Виды движений в физике. Механическое движение и его виды

Механическое движение

Определение 1

Изменение расположения тела (или его частей) касательно других тел называют механическим движением.

Пример 1

Например, человек, двигающийся на эскалаторе в метро, пребывает в покое касательно самого эскалатора и двигается сравнительно стен туннеля; гора Эльбрус находится в покое условно Земли и движется вместе с Землей относительно Солнца.

Мы видим, что надо указать точку, относительно которой рассматривается перемещение, это именуется телом отсчета. Точка отсчета и система координат, с которой она соединена, а также избранный метод измерения времени составляют концепцию отсчета.

Перемещение тела, где все его точки двигаются одинаково, называется поступательным. Чтобы найти скорость $V$ с которым движется тело, нужно путь $S$ разделить на время $T$.

$ \frac{S}{T} = {V}$

Движение тела вокруг некоторой оси есть вращательное. При таком ходе все точки тела совершают продвижение по местности, центром которых считается эта ось. И хотя колёса делают вращательное движение вокруг своих осей, в то же время происходит поступательное движение вместе с кузовом машины. Значит, сравнительно оси колесо совершает вращательное движение, а касательно дороги – поступательное.

Определение 2

Колебательное движение – такое периодическое перемещение, которое тело совершает по очереди в двух противоположных направлениях. Самый простой пример - маятник в часах.

Поступательное и вращательное – самые простые виды механического передвижения.

Если точка $X$ изменяет свое расположение относительно точки $Y$, то и $Y$ меняет свое положение относительно $X$. Иначе говоря, тела двигаются относительно друг друга. Механическое движение считается относительным - для его описания нужно указать, относительно какой точки оно рассматривается

Простыми видами движения материального тела являются равномерное и прямолинейное передвижения. Равномерным оно является, если модуль вектора скорости не изменяется (направление может меняться).

Движение называется прямолинейным, если курс вектора скорости постоянный (а величина при этом способно изменяться). Траекторией считается прямая линия, на которой находится вектор скорости.

Примеры механического движения мы видим в обыденной жизни. Это проезжающие мимо машины, летящие самолеты, плывущие корабли. Простые примеры мы формируем сами, проходя возле других людей. Каждую секунду наша планета проходит в двух плоскостях: вокруг Солнца и своей оси. И это тоже образцы механического движения.

Разновидности движения

Поступательное движение - автоматическое перемещение твердого тела, при этом любой этап прямой, четко связанный с движущейся точкой, остается синхронным своему изначальному положению.

Важной характеристикой движения тела считается её траектория, представляющая пространственную кривую, которую можно показать в виде сопряженных дуг разного радиуса, исходящего каждый из своего центра. Различного для любых точек тела положение, которого может изменяться с течением времени.

Поступательно двигается кабина лифта или кабинка колеса обозрения. Поступательное движение проходит в 3-х мерном пространстве, но его главная отличительная черта - сохранение параллельности всякого отрезка самому себе, остается в силе.

Период обозначаем буквой $T$. Чтобы найти период обращения, надо время вращения разделить на число оборотов: $\frac{\delta t}{N} = {T}$

Вращательное движение - материальная точка описывает круг. При вращательном процессе совершенно твёрдого тела все его точки описывают круг, которые находятся в параллельных плоскостях. Центры этих окружностей лежат при этом на одной прямой, перпендикулярной к плоскостям окружностей и называются осью вращения.

Ось вращения может быть расположена внутри тела и за ним. Ось вращения в системе бывает подвижной и неподвижной. Например, в системе отсчёта, соединенной с Землей, ось вращения ротора генератора на станции недвижна.

Иногда ось вращения получает сложное вращательное движение - сферическое, когда точки тела двигаются по сферам. Точка передвигается вокруг неподвижной оси, не проходящей через центр тела или вращающуюся материальную точку, такое движение называется круговым.

Характеристики прямолинейного движения: перемещение, скорость, ускорение. Становятся их аналогами при вращательном движении: угловое перемещение, угловая скорость, угловое ускорение :

  • роль передвижения во вращательном процессе имеет угол;
  • величина угла поворота за единицу времени является угловой скоростью;
  • изменение угловой скорости в промежуток времени - это угловое ускорение.

Колебательное движение

Движение в двух противоположных направлениях, колебательное. Раскачивания, которые проходят в замкнутых концепциях называют независимыми или собственными колебаниями. Колыхания, которые происходят под действием внешних сил, называют вынужденными.

Если анализировать раскачивание согласно характеристик, которые изменяются (амплитуда, частота, период и др.), тогда их можно поделить на затухающие, гармонические, нарастающие (а также прямоугольные, сложные, пилообразные).

При свободных колебаниях в настоящих системах всегда происходят утраты энергии. Энергия тратится на работу по преодолению силы сопротивления воздуха. Сила трения уменьшает амплитуды колебаний, и они прекращаются через некоторое время.

Вынужденные раскачивания незатухающие. Поэтому надо пополнять потери энергии за каждый час колебаний. Для этого необходимо действовать на тело время от времени, изменяющейся силой. Вынужденные колыхания происходят с частотой, равной изменениям внешней силы.

Амплитуда принужденных колебаний достигает самого большого значения тогда, когда данный коэффициент такой же, как и частота колебательной системы. Это называется резонансом.

Например, если периодически дергать канат в такт его колебаниям, то мы увидим увеличение амплитуды его раскачивания.

Определение 3

Материальная точка – это тело, величиной которого в определенных условиях можно пренебрегать.

Часто вспоминаемый нами автомобиль возможно принимать за материальную точку сравнительно Земли. Но если люди перемещаются внутри этой машины, то уже нельзя пренебрегать размерами автомобиля.

Когда вы решаете задачи по физике, расценивают движение тела как движение материальной точки, и пользуются такими понятиями, как скорость точки, ускорение материального тела, инерция материальной точки и т.п.

Система отсчёта

Материальная точка перемещается сравнительно инерции иных тел. Тело, согласно отношению к какому рассматривается это автоматическое перемещение, именуется телом отсчёта. Тело отсчета выбирают свободно в зависимости с поставленными заданиями.

С телом отсчёта вяжется система местоположение, что предполагает из себя точку отсчёта (основание координат). Концепция местоположение обладает 1, 2 либо 3 оси в связи с условием перемещения. Состояние точки на линии (1 ось), плоскости (2 оси) либо в месте (3 оси) устанавливают в соответствии с этим одной, 2-мя либо 3-мя координатами.

С целью установления положения тела в пространственной области в любой период времени необходимо установить старт отсчета времени. Устройство для замера времени, система координат, точка отсчета, с которым соединена система координат - это и есть система отсчёта.

Относительно этой системы рассматривается передвижение тела. У одной и той же точки в сравнении с различными телами отсчёта в различных концепциях координат имеют все шансы быть совершенно другие координаты. Система отсчёта также зависит от выбора траектория движения

Разновидности систем отсчёта могут быть разнообразными, например: недвижимая система отсчёта, подвижная система отсчета, инерциальная система отсчета, неинерциальная система отсчёта.

Механическим движением тела (точки) называется изменение его положения в пространстве относительно других тел с течением времени.

Виды движений:

А) Равномерное прямолинейное движение материальной точки: Начальные условия


. Начальные условия



Г) Гармоническое колебательное движение. Важным случаем механического движения являются колебания, при которых параметры движения точки (координаты, скорость, ускорение) повторяются через определенные промежутки времени.

О писания движения . Существуют различные способы описания движения тел. При координатном способе задания положения тела в декартовой системе координат движение материальной точки определяется тремя функциями, выражающими зависимость координат от времени:

x = x (t ), y =у(t ) и z = z (t ) .

Эта зависимость координат от времени называется законом движения (или уравнением движения).

При векторном способе положение точки в пространстве определяется в любой момент времени радиус-вектором r = r (t ) , проведенным из начала координат до точки.

Существует еще один способ определения положения материальной точки в пространстве при заданной траектории ее движения: с помощью криволинейной координаты l (t ) .

Все три способа описания движения материальной точки эквивалентны, выбор любого из них определяется соображениями простоты получаемых уравнений движения и наглядности описания.

Под системой отсчета понимают тело отсчета, которое условно считается неподвижным, систему координат, связанную с телом отсчета, и часы, также связанные с телом отсчета. В кинематике система отсчета выбирается в соответствии с конкретными условиями задачи описания движения тела.

2. Траектория движения. Пройденный путь. Кинематический закон движения.

Линия, по которой движется некоторая точка тела, называется траекторией движения этой точки.

Длина участка траектории, пройденного точкой при ее движении, называется пройденным путем .

Изменение радиус- вектора с течением времени называют кинематическим законом :
При этом координаты точек будут являться координатами по времени:x = x (t ), y = y (t ) и z = z (t ).

При криволинейном движении путь больше модуля перемещения, так как длина дуги всегда больше длины стягивающей её хорды

Вектор, проведенный из начального положения движущейся точки в положение ее в данный момент времени (приращение радиус-вектора точки за рассматриваемый промежуток времени), называется перемещением . Результирующее перемещение равно векторной сумме последовательных перемещений.

При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории, и модуль перемещения равен пройденному пути.

3. Скорость. Средняя скорость. Проекции скорости.

Скорость - быстрота изменения координаты. При движении тела (материальной точки) нас интересует не только его положение в выбранной системе отсчета, но и закон движения, т. е. зависимость радиус-вектора от времени. Пусть моменту времени соответствует радиус-вектордвижущейся точки, а близкому моменту времени- радиус-вектор. Тогда за малый промежуток времени
точка совершит малое перемещение, равное

Для характеристики движения тела вводится понятие средней скорости его движения:
Эта величина является векторной, совпадающей по направлению с вектором
. При неограниченном уменьшенииΔt средняя скорость стремится к предельному значению, которое называется мгновенной ско­ростью :

Проекции скорости.

А) Равномерное прямолинейное движение материальной точки:
Начальные условия

Б) Равноускоренное прямолинейное движение материальной точки:
. Начальные условия

В) Движение тела по дуге окружности с постоянной по модулю скоростью:

Характеристики механического движения тела:

- траектория (линия, вдоль которой движется тело),

- перемещение (направленный отрезок прямой, соединяющий начальное положение тела M1 с его последующим положением M2),

- скорость (отношение перемещения ко времени движения - для равномерного движения).

Основные виды механического движения

В зависимости от траектории движение тела разделяются на:

Прямолинейные;

Криволинейные.

В зависимости от скорости движения разделяются на:

Равномерные,

Равноускоренные

Равнозамедленные

В зависимости от способа перемещения движения бывают:

Поступательное

Вращательное

Колебательное

Сложные движения (Например: винтовое движение, в котором тело равномерно вращается вокруг некоторой оси и в тоже время совершает вдоль этой оси равномерное поступательное движение)

Поступательное движение - это движение тела, при котором все его точки движутся одинаково. В поступательном движении всякая прямая, соединяющая любые две точки тела остается параллельной сама себе.

Вращательное движение - это движение тела вокруг некоторой оси. При таком движении все точки тела совершают движение по окружностям, центром которых является эта ось.

Колебательное движение - это периодическое движение, которое совершается поочерёдно в двух противоположных направлениях.

Например, колебательное движение совершает маятник в часах.

Поступательное и вращательное движения - самые простые виды механического движения.

Прямолинейным и равномерным движение называется такое движение, когда за любые сколь угодно малые равные промежутки времени тело совершает одинаковые перемещения. Запишем математическое выражение этого определения s = υ ? t. Это значит, что перемещение определяют по формуле, а координату - по формуле.

Равноускоренным движением называется движение тела, при котором его скорость за любые равные промежутки времени увеличивается одинаково. Для характеристики этого движения нужно знать скорость тела в данный момент времени или в данной точке траектории, т. е. мгновенную скорость, а также ускорение.

Мгновенная скорость - это отношение достаточно малого перемещения на участке траектории, примыкающей к этой точке, к малому промежутку времени, в течение которого это перемещение совершается.

υ = S/t. Единица измерения в системе СИ м/с.

Ускорение - величина, равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло. α = ?υ/t (системе СИ м/с2) Иначе, ускорение - это быстрота изменения скорости или приращение скорости за каждую секунду α . t . Отсюда формула мгновенной скорости: υ = υ 0 + α.t.


Перемещение при этом движении определяют по формуле: S = υ 0 t + α . t 2 /2.

Равнозамедленным движением называется движение, когда ускорение имеет отрицательную величину, скорость при этом равномерно замедляется.

При равномерном движении по окружности углы поворота радиуса за любые равные промежутки времени будут одинаковы. Поэтому угловая скорость ω = 2πn , или ω = πN/30 ≈ 0.1N , где ω - уговая скорость n - число оборотов в секунду, N - число оборотов в минуту. ω в системе СИ измеряется в рад/с. (1/c)/ Она представляет угловую скорость, при которой каждая точка тела за одну секунду проходит путь, равный её расстоянию от оси вращения. При этом движении модуль скорости постоянный, он направлен по касательной к траектории и постоянно меняет направление (см. рис. ), поэтому возникает центростремительное ускорение.

Период вращения Т = 1/n - это время, за которое тело совершает один полный оборот, поэтому ω = 2π/Т.

Линейная скорость при вращательном движении выражается формулами:

υ = ωr, υ = 2πrn, υ = 2πr/T, где r - расстояние точки от оси вращения. Линейная скорость точек, лежащих на окружности вала или шкива, называется окружной скоростью вала или шкива (в системе СИ м/с)

При равномерном движении по окружности скорость остается постоянной по величине но все время меняется по направлению. Всякое изменение скорости связано с ускорением. Ускорение изменяющее скорость по направлению называется нормальным или центростремительным , это ускорение перпендикулярно к траектории и направлено к центру ее кривизны (к центру окружности, если траектория окружность)

α п = υ 2 /R или α п = ω 2 R (так как υ = ωR где R радиус окружности, υ - скорость движения точки)

Относительность механического движения - это зависимость траектории движения тела, пройденного пути, перемещения и скорости от выбора системы отсчёта .

Положение тела (точки) в пространстве можно определить относительно какого-либо другого тела, выбранного за тело отсчета A. Тело отсчета, связанная с ним система координат и часы составляют систему отсчета. Характеристики механического движения относительны, т. е. они могут быть различными в разных системах отсчета.

Пример: за движением лодки следят два наблюдателя: один на берегу в точке O, другой - на плоту в точке O1 (см. рис. ). Проведем мысленно через точку О систему координат XOY - это неподвижная система отсчета. Другую систему X"O"Y" свяжем с плотом - это подвижная система координат. Относительно системы X"O"Y" (плота) лодка за время t совершает перемещение и будет двигаться со скоростью υ = s лодки относительно плота /t v = (s лодки- s плота)/t. Относительно системы XOY (берег) лодка за это же время совершит перемещение s лодки, где s лодкиперемещение плота относительно берега. Скорость лодки относительно берега или . Скорость тела относительно неподвижной системы координат равна геометрической сумме скорости тела относительно подвижной системы и скорости этой системы относительно неподвижной.

Виды систем отсчёта могут быть различными, например, неподвижная система отсчёта, подвижная система отсчёта, инерциальная система отсчёта, неинерциальная система отсчёта.

Подробности Категория: Механика Опубликовано 17.03.2014 18:55 Просмотров: 16143

Механическое движение рассматривают для материальной точки и для твёрдого тела.

Движение материальной точки

Поступательное движение абсолютно твёрдого тела - это механическое движение, в процессе которого любой отрезок прямой, связанный с этим телом, всегда параллелен самому себе в любой момент времени.

Если мысленно соединить прямой две любые точки твёрдого тела, то полученный отрезок всегда будет параллельным себе в процессе поступательного движения.

При поступательном движении все точки тела движутся одинаково. То есть, они проходят одинаковое расстояние за одинаковые промежутки времени и движутся в одном направлении.

Примеры поступательного движения: движение кабины лифта, чашек механических весов, санок, мчащихся с горы, педалей велосипеда, платформы железнодорожного состава, поршней двигателя относительно цилиндров.

Вращательное движение

При вращательном движении все точки физического тела движутся по окружностям. Все эти окружности лежат в плоскостях, параллельных друг другу. А центры вращения всех точек расположены на одной неподвижной прямой, которая называется осью вращения . Окружности, которые описываются точками, лежат в параллельных плоскостях. И эти плоскости перпендикулярны оси вращения.

Вращательное движение встречается очень часто. Так, движение точек на ободе колеса является примером вращательного движения. Вращательное движение описывает пропеллер вентилятора и др.

Вращательное движение характеризуют следующие физические величины: угловая скорость вращения, период вращения, частота вращения, линейная скорость точки.

Угловой скоростью тела при равномерном вращении называют величину, равную отношению угла поворота к промежутку времени, в течение которого этот поворот произошёл.

Время, за которое тело проходит один полный оборот, называется периодом вращения (T) .

Число оборотов, которые тело совершает в единицу времени, называется частотой вращения (f) .

Частота вращения и период связаны между собой соотношением T = 1/f.

Если точка находится на расстоянии R от центра вращения, то её линейная скорость определяется по формуле:

Лекция 2

1.2.1. Равномерное, прямолинейное

Движение называется равномерным и прямолинейным, если точка движется по прямой линии с постоянной скоростью .

Рассмотрим движение материальной точки с постоянной скоростью вдоль оси OX (рис. 1.8). Пусть в начальный момент времени t=0 координата точки х = х 0 , а скорость совпадает с направлением движения.

Найдем координату х и путь s, пройденный точкой за интервал времени t.

За малый интервал dt перемещение точки

где – проекция вектора скорости на ось ОХ.

Проинтегрируем левую и правую часть последнего равенства в пределах изменения переменных x и t

В случае когда вектор скорости не совпадает с направлением движения

При прямолинейном равномерном движении пройденный точкой путь

1.2.2 Равнопеременное прямолинейное

Движение называется равнопеременным и прямолинейным, если тело перемещается по прямой линии с постоянным ускорением . Равнопеременное прямолинейное движение может быть равноускоренным, когда вектор ускорения совпадает с вектором мгновенной скорости и равнозамедленным, когда ему противоположен (рис. 1.9).

Пусть в начальный момент времени координата точки x=х 0 , скорость совпадает с направлением оси ОХ, тогда

при равноускоренном движении ,равнозамедленном .

За время t пройденный точкой путь.

где – модуль проекции вектора скорости на ось OX находится из соотношения интегрированием его левой и правой части в пределах изменения переменных и t

При подстановки в соотношение (1.19) скорости для равноускоренного движения пройденный путь

координата точки

Для равнозамедленного движения проекция скорости и координата точки определяются по формулам

Путь пройденной точкой

1.2.3 Равнопеременное

Движение называется равнопеременным, если тело перемещается по тра­ек­то­рии с постоянным вектором ускорения.

Примером равнопеременного криволинейного движения является движение тела брошенного со скоростью под углом к горизонту (рис. 1.10) Движение тела происходит в гравитационном поле Земли с постоянным ускорением свободного падения . Для определения положения тела в пространстве разложим его движение на равномерное прямолинейное по оси OX со скоростью и равнопеременное по оси OY с ускорением свободного падения g и начальной скоростью .

В момент времени t координаты тела

вектор скорости

Модуль вектора скорости



Уравнение траектории найдём путем исключения параметра t из равенств (1.25)

Ускорение свободного падения в любой точке траектории можно разложить на его касательную и нормальную составляющие, где модуль касательного ускорения

где α-угол между векторами скорости и ускорения g в заданной точке траектории

Модуль нормального ускорения

Из сравнения уравнения параболы и равенства (1.28) следует, что тело, брошенное под углом к горизонту, движется по параболе.

Задания для самоконтроля знаний.

1. Определить путь пройденный автомобилем за 2 часа его движения со скоростью 90 км/ч.

2. Определить время обгона легковым автомобилем грузовика, если водитель совершает этот маневр при начальной скорости 80 км/ч с ускорением 2 м/с 2 .

3. Определить тормозной путь поезда движущегося со скоростью 36 км/ч при времени торможения 1 минуты.

4. Определить максимальную высоту подъема снаряда имеющего начальную скорость 100м/с и выкатившего из орудия под углом 45° к горизонту.

Лекция 3

1.2.4 Равномерное, вращательное

Рассмотрим движение м.т. по окружности радиусом R с постоянной линейной скоростью вокруг неподвижной оси Z (рис. 1.11).

Положение точки определяет радиус-вектор . За малый интервал времени радиус-вектор повернется на угол . Направление поворота м.т. вокруг оси Z задается вектором и правилом правого винта: поступательное движение правого винта и вектора совпадают, если вращение точки и винта совершается в одинаковом направлении. Модуль вектора равен углу поворота за интервал времени . Линейное перемещение вектора за время dt

где – угол между вектором и вектором .

Вектор линейной скорости движения точки

где – вектор угловой скорости.

Вектор угловой скорости совпадает с направлением вектора ).

Модуль вектора линейной скорости

Вектор линейного ускорения

где – вектор углового ускорения, – вектор касательного ускорения, – вектор нормального ускорения.

Направление вектора углового ускорения совпадает с направлением вектора (), если угловая скорость возрастает, и противоположно () , если она уменьшается.

Модули векторов ,

Угловой путь м.т., движущейся по окружности за время dt

Угловой путь точки за интервал времени t при начальном угле

При постоянной угловой скорости , угловой путь и угол поворота определяется из равенств:

При равноускоренном вращении точки для t=0, , угловая скорость определяется из соотношения

Для равноускоренного вращения за время t угловой путь и угол поворота определяются из соотношений

Для равнозамедленного вращения

Согласно определению угловая скорость измеряется в рад/с, угловое ускорение – рад/с 2 .

1.2.5 Колебательное движение

Колебания - это любой физический процесс, характери­зующийся повторяемостью во времени.

В процессе колебаний значения физических величин, определяющих состояние системы, через равные или неравные промежутки времени повторяются.

Колебания называются периодическими , если движение тела повторяется через равные промежутки времени.

Наименьший промежуток времени Т, через который значение изменяющейся физической величины повторяется (по величине и направлению, если эта величина векторная, по величине и знаку, если она скалярная), называется периодом колебаний этой величины.

Число полных колебаний, совершаемых колеблющейся величиной за единицу времени, называется частотой колебаний и обозначается ν. Период и частота колебаний связаны соотношениями .

Простейшим из периодических колебаний являются гармонические колебания.

Гармонические колебания - это колебания, в которых координаты тел изменяются с течением времени по закону синуса или косинуса.

Примером гармонического колебательного движения является изменение координат материальной точки, движущейся по окружности радиусом R (рис. 1.12).

Сложим в системе уравнений левые и правые части и после преобразований получим формулы для вычислений А и φ 0 .