Выпуклые многоугольники. Определение выпуклого многоугольника

Выпуклый четырехугольник — это фигура, состоящая из четырех сторон, соединенных между собой в вершинах, образующих вместе со сторонами четыре угла, при этом сам четырехугольник всегда находится в одной плоскости относительно прямой, на которой лежит одна из его сторон. Другими словами, вся фигура находится по одну сторону от любой из ее сторон.

Вконтакте

Как видно, определение довольно легко запоминающееся.

Основные свойства и виды

К выпуклым четырехугольникам можно отнести практически все известные нам фигуры, состоящие из четырех углов и сторон. Можно выделить следующие:

  1. параллелограмм;
  2. квадрат;
  3. прямоугольник;
  4. трапеция;
  5. ромб.

Все эти фигуры объединяет не только то, что они четырехугольные, но и то, что они еще и выпуклые. Достаточно просто рассмотреть схему:

На рисунке изображена выпуклая трапеция . Тут видно, что трапеция находится на одной плоскости или по одну сторону от отрезка . Если провести аналогичные действия, можно выяснить, что и в случае со всеми остальными сторонами трапеция является выпуклой.

Является ли параллелограмм выпуклым четырехугольником?

Выше показано изображение параллелограмма. Как видно из рисунка, параллелограмм также является выпуклым . Если посмотреть на фигуру относительно прямых, на которых лежат отрезки AB, BC, CD и AD, то становится понятно, что она всегда находится на одной плоскости от этих прямых. Основными же признаками параллелограмма является то, что его стороны попарно параллельны и равны так же, как и противоположные углы равны между собой.

Теперь, представьте себе квадрат или прямоугольник. По своим основным свойствам они являются еще и параллелограммами, то есть все их стороны расположены попарно параллельно. Только в случае с прямоугольником длина сторон может быть разной, а углы прямые (равные 90 градусам), квадрат — это прямоугольник, у которого все стороны равны и углы также прямые, а у параллелограмма длины сторон и углы могут быть разными.

В итоге, сумма всех четырех углов четырехугольника должна быть равна 360 градусам . Легче всего это определить по прямоугольнику: все четыре угла прямоугольника прямые, то есть равны 90 градусам. Сумма этих 90-градусных углов дает 360 градусов, другими словами, если сложить 90 градусов 4 раза, получится необходимый результат.

Свойство диагоналей выпуклого четырехугольника

Диагонали выпуклого четырехугольника пересекаются . Действительно, это явление можно наблюдать визуально, достаточно взглянуть на рисунок:

На рисунке слева изображен невыпуклый четырехугольник или четырехсторонник. Как угодно. Как видно, диагонали не пересекаются, по крайней мере, не все. Справа изображен выпуклый четырехугольник. Тут уже наблюдается свойство диагоналей пересекаться. Это же свойство можно считать признаком выпуклости четырехугольника.

Другие свойства и признаки выпуклости четырехугольника

Конкретно по этому термину очень сложно назвать какие-то определенные свойства и признаки. Легче обособить по различным видам четырехугольников такого типа. Начать можно с параллелограмма. Мы уже знаем, что это четырехугольная фигура, стороны которой попарно параллельны и равны. При этом, сюда же включается свойство диагоналей параллелограмма пересекаться между собой, а также сам по себе признак выпуклости фигуры: параллелограмм находится всегда в одной плоскости и по одну сторону относительно любой из своих сторон.

Итак, известны основные признаки и свойства:

  1. сумма углов четырехугольника равна 360 градусам;
  2. диагонали фигур пересекаются в одной точке.

Прямоугольник . Эта фигура имеет все те же свойства и признаки, что и параллелограмм, но при этом все углы его равны 90 градусам. Отсюда и название — прямоугольник.

Квадрат, тот же параллелограмм , но углы его прямые как у прямоугольника. Из-за этого квадрат в редких случаях называют прямоугольником. Но главным отличительным признаком квадрата помимо уже перечисленных выше, является то, что все четыре его стороны равны.

Трапеция — очень интересная фигура . Это тоже четырехугольник и тоже выпуклый. В этой статье трапеция уже рассматривалась на примере рисунка. Понятно, что она тоже выпуклая. Главным отличием, а соответственно признаком трапеции является то, что ее стороны могут быть абсолютно не равны друг другу по длине, а также ее углы по значению. При этом фигура всегда остается на одной плоскости относительно любой из прямых, которая соединяет любые две ее вершины по образующим фигуру отрезкам.

Ромб — не менее интересная фигура . Отчасти ромбом можно считать квадрат. Признаком ромба является тот факт, что его диагонали не только пересекаются, но и делят углы ромба пополам, а сами диагонали пересекаются под прямым углом, то есть, они перпендикулярны. В случае, если длины сторон ромба равны, то диагонали тоже делятся пополам при пересечении.

Дельтоиды или выпуклые ромбоиды (ромбы) могут иметь разную длину сторон. Но при этом все равно сохраняются как основные свойства и признаки самого ромба, так и признаки и свойства выпуклости. То есть, мы можем наблюдать, что диагонали делят углы пополам и пересекаются под прямым углом.

Сегодняшней задачей было рассмотреть и понять, что такое выпуклые четырехугольники, какие они бывают и их основные признаки и свойства. Внимание! Стоит напомнить еще раз, что сумма углов выпуклого четырехугольника равна 360 градусам. Периметр фигур, например, равен сумме длин всех образующих фигуру отрезков. Формулы расчета периметра и площади четырехугольников будут рассмотрены в следующих статьях.

Виды выпуклых четырехугольников




Ломаная

Определение

Ломаной линией , или короче, ломаной , называется конечная последовательность отрезков, такая, что один из концов первого отрезка служит концом второго, другой конец второго отрезка служит концом третьего и т.д. При этом соседние отрезки не лежат на одной прямой. Эти отрезки называют звеньями ломаной.

Виды ломаной

    Ломаная называется замкнутой , если начало первого отрезка совпадает с концом последнего.

    Ломаная может пересекать сама себя, коснуться сама себя, налегать на себя. Если таких особенностей нет, то такая ломаная называется простой .

Многоугольники

Определение

Простая замкнутая ломаная вместе с частью плоскости, ограниченной ею, называется многоугольником .

Замечание

В каждой вершине многоугольника его стороны задают некоторый угол многоугольника. Он может быть как меньше развернутого, так и больше развернутого.

Свойство

У каждого многоугольника есть угол, меньший $180^\circ$.

Доказательство

Пусть дан многоугольник $P$.

Проведем какую-нибудь прямую, не пересекающую его. Будем перемещать ее параллельно в сторону многоугольника. В некоторый момент мы впервые получим прямую $a$, имеющую с многоугольником $P$ хотя бы одну общую точку. От этой прямой многоугольник лежит по одну сторону (при этом некоторые его точки лежат на прямой $a$).

На прямой $a$ лежит хотя бы одна вершина многоугольника. В ней сходится две его стороны, расположенные по одну сторону от прямой $a$ (считая и тот случай, когда одна из них лежит на этой прямой). А значит, при этой вершине угол меньше развернутого.

Определение

Многоугольник называется выпуклым , если он лежит по одну сторону от каждой прямой, содержащей его сторону. Если многоугольник не является выпуклым, его называют невыпуклым .

Замечание

Выпуклый многоугольник является пересечением полуплоскостей, ограниченных прямыми, которые содержат стороны многоугольника.

Свойства выпуклого многоугольника

    У выпуклого многоугольника все углы меньше $180^\circ$.

    Отрезок, соединяющий любые две точки выпуклого многоугольника (в частности, любая его диагональ), содержится в этом многоугольнике.

Доказательство

Докажем первое свойство

Возьмем любой угол $A$ выпуклого многоугольника $P$ и его сторону $a$, идущую из вершины $A$. Пусть $l$ – прямая, содержащая сторону $a$. Так как многоугольник $P$ выпуклый, то он лежит по одну сторону от прямой $l$. Следовательно, и его угол $A$ лежит по одну сторону от этой прямой. Значит угол $A$ меньше развернутого угла, то есть меньше $180^\circ$.

Докажем второе свойство

Возьмем любые две точки $A$ и $B$ выпуклого многоугольника $P$. Многоугольник $P$ является пересечением нескольких полуплоскостей. Отрезок $AB$ содержится в каждой из этих полуплоскостей. Поэтому он содержится и в многоугольнике $P$.

Определение

Диагональю многоугольника называется отрезок, соединяющий его несоседние вершины.

Теорема (о количестве диагоналей n-угольника)

Количество диагоналей выпуклого $n$-угольника вычисляется по формуле $\dfrac{n(n-3)}{2}$.

Доказательство

Из каждой вершины n-угольника можно провести $n-3$ диагонали (нельзя провести диагональ в соседние вершины и в саму эту вершину). Если посчитать все такие возможные отрезки, то их будет $n\cdot(n-3)$, так как вершин $n$. Но каждая диагональ будет посчитана дважды. Таким образом, количество диагоналей n-угольника равно $\dfrac{n(n-3)}{2}$.

Теорема (о сумме углов n-угольника)

Сумма углов выпуклого $n$-угольника равна $180^\circ(n-2)$.

Доказательство

Рассмотрим $n$-угольник $A_1A_2A_3\ldots A_n$.

Возьмём внутри этого многоугольника произвольную точку $O$.

Сумма углов всех треугольников $A_1OA_2$, $A_2OA_3$, $A_3OA_4$, \ldots, $A_{n-1}OA_n$ равна $180^\circ\cdot n$.

C другой стороны эта сумма складывается из суммы всех внутренних углов многоугольника и полного угла $\angle O=\angle 1+\angle 2+\angle 3+\ldots=30^\circ$.

Тогда сумма углов рассматриваемого $n$-угольника равна $180^\circ\cdot n-360^\circ=180^\circ\cdot(n-2)$.

Следствие

Сумма углов невыпуклого $n$-угольника равна $180^\circ(n-2)$.

Доказательство

Рассмотрим многоугольник $A_1A_2\ldots A_n$, у которого только угол $\angle A_2$ невыпуклый, то есть $\angle A_2>180^\circ$.

Обозначим сумму его улов $S$.

Соединим точки $A_1A_3$ и рассмотрим многоугольник $A_1A_3\ldots A_n$.

Сумма углов этого многоугольника равна:

$180^\circ\cdot(n-1-2)=S-\angle A_2+\angle 1+\angle 2=S-\angle A_2+180^\circ-\angle A_1A_2A_3=S+180^\circ-(\angle A_1A_2A_3+\angle A_2)=S+180^\circ-360^\circ$.

Следовательно, $S=180^\circ\cdot(n-1-2)+180^\circ=180^\circ\cdot(n-2)$.

Если у исходного многоугольника более одного невыпуклого угла, то описанную выше операцию можно проделать с каждым таким углом, что и приведет к доказываемому утверждению.

Теорема (о сумме внешних углов выпуклого n-угольника)

Сумма внешних углов выпуклого $n$-угольника равна $360^\circ$.

Доказательство

Внешний угол при вершине $A_1$ равен $180^\circ-\angle A_1$.

Сумма всех внешних углов равна:

$\sum\limits_{n}(180^\circ-\angle A_n)=n\cdot180^\circ - \sum\limits_{n}A_n=n\cdot180^\circ - 180^\circ\cdot(n-2)=360^\circ$.

Определение 1. Ломаной линией называется конечная последовательность отрезков, такая, что один из концов первого отрезка служит концом второго, другой конец второго отрезка служит концом третьего и т. п.

Отрезки, составляющие ломаную линию, называются звеньями. Соседние отрезки не лежат на одной прямой. Если концы ломаной совпадают, то она называется замкнутой . Ломаная может пересекать сама себя, касаться сама себя и налегать сама на себя. Если таких особенностей у ломаной нет, то она называется простой .

Определение 2. Простая замкнутая ломаная вместе с частью плоскости, ограниченной ею, называется многоугольником.

Сама ломаная при этом называется границей многоугольника, звенья ломаной – сторонами многоугольника, концы звеньев – вершинами многоугольника. Две соседних стороны многоугольника образуют угол. Число углов в многоугольнике равно числу сторон. У каждого многоугольника есть углы меньше 180°. Стороны и углы многоугольника называют элементами многоугольника.

Отрезок, соединяющий две несоседние вершины многоугольника, называется диагональю. В любом n-угольнике можно провести n-2 диагонали.

Определение 3. Многоугольник называется выпуклым , если он лежит по одну сторону от каждой прямой, содержащей его сторону. Многоугольники, не отвечающие этому условию, называются невыпуклыми.

Свойства выпуклых многоугольников.

Свойство 1. У выпуклого многоугольника все углы меньше 180°.

Доказательство: Возьмем любой угол А выпуклого многоугольника Р и его сторону а, идущую из вершины А. Пусть l - прямая, содержащая сторону а. Так как многоугольник Р выпуклый, то он лежит по одну сторону от прямой l. Поэтому угол А лежит по одну сторону от прямой l. Следовательно, угол А меньше развернутого, т. е. ÐA < 180°.

Свойство 2. Отрезок, соединяющий любые две точки выпуклого многоугольника, содержится в этом многоугольнике.

Доказательство: Возьмем любые две точки М и N выпуклого многоугольника Р. Многоугольник Р является пересечением нескольких полуплоскостей. Отрезок MN лежит в каждой из этих полуплоскостей. Поэтому он содержится и в многоугольнике Р.

Свойство 3. Сумма углов выпуклого многоугольника равна (n – 2)∙180°.

Доказательство: Возьмем внутри выпуклого многоугольника Р произвольную точку О и соединим ее со всеми вершинами многоугольника. Образуется n треугольников, сумма углов каждого из которых равна 180°. Углы при вершине О в сумме дают 360° = 2∙180°. Поэтому сумма углов многоугольника равна n∙180° - 2∙180° = (n – 2)∙180°.


Понятие параллелограмма. Свойства параллелограмма.

Определение 1. Четырехугольник, противоположные стороны которого попарно параллельны, называется параллелограммом.

У каждого параллелограмма четыре вершины, четыре стороны, четыре угла. Две стороны, имеющие общие концы, называются смежными . У каждого параллелограмма две диагонали – отрезки, соединяющие противоположные вершины параллелограмма. Сумма углов параллелограмма равна 360°.

Свойства параллелограмма.

Свойство 1. У параллелограмма противоположные стороны равны и противоположные углы попарно равны.

Доказательство: Проведем диагональ АС. АС – общая;

ÐВАС = ÐАСD (внутренние накрест лежащие при АВ II BC и секущей АС);

ÐВСА = ÐСАD (внутренние накрест лежащие при АD II BC и секущей АС);

Þ DАВС = DАDС (по 2 признаку).

АВ = CD; BC = AD; ÐВ = ÐD.

ÐА = ÐВАС + ÐСAD; ÐС = ÐАСB + ÐАСD; Þ ÐА = ÐС.

Свойство 2. У параллелограмма углы, прилежащие к одной стороне, в сумме дают 180°.

Доказательство:

ÐВ + ÐА =180° (внутренние односторонние при ВС II AD и секущей АB).

ÐB + ÐС =180° (внутренние односторонние при AВ II CD и секущей BC).

ÐD + ÐC =180° (внутренние односторонние при ВС II AD и секущей CD).

ÐA + ÐD =180° (внутренние односторонние при AВ II CD и секущей AD).

Свойство 3. Диагонали параллелограмма точкой пересечения делятся пополам.

Доказательство: Проведем диагонали АС и BD, пересекающиеся в точке О.

АВ = СD (по первому св-ву параллелограмма);

ÐAВO = ÐODC (внутренние накрест лежащие при АВ II CD и секущей BD);

ÐВАO = ÐOСD (внутренние накрест лежащие при АB II CD и секущей АС);

Þ DАВO = DODС (по 2 признаку).

ВO = OD; AO = OC.


Признаки параллелограмма.

Признак 1. Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник - параллелограмм.

Дано: ABCD – четырехугольник; АD II BC,

Понятие многоугольника

Определение 1

Многоугольником называется геометрическая фигура в плоскости, которая состоит из попарно соединенных между собой отрезков, соседние из которых не лежат на одной прямой.

При этом отрезки называются сторонами многоугольника , а их концы - вершинами многоугольника .

Определение 2

$n$-угольником называется многоугольник, у которого $n$ вершин.

Виды многоугольников

Определение 3

Если многоугольник всегда будет лежать по одну сторону от любой прямой, проходящей через его стороны, то многоугольник называется выпуклым (рис. 1).

Рисунок 1. Выпуклый многоугольник

Определение 4

Если многоугольник лежит по разные стороны хотя бы одной прямой, проходящей через его стороны, то многоугольник называется невыпуклым (рис. 2).

Рисунок 2. Невыпуклый многоугольник

Сумма углов многоугольника

Введем теорему о сумме углов -угольника.

Теорема 1

Сумма углов выпуклого -угольника определяется следующим образом

\[(n-2)\cdot {180}^0\]

Доказательство.

Пусть нам дан выпуклый многоугольник $A_1A_2A_3A_4A_5\dots A_n$. Соединим его вершину $A_1$ со всеми другими вершинами данного многоугольника (рис. 3).

Рисунок 3.

При таком соединении мы получим $n-2$ треугольника. Просуммировав их углы мы получим сумму углов данного -угольника. Так как сумма углов треугольника равняется ${180}^0,$ получим, что сумма углов выпуклого -угольника определяется по формуле

\[(n-2)\cdot {180}^0\]

Теорема доказана.

Понятие четырехугольника

Используя определение $2$, легко ввести определение четырехугольника.

Определение 5

Четырехугольником называется многоугольник, у которого $4$ вершины (рис. 4).

Рисунок 4. Четырехугольник

Для четырехугольника аналогично определены понятия выпуклого четырехугольника и невыпуклого четырехугольника. Классическими примерами выпуклых четырехугольников являются квадрат, прямоугольник, трапеция, ромб, параллелограмм (рис. 5).

Рисунок 5. Выпуклые четырехугольники

Теорема 2

Сумма углов выпуклого четырехугольника равняется ${360}^0$

Доказательство.

По теореме $1$, мы знаем, что сумма углов выпуклого -угольника определяется по формуле

\[(n-2)\cdot {180}^0\]

Следовательно, сумма углов выпуклого четырехугольника равняется

\[\left(4-2\right)\cdot {180}^0={360}^0\]

Теорема доказана.

Выпуклое множество точек на плоскости.

Множество точек на плоскости или в трехмерном пространстве называется выпуклым , если любые две точки этого множества можно соединить отрезком прямой, полностью лежащим в данном множестве.

Теорема 1 . Пересечение конечного числа выпуклых множеств является выпуклым множеством.

Следствие. Пересечение конечного числа выпуклых множеств – выпуклое множество.

Угловые точки.

Граничная точка выпуклого множества называется угловой , если через нее можно провести отрезок, все точки которого не принадлежат данному множеству.

Различные по форме множества могут иметь конечное или бесконечное количество угловых точек.

Выпуклый многоугольник.

Многоугольник называется выпуклым , если он лежит по одну сторону от каждой прямой, проходящей через две его соседние вершины.

Теорема: Сумма углов выпуклого n-угольника равна 180˚ *(n-2)

6) Решение систем m линейных неравенств с двумя переменными

Дана система т линейных неравенств с двумя переменными

Знаки некоторых или всех неравенств могут быть ≥.

Рассмотрим первое неравенство в системе координат Х1ОХ2. Построим прямую

которая является граничной прямой.

Эта прямая делит плоскость на две полуплоскости 1 и 2 (рис. 19.4).

Полуплоскость 1 содержит начало координат, полуплоскость 2 не содержит начала координат.

Для определения, по какую сторону от граничной прямой расположена заданная полуплоскость, надо взять произвольную точку на плоскости (лучше начало координат) и подставить координаты этой точки в неравенство. Если неравенство справедливо, то полуплоскость обращена в сторону этой точки, если не справедливо, то в противоположную от точки сторону.

Направление полуплоскости на рисунках показываем стрелкой.

Определение 15. Решением каждого неравенства системы является полуплоскость, содержащая граничную прямую и расположенная по одну сторону от нее.

Определение 16. Пересечение полуплоскостей, каждая из которых определяется соответствующим неравенством системы, называется областью решения системы (ОР).

Определение 17. Область решения системы, удовлетворяющая условиям неотрицательности (xj ≥ 0, j =), называется областью неотрицательных, или допустимых, решений (ОДР).

Если система неравенств совместна, то ОР и ОДР могут быть многогранником, неограниченной многогранной областью или одной точкой.

Если система неравенств несовместна, то ОР и ОДР - пустое множество.

Пример 1. Найти ОР и ОДР системы неравенств и определить координаты угловых точек ОДР

Решение. Найдем ОР первого неравенства: х1 + 3x2 ≥ 3. Построим граничную прямую х1 +3x2 – 3 = 0 (рис. 19.5). Подставим координаты точки (0,0) в неравенство: 1∙0 + 3∙0 > 3; так как координаты точки (0,0) не удовлетворяют ему, то решением неравенства (19.1) является полуплоскость, не содержащая точку (0,0).


Аналогично найдем решения остальных неравенств системы. Получим, что ОР и ОДР системы неравенств является выпуклый многогранник ABCD.

Найдем угловые точки многогранника. Точку А определим как точку пересечения прямых

Решая систему, получим А(3/7, 6/7).

Точку В найдем как точку пересечения прямых

Из системы получим B(5/3, 10/3). Аналогично найдем координаты точек С и D: С(11/4; 9/14), D(3/10; 21/10).

Пример 2. Найти ОР и ОДР системы неравенств

Решение. Построим прямые и определим решения неравенств (19.5)-(19.7). ОР и ОДР являются неограниченные многогранные области ACFM и ABDEKM соответственно (рис. 19.6).

Пример 3. Найти ОР и ОДР системы неравенств

Решение. Найдем решения неравенств (19.8)-(19.10) (рис. 19.7). ОР представляет неограниченную многогранную область ABC; ОДР - точка В.

Пример 4. Найти OP и ОДР системы неравенств

Решение. Построив прямые, найдем решения неравенств системы. ОР и ОДР несовместны (рис. 19.8).

УПРАЖНЕНИЯ

Найти ОР и ОДР систем неравенств

Теорема. Если xn ® a, то .

Доказательство. Из xn ® a следует, что . В то же время:

Т.е. , т.е. . Теорема доказана.

Теорема. Если xn ® a, то последовательность {xn} ограничена.

Следует отметить, что обратное утверждение неверно, т.е. из ограниченности последовательности не следует ее сходимость.

Например, последовательность не имеет предела, хотя

Разложение функций в степенные ряды.

Разложение функций в степенной ряд имеет большое значение для решения различных задач исследования функций, дифференцирования, интегрирования, решения дифференциальных уравнений, вычисления пределов, вычисления приближенных значений функции.

Итого, получаем:

Рассмотрим способ разложения функции в ряд при помощи интегрирования.

С помощью интегрирования можно разлагать в ряд такую функцию, для которой известно или может быть легко найдено разложение в ряд ее производной.

Находим дифференциал функции и интегрируем его в пределах от 0 до х.