Ядерные батареи. Возможный вред от работы атомной батарейки

Ученые из НИТУ "МИСиС", МФТИ и НПО "Луч" разработали новую технологию создания "ядерных батареек" на основе радиоактивного изотопа никель-63, которые могут найти применение в разных областях - от медицины до космических исследований, сообщила пресс-служба вуза.

Группой российских ученых под руководством заведующего кафедрой полупроводников и диэлектриков МИСиС, профессора Юрия Пархоменко разработана технология создания преобразователей энергии бета-излучения никеля-63 в электрическую энергию на основе монокристаллов пьезоэлектриков для использования в составе автономных бета-вольтаических батарей переменного напряжения.

В эфире радио Sputnik Юрий Пархоменко рассказал о новой разработке.

"Изобретена не просто батарейка, а ядерный генератор переменного напряжения длительного срока службы. Почему ядерный? В нем используется процесс бета-распада, а это один из видов радиоактивного излучения. Но, несмотря на это, он абсолютно безопасен. В нашем случае это мягкое бета-излучение. Электроны легко задерживаются даже корпусом прибора. В этом генераторе энергия ядерного распада преобразуется в энергию механических колебаний, которая затем преобразуется в электрическую энергию с помощью пьезокристалла. Такой генератор перспективен и сроком службы - не менее 50 лет, и очень широким диапазоном рабочих температур. Он может работать в диапазоне от минус 100 по Цельсию до плюс 200. Также у него маленький размер: ширина - где-то сантиметр, а ширина и высота по полсантиметра", - сказал Юрий Пархоменко.

По его словам, область применения таких генераторов очень широкая.

"Где его можно использовать? В основном для питания различных датчиков, не подлежащих регулярному техобслуживанию. Это труднодоступные районы Земли - Крайний Север, Арктика, а также авиакосмическая техника, дальний космос, ядерная техника, атомные электростанции. Это и спецтехника, включая системы контроля и безопасности, датчики, которые устанавливают на границах", - сказал профессор.

Он отметил, что производство "ядерных батареек" на сегодняшний момент достаточно дорогостоящее, однако со временем их цена будет снижаться.

"В генераторе где-то 90% - это цена изотопа никеля-63. Его получают на предприятиях "Росатома", и стоимость одного грамма составляет где-то полмиллиона рублей. Для нашего прибора нужен один миллиграмм. Стоимость пять тысяч рублей - это дорого. Но сейчас серийно этот генератор не выпускается. Мы сделали только прототип, опытный образец. К концу года будет внедрение в производство. Если мы найдем широкое применение, тогда наладится производство и этого изотопа, и цена будет дешевле", - заключил профессор.

Изобретение относится к устройствам, преобразующим энергию частиц, испускаемых изотопами, в электрический ток, и может быть использовано в качестве элемента питания в различных электронных устройствах, потребляющих небольшой ток, но вынужденных работать без замены источников питания в течение десятка лет. Сущность изобретения заключается в том, что ядерная батарейка содержит корпус, наполненный материалом изотопа, куда помещен, по крайней мере, один полупроводниковый детектор, у которого в объеме созданы колодцы, причем все размеры колодцев меньше длины свободного пробега частиц, испускаемых газообразным изотопом, при этом детектор выполнен в виде чередующихся слоев n + , i (либо ν, либо π) и p + -типов проводимостей в такой последовательности n + -i-p + -i-…-n + -i-p + , причем эти слои лежат в плоскостях, перпендикулярных стенкам колодцев; к слоям n+-типа созданы омические контакты, электрически соединенные между собой, такие же контакты созданы и к слоям p + -типа, которые тоже соединены. Технический результат - упрощение технологии изготовления полупроводникового детектора, преобразующего энергию бета-частиц в электрический ток. 1 ил.

Изобретение относится к устройствам, преобразующим энергию частиц, испускаемых изотопами, в электрический ток, и может быть использовано в качестве элемента питания в различных электронных устройствах, потребляющих небольшой ток, но вынужденных работать без замены источников питания в течение десятка лет, например в кардиостимуляторах, или в глубоководных датчиках, или в приборах, запущенных в космос, либо в приборах, установленных в труднодоступных местах.

Известны ядерные батарейки, принцип действия которых основан на конверсии энергии частиц, возникающих при радиоактивном распаде изотопов, в электрический ток при прохождении через полупроводниковый детектор, работающий в бета- или фотовольтаическом режиме. Известные батарейки используют газообразные, жидкие и твердотельные изотопы, испускающие альфа-, бета-частицы, а также гаммакванты .

Известно устройство , которое содержит корпус, в котором помещен полупроводниковый детектор из аморфного кремния, представляющий p-i-n-структуру, а внутренность корпуса наполнена тритием (3 H), который испускает электроны. Время полураспада трития примерно 12 лет. В рабочем режиме каждая бета-частица, достигшая поверхности детектора, влетает в детектор и создает в нем более одной тысячи электронно-дырочных пар. Возникшие дырки и электроны разделяются внутренним полем p-i-n-структуры, что приводит к формированию напряжения на контактах детектора и появлению электрического тока при подключении нагрузки. Недостатком такой батарейки являются малые значения тока, пропорциональные площади только одной поверхности плоского детектора.

Наиболее близким аналогом предлагаемого изобретения является батарейка на изотопах, предложенная в американском патенте (Patent US 6774531) . В прототипе существенно увеличена эффективность детектора за счет специальной конструкции 3D-кремниевого детектора.

Известная батарейка содержит корпус, наполненный газообразным тритием, куда помещен бетавольтаический детектор из кремния n-типа. В объеме детектора созданы колодцы для трития, на стенках которых сформирован слой p + -типа проводимости, причем все размеры колодцев не превышают длину свободного пробега электронов в тритии.

Недостатком известного устройства является то, что реализация детектора, содержащего в объеме полупроводника глубокие колодцы, на стенках которых сформирован p-n-переход, является очень сложной технической задачей, решенной пока только для кремния. Для других полупроводников, имеющих более высокую плотность, чем у кремния, известная конструкция детектора вообще малоэффективна. Действительно, при средней энергии электронов Е=6 кэВ, испускаемых тритием, электрон сможет проникнуть в детектор только на глубину 0.1-0.2 мкм, а при наличии слоя p-типа на стенках колодцев значительная часть заряда, порожденная электронами, рекомбинирует в нем, не достигнув p-n-перехода.

Технический результат, на который направлено заявляемое решение, состоит в устранении указанных недостатков.

Этот результат достигается тем, что ядерная батарейка на радиоактивных изотопах, содержащая корпус, наполненный материалом изотопа, куда помещен, по крайней мере, один полупроводниковый детектор, у которого в объеме созданы колодцы, причем все размеры колодцев меньше длины свободного пробега частиц, испускаемых газообразным изотопом, отличается тем, что в объеме детектора созданы чередующиеся слои n + , i (либо ν, либо π) и p + -типов проводимостей в такой последовательности: n + -i-p + -i-…-n + -i-р + , причем эти слои лежат в плоскостях, перпендикулярных стенкам колодцев, к слоям n+-типа созданы омические контакты, электрически соединенные между собой, такие же контакты созданы и к слоям p + -типа и тоже соединены.

В предлагаемом устройстве конструкция детектора исключает необходимость формирования на стенках колодцев p-n-переходов. Поэтому детектор может быть изготовлен не только из кремния, но и из других полупроводников, например из арсенида галлия.

На фиг.1 схематично представлено сечение одной из возможных конструкций предлагаемой батарейки. Батарейка содержит корпус 1 с электродами 2 и 3. Корпус наполнен материалом радиоактивного изотопа 4. В корпус помещены два детектора 5 и 6 из арсенида галлия. Детекторы выполнены из эпитаксиального материала, содержащего последовательность слоев n + 7, i 8, p + 9, высоколегированным слоям n + 7, p + 9 созданы омические контакты соответственно 10 и 11, соединенные проволочками с электродами 2 и 3 корпуса. Перпендикулярно плоскостям, в которых выращены слои n + , i, p + в объеме детектора сформированы колодцы 12.

Пример практического исполнения. В герметичный металлический корпус 1, имеющий электроды 2 и 3, электрически развязанные с корпусом за счет диэлектрических вставок, были установлены два идентичных детектора 5 и 6. При этом внутренность корпуса была заполнена радиоактивным тритием, испускающим бета-частицы. Детекторы изготавливались из арсенида галлия, выращенного с помощью газофазовой эпитаксии. На проводящей подложке n + -типа последовательно были выращены слои: n + -слой 7 толщиной 10 мкм, i-слой 8, компенсированный хромом в процессе эпитаксии, толщиной 30 мкм, p + -слой 9 толщиной 10 мкм, затем i-слой 8 толщиной 30 мкм, n + -слой 7 толщиной 10 мкм и затем снова i-слой 8 толщиной 30 мкм, p + -слой 9 толщиной 10 мкм. С использованием стандартных методов фотолитографии, химического травления и вакуумного напыления формировались омические контакты 10 и 11 к высоколегированным слоям. С использованием реактивно-ионного травления и кратковременного химического травления в детекторах формировались колодцы 12 с диаметром верхнего отверстия 80 мкм и шагом 100 мкм. В результате была получена ядерная батарейка новой конструкции.

В рабочем режиме при размерах детекторов 5×5 см 2 общий объем колодцев, заполненных тритием, составляет 0.25 см 3 . При этом радиоактивность указанного объема с тритием равна 10 10 Бк. Поскольку 70% электронов, испущенных в результате радиоактивного распада трития, попадают в активные области детектора т.е. в полуизолирующие области 8 (часть попадает в высоколегированные слои) и каждый электрон порождает примерно 1700 электронно-дырочных пар, то максимальная величина тока от данной батарейки составит 2.5 мкА.

Таким образом, предложена ядерная батарейка с новой конструкцией бетавольтаического детектора. Реализация детектора не требует создания p-n-переходов на стенках колодцев, сформированных в объеме детектора, поэтому для создания полупроводникового детектора можно использовать не только кремниевые структуры.

Источники информации

1. Kherani N.P., Shmayda W.T., Zukotynski S. /Nuclear batteries/ Patent US 5606213, 1997.

2. Chu F.Y., Mannik L., Peralta S.B., Ruda H.E. /Radioisotope-powered semiconductor battery/ Patent US 5859484, 1999.

3. Gadeken L. /Apparatus and method for generating electrical current from the nuclear decay process of radioactive material/ Patent US 6774531, 2004.

Ядерная батарейка, содержащая корпус, наполненный материалом изотопа, куда помещен, по крайней мере, один полупроводниковый детектор, у которого в объеме созданы колодцы, причем все размеры колодцев меньше длины свободного пробега частиц, испускаемых газообразным изотопом, отличающаяся тем, что детектор выполнен в виде чередующихся слоев n + , i (либо ν либо π) и p + -типов проводимостей в такой последовательности n + -i-p + -i-…-n + -i-p + , причем эти слои лежат в плоскостях, перпендикулярных стенкам колодцев; к слоям n + -типа, созданы омические контакты, электрически соединенные между собой, такие же контакты созданы и к слоям p + -типа, которые тоже соединены.

Похожие патенты:

Изобретение относится к устройству плазменного осаждения из паровой фазы для получения кремниевых тонкопленочных модулей солнечного элемента, к способу получения тонкопленочных модулей и к кремниевым тонкопленочным фотогальваническим панелям.

Изобретение относится к применению пластикового композита, содержащего материал-носитель, выбранный из группы полиэтилентерефталата (PET), полиэтиленнафтената (PEN) или сополимера этилена с тетрафторэтиленом (ETFE), а также слои полиамида-12, граничащие с материалом-носителем по обеим сторонам, для получения фотоэлектрических модулей.

Изобретение относится к области конструкции и технологии изготовления фотоэлектрических преобразователей (ФП) солнечного излучения в электрический ток и может быть использовано в производстве солнечных фотоэлементов.

Старые электронные часы могли работать более года, используя одну маленькую батарейку. Но современные электронные устройства настолько многофункциональны, что проблема малой ёмкости современных аккумуляторов стоит в полный рост. Если смартфоны и планшеты имеют достаточно много места в корпусе, то компактная электроника вроде «умных» часов страдает от нехватки ёмкости особенно сильно, что существенно сдерживает рост её популярности. С другой стороны, футурологи пятидесятых — шестидесятых годов вовсю рисовали картины «светлого атомного будущего», где автомобили не нуждаются в заправке, а аккумуляторы — в зарядке.

Возможно, это будущее не совсем потеряно. Учёным из Университета Миссури удалось достичь существенного прогресса в области создания «атомных батареек». Не стоит пугаться, речь вовсе не идёт о карманном ядерном реакторе. Создание такого реактора на данном этапе развития технологий невозможно. Принципом действия батарея, созданная в стенах университета, очень напоминает обычные солнечные панели, но если процесс, протекающий в последних, называется «фотовольтаикой», то в описываемой разработке имеет место «бетавольтаика», то есть поглощение полупроводниковым устройством бета-излучения.

Нельзя сказать, что бета-излучение безвредно, но, в отличие от гамма-излучения, оно представляет собой поток заряженных частиц и имеет сравнительно небольшой пробег, около двух метров в воздухе и порядка десяти миллиметров в тканях тела. Но достаточно двух-трёх миллиметров алюминия или пары сантиметров органического стекла, чтобы полностью экранировать такой поток. В конструкции «атомной батарейки» используется электрод из диоксида титана, покрытый слоем платины, вода и источник бета-излучения. В качестве последнего используется изотоп стронций-90 с периодом полураспада около 29 лет. В процессе распада он испускает электрон (пресловутое бета-излучение), антинейтрино, а побочным эффектом реакции является иттрий-90. Последний имеет период полураспада всего 64 часа, также испускает электроны и антинейтрино, а в конце превращается в стабильный нерадиоактивный цирконий. Гамма-излучение в этих реакциях практически отсутствует.

Идея батарей, использующих процесс бетавольтаики, не нова, однако команде учёных Миссурийского Университета удалось существенно повысить их эффективность использованием… простой воды. Да, это не опечатка. Вода очень хорошо поглощает бета-излучение, предохраняет полупроводниковый приёмник от разрушения, а само излучение расщепляет молекулы воды, позволяя извлечь дополнительную порцию электроэнергии, а значит, повысить коэффициент полезного действия бета-батареи. Как заявил один из разработчиков, их решение слабо подвержено действию низких температур и может использоваться в самых различных сценариях, от автомобильных аккумуляторов до источников питания космических аппаратов.

Разумеется, нет никаких теоретических ограничений на использование этой технологии и в носимой электронике. Однако радиофобия очень широко распространена в наши дни, большинство людей незнакомы даже с азами ядерной физики и будут воспринимать любое упоминание «радиации» в штыки. Напуганные случаями возгорания обычных литий-ионных аккумуляторов, пользователи и слышать не захотят об «атомных батарейках», несмотря на их «вечность», хотя для безопасного использования бета-батареи достаточно прочного экранирующего корпуса и соблюдения элементарных правил техники безопасности. Литий-ионные аккумуляторы тоже не рекомендуется вскрывать и пробовать на зуб.

Но описанная технология непременно будет доведена до совершенства и найдёт себе применение в военной и космической отраслях, да и везде, где продолжительность жизни источника питания является критической характеристикой, перевешивающей все возможные риски. А там, кто знает — возможно, наши потомки преодолеют иррациональный страх перед атомными технологиями и будут безопасно и с удовольствием пользоваться их плодами.

Первые упоминания об атомной батарейке зафиксированы в 2005 году.

Как устроена и как работает атомная батарейка

Действительно, атомная батарейка существует. По-другому ее называют атомный аккумулятор или ядерный аккумулятор. Она предназначена для питания различных мобильных устройств. Создана батарейка самого продолжительного срока действия благодаря процессу ядерного распада, так как основным элементом, который способствует работе устройства, является тритий. Именно от этого вещества и питается атомная батарейка.

Внутри атомный аккумулятор содержит , на работу которой оказывает действие тритий. Отмечается, что радиоактивность, которая излучается атомной батарейкой, очень и очень мала, поэтому вред здоровью человека и окружающей среде устройство не приносит. Главное достижение – это продолжительность работы батарейки. Без дополнительной подзарядки ядерный аккумулятор может прослужить около 20 лет.

Где используются атомные батарейки

Атомные батарейки – это настоящее достижение, ведь только такие устройства современности способны выдерживать температуры от -50 до +150оC, работая в экстремальных условиях. К тому же доказано, что они способны выдерживать широчайший диапазон давлений и вибраций. В различной микроэлектронике срок службы атомной батарейки варьируется. Но, как указывалось выше, минимальный срок действия без подзарядки составляет 20 лет. Максимальный – 40 лет и больше.

Как правило, атомный аккумулятор используется для работы датчиков давления, всевозможных медицинских имплантантов, часов, для зарядки литиевых батареек. С помощью работы батареек данного типа осуществляется питание маломощных процессоров. Размер и вес ядерной батарейки минимален, поэтому устройство идеально подходит для заряда космических кораблей и исследовательских станций.

Возможный вред от работы атомной батарейки

Несмотря на то что говорят, что ядерная батарейка не оказывает никакого вредного действия на кожу человека, соприкасаясь с ней, стоит быть все-таки осторожным. Это относительно новое открытие современности, поэтому исследований проводилось достаточно мало. Если сейчас, используя такую батарейку для заряда наручных часов, человек не замечает никакого негативного воздействия, еще нельзя говорить о том, что это в дальнейшем не скажется на развитии всевозможных неприятных и опасных для жизни заболеваний.

Сорок лет назад был создан первый мобильный телефон, а сегодня уже изобретена атомная батарея для него. Технологический прогресс в последние годы идет настолько уверенно, что на прилавках магазинов электроники появляются такие новинки, о которых еще совсем недавно писали фантасты.

Как вы считаете, сколько способен продержаться без подзарядки современный смартфон? Среднее время автономной работы подобного устройства составляет 1-3 суток. А если его оснастить аккумулятором, работающим на основе реакции трития, то это время можно будет растянуть до 20 лет!

Неужели телефоны могут работать на атомных аккумуляторах?

Подобная идея среди ученых появилась относительно недавно. По их предположению, использование атомной энергетики в работе современных гаджетов может решить множество проблем, связанных с постоянной необходимостью подзарядки.

Тритий является радиоактивным веществом, но его излучение слишком слабое. Оно неспособно навредить здоровью человека. От него не пострадает ни кожа, ни внутренние органы – это известно ученым с незапамятных времен. Именно радиоактивный тритий выступает своего рода топливом, которое будет содержаться в этих батареях.

Батарея представляет собой интегральную микросхему, источником энергии которой является ядерная реакция трития. Такой принцип работы позволяет производить 0.8 – 2.4 ватт энергии. И этот уровень вырабатываемой электроэнергии может поддерживаться на протяжении 20 лет, при этом радиоактивную батарею не придется подзаряжать.

Многие не подозревают, что тритий уже давно используется во многих сферах производства. Каждый из нас видел, либо носил часы, стрелки которых отчетливо светятся в темноте. В большинстве случаев для создания такого эффекта используется именно этот радиоактивный элемент. Он не получил распространения в основной сфере атомной энергетики из-за своего минимального радиоактивного излучения.

Среди особенностей аккумулятора, которому посвящен сегодняшний обзор, следует также выделить его устойчивость к внешним факторам. Он отлично работает при резких перепадах высоты, давления и температуры, а также демонстрирует хорошую стойкость при сильных вибрациях. Что касается температуры, то ее диапазон составляет от -50 до +150 градусов по Цельсию.

Несмотря на то, что эта идея еще не внедрена в производство, известна приблизительная стоимость атомной батареи - 124 доллара. Но далеко не каждый человек, даже если ему нужна высокая производительность его телефона, согласится на ношение в своем кармане крохотного радиоактивного источника энергии.