Теплопередача опыты в домашних условиях. Исследование теплопроводности различных веществ

ОПЫТЫ ПО ТЕПЛОПРОВОДНОСТИ

Разные твердые вещества по-разному проводят тепло. Лучше всего это делают металлы. Но и среди металлов есть чемпионы по теплопроводности. К ним относятся так называемые «благородные металлы» — платина, золото, серебро.

Опыт с железным гвоздем

В толстую чурку забей гвоздь и поставь ее на противень.
Снизу к этому длинному гвоздю прилепи пластилином, или воском несколько маленьких гвоздиков. Под шляпку гвоздя подставь горящую свечу.


Смотри: вот отвалился один гвоздик.., другой… третий…
Строго по порядочку, по очереди.


Опыт с деревом

Когда гвоздь остынет, выдерни его и в оставшееся отверстие вставь лучинку.
Повтори тот же опыт с ней.

Картина будет совсем другая!
Конец лучинки загорится, а гвоздики будут держаться по-прежнему. Выходит, что дерево проводит тепло гораздо хуже, чем железо.

Опыт со стеклом

Если есть у тебя подходящая по толщине стеклянная палочка или трубка, повтори опыт с ней.
Она, конечно, не горит, но тепло проводит не лучше дерева.


Опыт с ложками

Возьмите две чайные ложки: одну серебряную, другую из никелевого сплава. Прикрепите к ним каплями стеарина скрепки для бумаг. Вложите ложки в стакан, чтобы ручки со скрепками торчали из него в разные стороны. Налейте в стакан кипяток. Ложки нагреются. У серебряной ложки стеарин расплавится, и скрепка отпадет. У другой ложки скрепка или совсем не отпадет, или отпадет позже, когда ложка нагреется сильнее.

Конечно, ложки должны быть одинаковые по форме и размеру. Если нет серебряной ложки, возьмите такие, какие у вас есть, но только из разных металлов. Где нагревание произойдет быстрее, тот металл лучше проводит тепло, более теплопроводен.

Опыт с монетой

Различные вещества по-разному проводят тепло. Это хорошо видно из небольшого опыта.
Приложите к кусочку дерева монету и оберните их белой бумагой. Поднесите все это на короткое время к пламени свечи так, чтобы пламя только коснулось места, где над бумагой находится монета. Старайтесь не дать бумаге загореться. Но бумага все же успела обуглиться, и обуглилась она вокруг монеты.

Там же, где была сама монета, остался не тронутый огнем белый кружок. Металл монеты, как хороший теплопроводный материал, отобрал на себя жар пламени и предохранил бумагу от обгорания.


ТЕПЛОПРОВОДНОСТЬ ПОРИСТЫХ ТЕЛ

Из твердых веществ хуже всего проводит тепло керамика, пластмасса, дерево, ткань.

Вот поэтому ручки у чайников или сковородок делают из пластмассы или дерева. А если ручка металлическая, то, чтобы не обжечь пальцы, приходится пользоваться тряпкой. Она тоже плохо проводит тепло и, предохраняя руку от ожога, служит теплоизоляцией.

Опыт

Распушите небольшой комок ваты и оберните им шарик термометра.
Теперь подержите некоторое время термометр на определенном расстоянии от какого-нибудь нагревателя и заметьте, как поднялась температура. Затем тот же комок ваты сожмите и туго обмотайте им шарик термометра и снова поднесите к лампе. Во втором случае ртуть поднимется гораздо быстрее.
Значит, сжатая вата проводит тепло намного лучше!

Высокие теплоизоляционные свойства вате придает воздух, заключенный между волокнами распушенной ваты (а не сама вата). Шерсть теплее, чем вата, именно потому, что ее волокнистая структура позволяет задерживать в себе еще больше воздуха.

На этом же принципе основано производство теплоизоляционных материалов для домостроения. В них делают как можно больше воздушных промежутков.

ТЕПЛОПРОВОДНОСТЬ ГАЗА

Зимой вы применяете теплоизоляцию и надеваете теплое пальто или шубу. Воздух, который содержится между волокнами ваты или меха, как и всякий газ, плохой проводник тепла.

Итак, для того чтобы предохранить что-либо от холода, применяется теплоизоляция. Но и от излишнего тепла приходится принимать теплоизоляционные меры. Когда космический корабль на спуске с огромной скоростью летит в атмосфере Земли, его стенки трутся о воздух и сильно нагреваются. Для сохранения внутри корабля от высокой температуры экипажа и аппаратуры применяют теплоизоляционный, теплостойкий чехол. Он состоит из слоев плохо проводящих теплоту материалов.

Опыт 1

Уже говорилось о том, что газы плохо проводят тепло.
Возьмите алюминиевую тарелочку от детской посуды, поставьте ее на небольшой огонь и, когда она достаточно нагреется, налейте на нее половину чайной ложки воды

Вода не испарится мгновенно, как следовало бы ожидать. Вода перекатится плоским шариком — сфероидом на самое низкое место тарелочки и замрет там на раскаленном металле. Кажется странным, что вода не превращается сразу в пар. Конечно, вода испаряется, но этот самый пар, в который превращается вода, и предохраняет большую сфероидальную каплю от раскаленного металла. Пар в данном случае оказывается отличной теплоизоляцией.


Опыт 2

Когда вы гладите белье, переверните утюг и, если он достаточно нагрет, брызните на него водой. Она сразу превратится в маленькие круглые шарики, которые быстро покатятся по утюгу.

Эти мелкие шарообразные капельки тоже не испарились мгновенно, их тоже защитила от жара утюга паровая прослойка, «паровая подушка». На этой «паровой подушке» водяные шарики и пропутешествовали по раскаленному утюгу.


Опыт 3

Возьмите несколько маленьких кусочков сухого льда, положите их на гладкую поверхность алюминиевой тарелки. Наклоняйте тарелку в разные стороны. Кусочки сухого льда будут легко скользить по гладкой поверхно-сти. Теплая поверхность алюминиевой тарелки (ее температура отличается от температуры сухого льда по крайней мере на 100 градусов) помогает углекислому газу более бурно выделяться. Под кусочками сухого льда получаются «углекислые подушки», на них и происходит скольжение.

В данном уроке рассматривается понятие теплопроводности.

Теплопроводностьявляется одним из видов теплопередачи и связана с переносом внутренней энергии от более нагретых частей тела (тел) к менее нагретым, который осуществляется хаотически движущимися частицами тела.

С теплопроводностью каждый из нас сталкивается, когда неосторожно хватается за железную ручку сковородки, стоящей на плите. Плохая теплопроводность воздуха позволяет с помощью двойных рам утеплить квартиру на зиму. И таких примеров множество. Поэтому теплопроводность является одним из важнейших физических тепловых явлений, которые мы будем изучать.

На прошлом уроке мы выяснили, что теплопередача (рис. 1) бывает трех видов: теплопроводность, конвекция и излучение (рис. 2). На этом уроке мы более подробно займемся первым видом теплопередачи, а именно теплопроводностью .

Рис. 1. Теплопередача

Рис. 2 Виды теплопередачи

Теплопроводность свойственна веществам во всех трех агрегатных состояниях: твердом, жидком и газообразном (рис. 3).

Рис. 3. Теплопроводность свойственна всем агрегатным состояниям

При этом самой высокой теплопроводностью обладают твердые тела (металлы) (рис. 4а), а самой низкой - газы (рис. 4б).

Рис. 4 Коэффициенты теплопроводности различных веществ

Теплопроводность связана с внутренней структурой тел и зависит от расположения молекул, их движения и взаимодействия между собой (рис. 5).

Рис. 5. Связь теплопроводности с внутренней структурой тел

Важно отметить, что при теплопроводности не происходит переноса вещества, а происходит передача энергии от частицы к частице или от одного тела к другому при их непосредственном контакте. Сформулируем, собственно, определение теплопроводности.

Определение. Теплопроводность - это явление, при котором энергия передается от одной части тела к другой посредством столкновения частиц или при непосредственном контакте двух тел.

Рис. 6. Иллюстрация определения теплопроводности

Исследования данного явления проводились преимущественно опытным путем. Первые опыты по изучению данного явления проводил, по-видимому, еще Галилео Галилей (рис. 7).

Рис. 7. Галилео Галилей (1564-1642)

Суть его опытов была простой: Галилей располагал около своего термоскопа (рис. 8) различные тела и наблюдал за изменением температуры. Впоследствии он делал выводы: хорошо ли проводят тела тепло или нет.

Рис 8. Термоскоп Галилея

Определение. Процесс теплопроводности - это процесс передачи энергии от одной частицы к другой, расположенных в непосредственной близости друг от друга (рис. 9).

Рис. 9. Процесс теплопроводности

У металлов теплопроводность выше, так как частицы расположены близко друг к другу (рис. 10).

Рис. 10. Теплопроводность в металлах

У жидкостей молекулы хоть и близко расположены, но достаточно хорошо изолированы (рис. 11).

Рис. 11. Теплопроводность в жидкостях

Самая низкая теплопроводность у газов: молекулы расположены далеко друг от друга, и, чтобы передать энергию, им необходимо столкнуться, поэтому процесс передачи энергии происходит достаточно медленно (рис. 12).

Рис. 12. Теплопроводность в газах

Рассмотрим опыт, который наглядно демонстрирует теплопроводность металлов.

На штативе горизонтально закреплен алюминиевый стержень. На стержне через одинаковые промежутки вертикально закреплены с помощью воска деревянные зубочистки. К краю стержня подносят свечу (рис. 13).

Поскольку край стержня нагревается, а алюминий, как и любые другие металлы, обладает достаточно хорошей теплопроводностью, то постепенно стержень прогревается. Когда тепло доходит до места крепления зубочистки со стержнем, стеарин плавится - и зубочистка падает.

Рис. 13. Демонстрация опыта

Мы видим, что в данном опыте нет переноса вещества, соответственно, наблюдается теплопроводность.

Мы рассмотрели явление теплопроводности, и в заключении хотелось бы напомнить важный факт: нет частиц - нет теплопроводности.

На следующем уроке мы более подробно рассмотрим другой вид теплопередачи - конвекцию.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. / Под ред. Орлова В.А., Ройзена И.И. Физика 8. - М.: Мнемозина.
  2. Перышкин А.В. Физика 8. - М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. - М.: Просвещение.
  1. Интернет-портал «experiment.edu.ru» ()
  2. Интернет-портал «festival.1september.ru» ()
  3. Интернет-портал «class-fizika.narod.ru» ()

Домашнее задание

  1. Стр. 13, параграф 4, вопросы № 1-6, упражнение 1 (1-3). Перышкин А.В. Физика 8. - М.: Дрофа, 2010.
  2. Почему газы имеют малую теплопроводность?
  3. Почему в старом чайнике, после того как его сняли с огня, вода остывает медленнее, чем в таком же новом?
  4. Для чего нужны двойные оконные рамы?
  5. Зачем жители Средней Азии во время жары носят ватные халаты и папахи?

Слайд 2

Понятие теплопередачи на практике

  • Слайд 3

    А для начала, что в физикеназывается теплопередачей и с чем её едят…

    Теплопередачейв физике называется процесс изменения внутренней энергии тела без совершения над телом или самим телом работы. Теплопередача бывает 3 видов.

    Слайд 4

    Вид 1 Теплопроводность Вид 2 Конвекция Вид 3 Излучение

    Слайд 5

    А чтоэто вообще такое?!

    Слайд 6

    Опыт №1-Теплопроводность

    Положите на столе (или где возможно), рядом, деревянную доску и зеркало. Между ними положите комнатный термометр. Спустя какое-то довольно долгое время (мы ждали 30 минут), можно считать, что температуры деревянной доски и зеркала сравнялись. Термометр показывает температуру воздуха. Такую же, какая, очевидно, и у доски и у зеркала. Дотроньтесь ладонью до зеркала. Вы почувствуете холод стекла. Тут же дотроньтесь до доски. Она покажется значительно теплее. В чем дело? Ведь температура воздуха, доски и зеркала одинакова. Стекло - хороший проводник тепла. Как хороший проводник тепла, стекло сразу же начнет нагреваться от вашей руки, начнет с жадностью “выкачивать” из нее теплоту. От этого вы и ощущаете холод в ладони. Дерево хуже проводит тепло. Оно тоже начнет “перекачивать” в себя тепло, нагреваясь от руки, но делает это значительно медленнее, поэтому вы не ощущаете резкого холода. Вот дерево и кажется теплее стекла, хотя и у того и у другого температура одинаковая.

    Слайд 7

    Слайд 8

    В выше приведённом опыте мы рассмотрели явление передачи внутренней энергии от одного тела к другому (от одной его части к другой), в физике этот процесс называется теплопроводностью.

    Слайд 9

    Опыт №2-Конвекция

    Прогреваем сверху подкрашенную воду, налитую в пробирку. На дне пробирки с помощью груза (БОЛТА) прикрепляем кусочек подкрашенного льда. Верхний слой воды закипает, а нижний остается холодным, (лед не тает). Почему? Нагреваем пробирку снизу, а кусочек льда помещаем на поверхность воды. Вода в пробирке закипает. Лед тает. Почему? Возникает проблемная ситуация: почему при подогревании пробирки снизу закипает вся масса воды, а при нагревании сверху- ее верхний слой?

    Слайд 10

    Слайд 11

    Прогреваем сверху воду в пробирке.

    Слайд 12

    Верхний слой воды закипел, а нижний остался холодным.

    Слайд 13

    Кусочек льда помещаем на поверхность воды.

    Слайд 14

    Нагреваемпробирку снизу

    Слайд 15

    Вода в пробирке закипает. Лед тает.

    Слайд 16

    Это явление можно объяснить так: любое вещество не в твёрдом агрегатном состоянии, при нагревании расширяется и становится менее плотным => более нагретое вещество подымается наверх, а менее нагретое опускается вниз. Поэтому нагретые слои воды (в 1-ом случае) не опускались вниз, и из-за этого лёд не таял. А во втором случае нагреваемые слои поднимаются наверх, из-за чего лёд собственно тает. Этот и подобные ему процессы, в физике, получили название - КОНВЕКЦИЯ. Данный процесс характеризуется перемещениемРазличают вынужденную и естественную конвекции (их определения исходят из названий).

    Слайд 17

    Опыт №3-Излучение

    Для этого опыта нам потребуется закопченая с одного бока колба, в которуюмы (через пробку) вставляем изогнутую стеклянную трубку, под прямым углом. В эту трубку введём подкрашенную жидкость. Поднесём к колбе кусок металла (шуруп), нагретого до высокой t, при этом столбик жидкости переместится влево (смотрите на видекадрах) => воздух нагрелся и расширился, а быстрое нагревание воздуха в термоскопе можно объяснить лишь передачей ему энергии от нагретого тела. В данном случае передача энергии происходила ранее неизвестным нам путём, который может осуществлятся в полном вакууме-это излучение. Излучают энергию абсолютно все тела, в независимости от их t. При поглощенииэнергии тела нагреваются по разному, в зависимости от состояния поверхности. Тела с тёмной поверхностью лучше поглощают и излучают энергию, чем тела, имеющие светлую поверхность.

    Вариант 1. Оборудование: Пробирка с водой и спиртовка.

    Для демонстрации плохой теплопроводности жидкости в пробирку на ¾ объема наливают воды. Держа пробирку в руках под небольшим углом над пламенем спиртовки, нагревают воду у открытого конца (рис. 130). Показывают, что вода здесь быстро закипает, однако внизу большого нагрева не ощущается.

    Рис. 130 Рис. 2.105 Рис. 131

    Опыт 4. Теплопроводность газов

    Вариант 1 . Оборудование: две пробирки, две пробки, два стержня, два шарика, спиртовка, штатив, подвес.

    Плохую теплопроводность воздуха демонстрируют с помощью двух одинаковых пробирок, закрытых пробками, через которые пропущены короткие стержни. К концам стержней прикрепляют пластилином или парафином стальные шарики (рис. 131). Про­бирки над спиртовкой располагают так, чтобы в одной из них про­исходила конвекция, а в другой теплопроводность воздуха. Замечают, что в одной пробирке ша­рик быстро отпадает от стержня.

    Вариант 2. См. рис. 2.105

    Опыт 5. Конвекция жидкостей

    Вариант 1. Оборудование: прибор для демонстрации конвекции жидкости, марганцовокислый калий, спиртовка, штатив.

    Прибор, представляющий собой замкнутую стеклянную трубку (рис. 132), укрепляют в лапке штатива. (Лучше подвесить, чем зажимать трубку в нижней части, ибо в последнем случае больше вероятности разрушить стекло.) Через верхнее отверстие любого колена трубку наполняют водой так, чтобы по всему замкнутому пути внутри трубки не было пузырьков воздуха.

    При выполнении опыта в ложечку с сеткой помещают кристаллики марганцовокислого калия и oпускают ее в колено (можно одновременно опустить две ложечки с кристалликами марганцовокислого калия в оба колена). Затем к нижней части этого колена подносят спиртовку и наблюдают конвекцию.


    Рис. 132 Рис. 133

    Опыт 6. Конвекция газов

    Вариант 1. Оборудование: спиртовка, спички, бумажная змейка, металлическое острие.

    Для демонстрации конвекции газа изготовляют бумажную змейку, которая вращается в потоке восходящего горячего воздуха, идущего от спиртовки или электроплитки (рис. 133). (При установке змейки на острие нельзя прокалывать бумагу.)

    Опыт 7. Нагревание излучением

    Вариант 1. Оборудование: теплоприемник, манометр открытый демонстрацион­ный, настольная лампа (или электроплитка).

    Теплоприемник, соединенный трубкой с демонстрационным мано­метром (см. рис. 123), укрепляют в штативе напротив излучателя. В качестве излучающего тела можно взять электроплитку, сосуд с горячей водой и пр. К нему сбоку подносят теплоприемник темной стороной и наблюдают за показаниями манометра в тече­ние 1-2 мин.

    Затем поворачивают теплоприемник блестящей по­верхностью к лампе, расположенной на том же расстоянии от теплоприемника, и в течение того же времени следят за показанием манометра. Делают вывод.

    Во второй серии опытов накал лампы (или расстояние до излучателя) уменьшают и вновь наб­людают изменение показаний манометра в прежних условиях. Делают вывод.

    Вариант 2. См. Рис. 2.99; 2.101.

    Вопрос. В каком случае изменение показаний жидкостного манометра

    происходит быстрее, если теплопередатчик и теплоприемник обращены друг к другу блестящими поверхностями или если они об­ращены друг к другу зачерненными поверхностями?



    Рис. 123 Рис. 2.101 Рис. 2.99

    Текст работы размещён без изображений и формул.
    Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

    1. Введение.

    Проект разработан в соответствии со стандартом среднего общего образования по физике. При написании данного проекта рассмотрено изучение тепловых явлений, применение их в быту и технике. Помимо теоретического материала большое внимание уделено исследовательской работе - это опыты, которые отвечают на вопросы «Какими способами можно изменить внутреннюю энергию тела», «Одинаковая ли теплопроводность различных веществ», «Почему струи теплого воздуха или жидкости поднимаются вверх», «Почему тела с темной поверхностью нагреваются сильнее»; поиск и обработка информации, фотографий.Время работы над проектом: 1 - 1,5 месяца.Цели проекта:* практическая реализация имеющихся у школьников знаний о тепловыхявлениях;* формирование навыков самостоятельной исследовательской деятельности;* развитие познавательных интересов;* развитие логического и технического мышлений;* развитие способностей к самостоятельному приобретению новых знаний по физике в соответствии с жизненными потребностями и интересами;

    2. Основная часть.

    2.1. Теоретическая часть

    В жизни мы действительно ежедневно встречаемся с тепловыми явлениями. Однако не всегда мы задумываемся, что эти явления можно объяснить, если хорошо знать физику. На уроках физики мы познакомились со способами изменения внутренней энергии: теплопередачей и совершением работы над телом или самим телом. При контакте двух тел с разными температурами происходит передача энергии от тела с более высокой температурой к телу с более низкой температурой. Этот процесс будет происходить до тех пор, пока температуры тел не сравняются (не наступит тепловое равновесие). При этом механическая работа не совершается. Процесс изменения внутренней энергии без совершения работы над телом или самим телом называется теплообменом или теплопередачей. При теплопередаче энергия всегда передается от более нагретого тела к менее нагретому. Обратный процесс самопроизвольно (сам по себе) никогда не происходит, т. е. теплообмен необратим. Теплообмен определяет или сопровождает многие процессы в природе: эволюцию звезд и планет, метеорологические процессы на поверхности Земли и др. Виды теплопередачи: теплопроводность, конвекция, излучение.

    Теплопроводностью называется явление передачи энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия частиц, из которых состоит тело.

    Наибольшей теплопроводностью обладают металлы — она у них в сотни раз больше, чем у воды. Исключением являются ртуть и свинец, но и здесь теплопроводность в десятки раз больше, чем у воды.

    При опускании металлической спицы в стакан с горячей водой очень скоро конец спицы становился тоже горячим. Следовательно, внутренняя энергия, как и любой вид энергии, может быть передана от одних тел к другим. Внутренняя энергия может передаваться и от одной части тела к другой. Так, например, если один конец гвоздя нагреть в пламени, то другой его конец, находящийся в руке, постепенно нагреется и будет жечь руку.

    2.2. Практическая часть.

    Изучим это явление, проделав ряд опытов с твердыми телами, жидкостью и газом.

    Опыт №1

    Взяли различные предметы: одну алюминевую ложку, другую деревянную, третью - пластмассовую, четвертую - из нержавеющего сплава, а пятую - серебряную. Прикрепили к каждой ложке каплями меда скрепки для бумаг. Вложили ложки в стакан с горячей водой, чтобы ручки со скрепками торчали из него в разные стороны. Ложки нагреются, и по мере нагревания мед будет плавиться и скрепки отпадут.

    Конечно, ложки должны быть одинаковые по форме и размеру. Где нагревание произойдет быстрее, тот металл лучше проводит тепло, более теплопроводен. Для этого опыта я взял стакан с кипятком и четыре вида ложек: алюминиевую, серебряную, пластмассовую и нержавеющую. Я опускал их по одной в стакан и засекал время: за сколько минут она нагреется. Вот, что у меня получилось:

    Вывод: ложки, изготовленные из дерева и пластмасса, греются дольше, чем ложки из металла, значит, металлы обладают хорошей теплопроводностью.

    Опыт №2

    Внесем в огонь конец деревянной палки. Он воспламенится. Другой конец палки, находящийся снаружи, будет холодным. Значит, дерево обладает плохой теплопроводностью.

    Поднесем к пламени спиртовки конец тонкой стеклянной палочки. Через некоторое время он нагреется, другой же конец, останется холодным. Следовательно, и стекло имеет плохую теплопроводность

    Если же мы будем нагревать в пламени конец металлического стержня, то очень скоро весь стержень сильно нагреется. Удержать его в руках мы уже не сможем.

    Значит, металлы хорошо проводят тепло, т. е. имеют большую теплопроводность. На шта-ти-ве го-ри-зон-таль-но за-креп-лён стер-жень. На стержне через оди-на-ко-вые про-ме-жут-ки вер-ти-каль-но за-креп-ле-ны с по-мо-щью воска металлические гвоздики.

    К краю стерж-ня под-но-сят свечу. По-сколь-ку край стерж-ня на-гре-ва-ет-ся, то по-сте-пен-но стер-жень про-гре-ва-ет-ся. Когда тепло до-хо-дит до места креп-ле-ния гвоздиков со стерж-нем, сте-а-рин пла-вит-ся, и гвоздик па-да-ет. Мы видим, что в дан-ном опыте нет пе-ре-но-са ве-ще-ства, со-от-вет-ствен-но, на-блю-да-ет-ся теп-ло-про-вод-ность.

    Опыт №3

    Различные металлы обладают различной теплопроводностью. В физическом кабинете есть прибор, с помощью которого мы можем убедиться в том, что различные металлы обладают разной теплопроводностью. Однако, в домашних условиях мы смогли в этом убедиться с помощью самодельного прибора.

    Прибор для показа различной теплопроводности твердых веществ.

    Мы изготовили прибор для показа различной теплопроводности твердых тел. Для этого использовали пустую банку из алюминиевой фольги, два резиновых кольца (самодельные), три отрезка проволоки из алюминия, меди и железа, плитку, горячую воду, 3 фигурки человечков с поднятыми вверх руками, вырезанные из бумаги.

    Порядок изготовления прибора:

      проволоки изогнуть в виде буквы «Г»;

      укрепить их с внешней стороны банки при помощи резиновых колец;

      подвесить к горизонтальным частям проволочных отрезков (посредством расплавленного парафина или пластилина) бумажных человечков.

    Проверка действия прибора . Налить в банку горячей воды (при необходимости подогреть банку с водой на электрической плитке) и наблюдать, какая фигурка упадет первой, второй, третьей.

    Результаты. Упадет первой фигурка, закрепленная на медной проволоке, вторая - на алюминиевой, третья - на стальной.

    Вывод. Разные твердые вещества обладают различной теплопроводностью.

    Теплопроводность у различных веществ различна.

    Опыт №4

    Рассмотрим теперь теплопроводность жидкостей. Возьмём пробирку с водой и станем нагревать её верхнюю часть. Вода у поверхности скоро закипит, а у дна пробирки за это время она только нагреется. Значит, у жидкостей теплопроводность невелика.

    Опыт №5

    Исследуем теплопроводность газов. Сухую пробирку наденем на палец и нагреем в пламени спиртовки донышком вверх. Палец при этом долго не почувствует тепла. Это связано с тем, что расстояние между молекулами газа ещё больше, чем у жидкостей и твёрдых тел. Следовательно, теплопроводность у газов ещё меньше.

    Плохой теплопроводностью обладают шерсть, волосы, перья птиц, бумага, снег и другие пористые тела.

    Это связано с тем, что между волокнами этих веществ содержится воздух. А воздух - плохой теплопроводник.

    Так под снегом сохраняется зеленая трава, озимые сохраняются от вымерзания.

    Опыт №6

    Распушил небольшой комок ваты и обернул им шарик термометра.Теперь подержал некоторое время термометр на определенном расстоянии от пламени и заметил, как поднялась температура. Затем тот же комок ваты сжал и туго обмотал им шарик термометра и снова поднес к лампе. Во втором случае ртуть поднимется гораздо быстрее. Значит, сжатая вата проводит тепло намного лучше!

    Самой низкой теплопроводностью обладает вакуум (освобожденное от воздуха пространство). Объясняется это тем, что теплопроводность — это перенос энергии от одной части тела к другой, который происходит при взаимодействии молекул или других частиц. В пространстве, где нет частиц, теплопроводность осуществляться не может.

    3. Заключение.

    У различных веществ различная теплопроводность.

    Большой теплопроводностью обладают твердые тела (металлы), меньшей - жидкости, и плохой - газы.

    Теплопроводность различных веществ мы можем использовать в быту, технике и природе.

    Явление теплопроводности присуще всем веществам, независимо от того, в каком агрегатном состоянии они находятся.

    Теперь без затруднения я смогу ответить и объяснить с физической точки зрения на вопросы:

    1.Почему птицы в холодную погоду распушают свои перья?

    (Между перьями находится воздух, а воздух плохой проводник тепла).

    2. Почему шерстяная одежда лучше предохраняет от холода, чем синтетическая?

    (Между шерстинками находится воздух, который плохо проводит тепло).

    3. Почему зимой, когда погода холодная, кошки спят, свернувшись в клубок? (Свернувшись в клубок, они уменьшают площадь поверхности, отдающей тепло).

    4. Зачем ручки паяльников, утюгов, сковородок, кастрюль делают из дерева или пластмассы? (Дерево и пластмасса обладают плохой теплопроводностью, поэтому при нагревании металлических предметов мы, держась за деревянную или пластмассовую ручку, не будем обжигать руки).

    5. Зачем кусты теплолюбивых растений и кустов на зиму укрывают опилками?

    (Опилки являются плохими проводниками тепла. Поэтому растения укрывают опилками, чтобы они не замёрзли).

    6. Какие сапоги лучше защищают от мороза: тесные или просторные?

    (Просторные, так как воздух плохо проводит тепло, он является ещё одной прослойкой в сапоге, которая сохраняет тепло).

    4. Список используемой литературы.

    Печатные издания:

    1.А.В. Перышкин Физика 8 класс -М: Дрофа,2012г.

    2.М.И.Блудов Беседы по физике часть1 -М: Просвещение 1984г.

    Интернет - ресурсы:

    1.http://class-fizika.narod.ru/8_3.htm

    2.http://ru.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BF%D0%BB%D0%BE%D0%BF%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%BE%D1%81%D1%82%D1%8C