы распространяются опять-таки со скоростью света. Таким образом, путь световой (электромагнитной) волны оказывается замкнутым, и мы опять приходим к эффектам второго порядка, соответствующим формулам (7), (9) и (10). Поэтому Майкельсон взялся за осуществление опыта, позволяющего непосредственно обнаружить эффекты второго порядка. Здесь сразу возникает законный вопрос: нельзя ли было воспользоваться для этих целей схемами опытов по определению скорости света, уже описанными выше? Ведь мы как раз показали, что во всех этих опытах должны были наблюдаться эффекты второго порядка. В принципе действительно это так: если бы Майкельсон при определении скорости света по методу Физо - Фуко проделал измерения для двух положений трубы (в которой распространялся свет), соответствующих рис. 6, он должен

был бы получить разность времен запаздывания, определяемую формулой (10).

Однако обнаружить существование этой разности он практически не смог бы, несмотря на использование больших расстояний. Ведь мы указывали, что Майкельсон определил скорость света с точностью до т. е. примерное точностью до 0,000003 измеряемой величины. Как ни велика эта точность, она недостаточна для обнаружения эффектов второго порядка, соответствующих одной стомиллионной доле измеряемой величины (см. выше).

Майкельсон блестяще обошел это затруднение, использовав волновые свойства света. На рис. 7 изображена схема знаменитого опыта Майкельсона.

Луч света, выходящий из падает на полупрозрачную пластинку расположенную под углом половина света отражается по направлению к , половина проходит сквозь пластинку к помещены зеркала, отражающие световые лучи обратно; лучи, идущие обратно, опять попадают на пластинку причем половина света, отраженного от пройдет сквозь пластинку и попадет в трубу точно так же половина света, отраженного от отразится от пластинки и попадет в трубу (для наглядности мы несколько сместили на рисунке прямые и обратные лучи).

Рис. 7. Схема опыта Майкельсона.

В результате в трубе сойдутся два световых луча, которые от до шли в равных условиях, а затем один из них прошел путь а другой путь от до опять будет общим.

должно было быть примерно равным сек. Чтобы обнаружить такую ничтожную величину, Майкельсону пришлось восполь зоваться волновыми свойствами света. Так как период светового колебания равен для видимых лучей то указанное выше изменение запаздывания соответствует 0,4 периода, т. е. составляет заметную долю периода. Майкельсон, наблюдая интерференцию колебаний первого и второго лучей, мог определить разность фаз этих колебаний с точностью до 0,01 периода (§ 20).

Таким образом, наблюдения интерференции позволяли ему определять долю искомого эффекта, несмотря на сравнительно малое расстояние вместо Однако результат опыта оказался отрицательным. Никакого изменения запаздывания одного луча по отношению к другому при вращении прибора не было обнаружено. Так как ожидаемые эффекты пропорциональны квадрату скорости Земли, отсюда следовало, что скорость Земли по отношению к эфиру во всяком случае меньше т. е. от орбитальной скорости Земли.

Последующие опыты только уточнили этот результат, понизив верхний предел для скорости Земли по отношению к эфиру или, что то же, скорости «эфирного ветра» по отношению к Земле до величины, меньшей орбитальной скорости Земли (Иллингворт, 1927).

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

Опыт Майкельсона – Морли. Опыт Физо. Подготовил учитель физики КГУ «Урицкая средняя школа №1» Иванов Ю.Д.

2 слайд

Описание слайда:

Общий вид интерферометра в перспективе. Изображение из доклада А. Майкельсона по результатам его экспериментов, выполненных в 1881 г. Около 1880 года Майкельсон придумал оптический прибор исключительно высокой точности, который назвал интерферометром. Целью первого эксперимента (1881) было измерение зависимости скорости света от движения Земли относительно эфира.

3 слайд

Описание слайда:

Эксперимент Майкельсона - Морли и показавший, что наблюдаемое смещение несомненно меньше 1/20 теоретического и, вероятно, меньше 1/40. В теории неувлекаемого эфира смещение должно быть пропорционально квадрату скорости, поэтому результаты равносильны тому, что относительная скорость Земли в эфире меньше 1/6 её орбитальной скорости.

4 слайд

Описание слайда:

В 1887 году два американских физика - Альберт Майкельсон и Генри Морли - решили совместно провести эксперимент, призванный раз и навсегда доказать скептикам, что светоносный эфир реально существует, наполняет Вселенную и служит средой, в которой распространяются свет и прочие электромагнитные волны. Майкельсон обладал непререкаемым авторитетом как конструктор оптических приборов, а Морли славился как неутомимый и непогрешимый физик-экспериментатор. Придуманный ими опыт проще описать, чем провести практически.

5 слайд

Описание слайда:

6 слайд

Описание слайда:

7 слайд

Описание слайда:

Теория распространения света как колебаний особой среды - светоносного эфира - появилась в XVII веке. В 1727 году английский астроном Джеймс Брэдли объяснил с её помощью аберрацию света. Предполагалось, что эфир неподвижен, но после опытов Физо возникло предположение, что эфир частично или полностью увлекается в ходе движения вещества. Джеймс Брэдли

8 слайд

Описание слайда:

В 1925 г. Майкельсон и Гэль у Клиринга в Иллинойсе уложили на земле водопроводные трубы в виде прямоугольника. Диаметр труб 30 см. Трубы AF и DE были направлены точно с запада на восток, EF, DA и CB - с севера на юг. Длины DE и AF составляли 613 м; EF, DA и CB - 339,5 м. Одним общим насосом, работающим в течение трех часов, можно откачать воздух до давления 1 см ртутного столба. Чтобы обнаружить смещение, Майкельсон сравнивает в поле зрительной трубы интерференционные полосы, получаемые при обегании большого и малого контура. Один пучок света шёл по часовой стрелке, другой против. Смещение полос, вызываемое вращением Земли, разные люди регистрировали в различные дни при полной перестановке зеркал. Всего было сделано 269 измерений. Теоретически предполагая эфир неподвижным, следует ожидать смещения полосы на 0,236±0,002. Обработка данных наблюдений дала смещение 0,230±0,005, таким образом подтвердив существование и величину эффекта Саньяка.

9 слайд

Описание слайда:

Впервые скорость света лабораторным методом удалось измерить французскому физику Арману Иполлиту Луи Физо

10 слайд

Описание слайда:

Схема опыта Физо Луч света от источника разделяется полупрозрачной пластинкой на два луча, один из которых, отражаясь от зеркал, проходит через текущую в трубах воду по направлению её движения, а другой - против её движения. После этого оба луча попадают в интерферометр, где и наблюдается интерференционная картина. Измерения производились сначала при неподвижной воде, а затем - при движущейся, со скоростью 7 м/c. По смещению интерференционных полос определялась разность времён прохождения лучей в движущейся и неподвижной среде, а следовательно, и величина (коэффициент увлечения). В рамках теории относительности нет необходимости в гипотезе частичного увлечения. Фактически свет полностью «увлекается» средой, а результат опыта Физо свидетельствует о неклассическом (релятивистском) сложении скоростей. Таким образом, опыт сыграл важную роль при построении электродинамики движущихся сред и явился одним из экспериментальных обоснований теории относительности Эйнштейна.