Явление радиоактивности основной закон радиоактивного распада радионуклида. Закон радиоактивного распада

Явление радиоактивности было открыто в 1896 г. А. Беккерелем, который наблюдал спонтанное испускание солями урана неизвестного излучения. Вскоре Э. Резерфорд и супруги Кюри установили, что при радиоактивном распаде испускаются ядра Не (α-частицы), электроны (β-частицы) и жесткое электромагнитное излучение (γ-лучи).

В 1934 г. был открыт распад с вылетом позитронов (β + -распад), а в 1940 г. был открыт новый тип радиоактивности - спонтанное деление ядер: делящееся ядро разваливается на два осколка сравнимой массы с одновременным испусканием нейтронов и γ -квантов. Протонная радиоактивность ядер наблюдалась в 1982 г. Таким образом, существуют следующие виды радиоактивного распада: α-распад; -распад; - распад; е - захват.

Радиоактивность - способность некоторых атомных ядер самопроизвольно (спонтанно) превращаться в другие ядра с испусканием частиц.

Атомные ядра состоят из протонов и нейтронов , которые имеют обобщающее название - нуклоны. Количество протонов в ядре определяет химические свойства атома и обозначается Z (порядковый номер элемента). Количество нуклонов в ядре называют массовым числом и обозначают А . Ядра с одинаковым порядковым номером и различными массовыми числами называются изотопами . Все изотопы одного химического элемента имеют одинаковыехимические свойства, а физические свойства могут различаться весьма сильно. Для обозначения изотопов используют символ химического элемента с двумя индексами: A Z Х . Нижний индекс - порядковый номер, верхний - массовое число. Часто нижний индекс опускают, так как на него указывает сам символ элемента.

Например, пишут 14 С вместо 14 6 С.

Способность ядра к распаду зависит от его состава. У одного и того же элемента могут быть и стабильный, и радиоактивный изотопы.

Например, изотоп углерода 12 С стабилен, а изотоп 14 С радиоактивен.

Радиоактивный распад - явление статистическое. Способность изотопа к распаду характеризует постоянная распадаλ.

Постоянная распада λ- вероятность того, что ядро данного изотопа распадется за единицу времени.



Обозначим число N ядер радиоактивного распада в момент времени t, dN 1 - число ядер распавшихся за время dt. Поскольку количество ядер в веществе огромно, то выполняется закон больших чисел. Вероятность распада ядра за малое время dt находится по формуле dP = λdt .Частота равна вероятности: d N 1 / N = dP = λdt. d N 1 / N = λdt - формула определяющая количество распавшихся ядер.

Решением уравнения является: , - формула называется законом радиоактивного распада: Число радиоактивных ядер убывает со временем по экспоненциальному закону.

Здесь N- число нераспавшихся ядер к моменту времени t; N о - первоначальное число нераспавшихся ядер; λ - постоянная радиоактивного распада.

На практике используют не постоянную распада λ , а величину, называемую периодом полураспада Т .

Период полураспада (Т) - время, в течение которого распадается половинарадиоактивных ядер.

Закон радиоактивного распада черезпериодполураспада (Т) имеет вид:

Связь между периодом полураспада и постоянной распада определяется формулой: T = ln(2/λ) = 0,69/λ

Периодом полураспада может быть как очень большим, так и очень маленьким.

Для оценки степени активности радиоактивного изотопа используют величину, называемую активностью.

Активность число ядер радиоактивного препарата распадающихся за единицу времени: А = dN расп /dt

За единицу активности в СИ принимают 1 беккерель (Бк) = 1 распад/с - активность препарата, в котором за 1 с происходит 1 распад. Более крупная единица активности - 1 резерфорд (Рд) = Бк. Часто используется внесистемная единица активности - кюри (Ки), равная активности 1 г радия : 1 Ки = 3,7 Бк.

Со временем активность убывает по тому же экспоненциальному закону, по которому распадается сам радионуклид:

= .
На практике для расчетаактивности применяют формулу:

А = = λN = 0,693 N/T.

Если выразим число атомов через массу и малярную массу, тогда формула для расчетаактивности примет вид: А = = 0,693 (μТ)

где - число Авогадро; μ - молярная масса.

Изменение числа радиоактивных ядер во времени. Резерфорд и Содди в 1911 г., обобщая экспериментальные результаты, показали, что атомы некоторых элементов испытывают последовательные превращения, образуя радиоактивные семейства, где каждый член возникает из предыдущего и, в свою очередь, образует последующий.

Это удобно проиллюстрировать на примере образования радона из радия. Если поместить в запаянную ампулу то анализ газа через несколько дней покажет, что в нем появляется гелий и радон. Гелий устойчив, и поэтому он накапливается, радон же сам распадается. Кривая 1 на рис. 29 характеризует закон распада радона в отсутствие радия. При этом на оси ординат отложено отношение числа нераспавшихся ядер радона к их начальному числу Видно, что убывание содержания идет по экспоненциальному закону. Кривая 2 показывает, как изменяется число радиоактивных ядер радона в присутствии радия.

Опыты, проведенные с радиоактивными веществами, показали, что никакие внешние условия (нагревание до высоких температур,

магнитные и электрические поля, большие давления) не могут повлиять на характер и скорость распада.

Радиоактивность является свойством атомного ядра и для данного типа ядер, находящихся в определенном энергетическом состоянии, вероятность радиоактивного распада за единицу времени постоянна.

Рис. 29. Зависимость числа активных ядер радона от времени

Так как процесс распада самопроизвольный (спонтанный), то изменение числа ядер из-за распада за промежуток времени определяется только количеством радиоактивных ядер в момент и пропорционально промежутку времени

где постоянная, характеризующая скорость распада. Интегрируя (37) и считая, что получаем

т. е. число ядер убывает по экспоненциальному закону.

Этот закон относится к статистическим средним величинам и справедлив лишь при достаточно большом числе частиц. Величина X называется постоянной радиоактивного распада, имеет размерность и характеризует вероятность распада одного атома в одну секунду.

Для характеристики радиоактивных элементов вводится также понятие периода полураспада Под ним понимается время, в течение которого распадается половина наличного числа атомов. Подставляя условие в уравнение (38), получим

откуда, логарифмируя, найдем, что

и период полураспада

При экспоненциальном законе радиоактивного распада в любой момент времени имеется отличная от нуля вероятность найти еще не распавшиеся ядра. Время жизни этих ядер превышает

Наоборот, другие ядра, распавшиеся к этому времени, прожили разное время, меньшее Среднее время жизни для данного радиоактивного изотопа определяется как

Обозначив получим

Следовательно, среднее время жизни радиоактивного ядра равно обратной величине от постоянной распада Я. За время первоначальное число ядер уменьшается в раз.

Для обработки экспериментальных результатов удобно представить уравнение (38) в другой форме:

Величина называется активностью данного радиоактивного препарата, она определяет число распадов в секунду. Активность является характеристикой всего распадающегося вещества, а не отдельного ядра. Практической единицей активности является кюри. 1 кюри равно ислу распавшихся ядер содержащихся в радия за 1 сек распадов/сек). Используются и более мелкие единицы - милликюри и микрокюри . В практике физического эксперимента используется иногда другая единица активности - Резерфорд распадов/сек.

Статистический характер радиоактивного распада. Радиоактивный распад - явление принципиально статистическое. Мы не можем сказать, когда именно распадется данное ядро, а можем лишь указать, с какой вероятностью оно распадается за тот или иной промежуток времени.

Радиоактивные ядра не «стареют» в процессе своего существования. К ним вообще неприменимо понятие возраста, а можно лишь говорить о среднем времени их жизни.

Из статистического характера закона радиоактивного распада следует, что он выполняется строго, когда велико, а при небольших должны наблюдаться флуктуации. Число распадающихся ядер в единицу времени должно флуктуировать вокруг среднего значения, харак теризуемого приведенным выше законом. Это подтверждается экспериментальными измерениями числа -частиц, испускаемых радиоактивным веществом в единицу времени.

Рис. 30. Зависимость логарифма активности от времени

Флуктуации подчиняются закону Пуассона. Производя измерения с радиоактивными препаратами, надо всегда это учитывать и определять статистическую точность опытных результатов.

Определение постоянной распада X. При определении постоянной распада X радиоактивного элемента опыт сводится к регистрации числа частиц, вылетающих из препарата за единицу времени, т. е. определяется его активность Затем строится график изменения активности со временем, обычно в полулогарифмическом масштабе. Вид получаемых зависимостей при исследованиях чистого изотопа, смеси изотопов или радиоактивного семейства оказывается различным.

Рассмотрим в качестве примера несколько случаев.

1. Исследуется один радиоактивный элемент, при распаде которого образуются стабильные ядра. Логарифмируя выражение (41), получим

Следовательно, в этом случае логарифм активности является линейной функцией времени. График этой зависимости имеет вид прямой, тангенс угла наклона которой (рис. 30)

2. Исследуется радиоактивное семейство, в котором происходит целая цепь радиоактивных превращений. Ядра, получающиеся после распада, в свою очередь сами оказываются радиоактивными:

Примером такой цепочки может служить распад:

Найдем закон, описывающий в этом случае изменение числа радиоактивных атомов во времени. Для простоты выделим всего два элемента: считая А исходным, а В промежуточным.

Тогда изменение числа ядер А и ядер В определится из системы уравнений

Количество ядер А убывает за счет их распада, а количество ядер В убывает из-за распада ядер В и возрастает за счет распада ядер А.

Если при имеется ядер А, а ядер В нет, то начальные условия запишутся в виде

Решение уравнений (43) имеет вид

и полная активность источника, состоящего из ядер А и В:

Рассмотрим теперь зависимость логарифма радиоактивности от времени при разных соотношениях между и

1. Первый элемент короткоживущий, второй - долгоживущий, т. е. . В этом случае кривая, показывающая изменение суммарной активности источника, имеет вид, представленный на рис. 31, а. В начале ход кривой определяется в основном быстрым уменьшением числа активных ядер ядра В тоже распадаются, но медленно, и поэтому их распад не очень сильно влияет на наклон кривой на участке . В дальнейшем ядер типа А остается в смеси изотопов мало, и наклон кривой определяется постоянной распада Если нужно найти и то по наклону кривой при большом значении времени находят (в выражении (45) первый экспоненциальный член в этом случае может быть отброшен). Для определения величины надо учесть также влияние распада долгоживущего элемента на наклон первой части кривой. Для этого экстраполируют прямую в область малых времен, в нескольких точках вычитают из суммарной активности активность, определяемую элементом В, по полученным значениям

строят прямую для элемента А и по углу находят (при этом надо переходить от логарифмов к антилогарифмам и обратно).

Рис. 31. Зависимость логарифма активности смеси двух радиоактивных веществ от времени: а - при при

2. Первый элемент долгоживущий, а второй короткоживущий: Зависимость в этом случае имеет вид, представленный на рис. 31,б. В начале активность препарата увеличивается за счет накопления ядер В. Затем наступает радиоактивное равновесие, при котором отношение числа ядер А к числу ядер В становится постоянным. Этот тип равновесия называется переходным. Спустя некоторое время, оба вещества начинают убывать со скоростью распада материнского элемента.

3. Период полураспада первого изотопа много больше второго (следует заметить, что период полураспада некоторых изотопов измеряется миллионами лет). В этом случае через время устанавливается так называемое вековое равновесие, при котором количество ядер каждого изотопа пропорционально периоду полураспада этого изотопа. Соотношение

Радиоактивный распад ядер одного и того же элемента происходит постепенно и с разной скоростью для разных радиоактивных элементов. Нельзя указать заранее момент распада ядра, но можно установить вероятность распада одного ядра за единицу времени. Вероятность распада характеризуется коэффициентом "λ" - постоянной распада, который зависит только от природы элемента.

Закон радиоактивного распада. (Слайд 32)

Экспериментально установлено, что:

За равные промежутки времени распадается одинаковая доля наличных (т.е. еще не распавшихся к началу данного промежутка) ядер данного элемента.

Дифференциальная форма закона радиоактивного распада. (слайд 33)

Устанавливает зависимость количества не распавшихся атомов в данный момент времени от начального количества атомов в нулевой момент начала отсчета, а так же от времени распада"t" и постоянной распада "λ".

N t - наличное количество ядер.

dN - убыль наличного количества атомов;

dt - время распада.

dN ~ N t · dt Þ dN = –λ N t dt

"λ" - коэффициент пропорциональности, постоянная распада, характеризует долю наличных, еще не распавшихся ядер;

"–" - говорит том, что с течением времени количество распадающихся атомов уменьшается.

Следствие № 1: (слайд 34)

λ = –dN/N t · dt - относительная скорость радиоактивного распада для данного вещества есть величина постоянная.

Следствие № 2:

dN/N t = – λ · Nt - абсолютная скорость радиоактивного распада пропорциональна количеству не распавшихся ядер к моменту времени dt. Она не является "const", т.к. уменьшатся с течением времени.

4. Интегральная форма закона радиоактивного распада. (слайд 35)

Устанавливает зависимость числа оставшихся атомов в данный момент времени (N t) от их исходного количества (N o), времени (t) и постоянной распада "λ". Интегральная форма получается из дифференциальной:

1. Разделим переменные:

2. Проинтегрируем обе части равенства:

3. Найдем интегралы Þ -общее решение

4. Найдем частное решение:

Если t = t 0 = 0 Þ N t = N 0 , подставим эти условия в общее решение

(начало (исходное число

распада) атомов)

Þ Таким образом:

интегральная форма закона р/акт. распада

N t - число не распавшихся атомов к моменту времени t ;

N 0 - исходное число атомов при t = 0 ;

λ - постоянная распада;

t - время распада

Вывод: Наличное количество не распавшихся атомов ~ исходному количеству и убывает с течением времени по экспоненциальному закону. (слайд 37)

Nt= N 0 ·2 λ 1 λ 2 >λ 1 Nt = N 0 ·e λ · t

5. Период полураспада и его связь с постоянной распада. (слайд 38,39)

Период полураспада (Т) - это время, в течение которого распадается половина исходного числа радиоактивных ядер.

Он характеризует скорость распада различных элементов.

Основные условия определения "Т":

1. t = Т - период полураспада.

2. - половина от исходного числа ядер за "Т".

Формулу связи можно получить, если эти условия подставить в интегральную форму закона радиоактивного распада

1.

2. Сократим «N 0 ». Þ

3.

4. Потенцируем.

Þ

5.

Период полураспада изотопов различается в широких пределах: (слайд40)

238 U ® T = 4,51· 10 9 лет

60 Co ® T = 5,3 года

24 Na ® T = 15,06 часов

8 Li ® T = 0,84 c

6. Активность. Её виды, единицы измерения и количественная оценка. Формула активности. (слайд 41)

На практике основное значение имеет общее число распадов, приходящихся в источнике радиоактивного излучения в единицу времени => количественно меру распада определяют активностью радиоактивного вещества.

Активность (А) зависит от относительной скорости распада "λ" и от наличного числа ядер (т.е. от массы изотопа).

"А" - характеризует абсолютную скорость распада изотопа.

3 варианта записи формулы активности: (слайд 42,43)

I. Из закона радиоактивного распада в дифференциальной форме следует:

Þ

активность (абсолютная скорость радиоактивного распада).

активность

II. Из закона радиоактивного распада в интегральной форме следует:

1. (домножим обе части равенства на «λ»).

2. ; ( исходная активность при t = 0)

3. убыль активности идет по экспоненциальному закону

III. При использовании формулы связи постоянной распада "λ" с периодом полураспада "Т" следует:

1. (домножим обе части равенства на «N t », что бы получить активность). Þ и получаем формулу для активности

2.

Единицы измерения активности: (слайд 44)

А. Системные единицы измерения.

A = dN/dt

1[расп/с] = 1[Бк] – беккерель

1Мрасп/с =10 6 расп/с = 1 [Рд] - резерфорд

Б. Внесистемные единицы измерения.

[Ки] - кюри (соответствует активности 1г радия).

1[Ки] = 3,7 · 10 10 [расп/с] - в 1г радия за 1с распадается 3,7· 10 10 радиоактивных ядер.

Виды активности: (слайд 45)

1. Удельная - это активность единицы массы вещества.

А уд. = dA/dm [Бк/кг].

Её используют для характеристики порошкообразных и газообразных веществ.

2. Объёмная - это активность в единице объёма вещества или среды.

А об = dA/dV [Бк/м 3 ]

Её используют для характеристики жидких веществ.

На практике убыль активности измеряется с помощью специальных радиометрических приборов. Например, зная активность препарата и продукта, образующегося при распаде 1 ядра, можно вычислить, сколько частиц каждого вида испускает препарат за 1 секунду.

Если при делении ядра образуется нейтронов"n", то за 1с испускается поток нейтронов "N". N = n · А.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-08

Необходимое условие радиоактивного распада заключается в том, что масса исходного ядра должна превышать сумму масс продуктов распада. Поэтому каждый радиоактивный распад происходит с выделением энергии .

Радиоактивность подразделяют на естественную и искусственную. Первая относится к радиоактивным ядрам, существующим в природных условиях, вторая - к ядрам, полученным посредством ядерных реакций в лабораторных условиях. Принципиально они не отличаются друг от друга.

К основным типам радиоактивности относятся α-, β- и γ-распады. Прежде чем характеризовать их более подробно, рассмотрим общий для всех видов радиоактивности закон протекания этих процессов во времени.

Одинаковые ядра претерпевают распад за различные времена, предсказать которые заранее нельзя. Поэтому можно считать, что число ядер, распадающихся за малый промежуток времени dt , пропорционально как числу N имеющихся ядер в этот момент, так и dt :

Интегрирование уравнения (3.4) дает:

Соотношение (3.5) называют основным законом радиоактивного распада. Как видно, число N еще не распавшихся ядер убывает со временем экспоненциально.

Интенсивность радиоактивного распада характеризуют числом ядер, распадающихся в единицу времени. Из (3.4) видно, что эта величина | dN / dt | = λN . Ее называют активностью A . Таким образом активность:

.

Ее измеряют в беккерелях (Бк) , 1 Бк = 1 распад / с; а также в кюри (Ки) , 1 Ки = 3.7∙10 10 Бк.

Активность в расчете на единицу массы радиоактивного препарата называют удельной активностью.

Вернемся к формуле (3.5). Наряду с постоянной λ и активностью A процесс радиоактивного распада характеризуют еще двумя величинами: периодом полураспада T 1/2 и средним временем жизни τ ядра.

Период полураспада T 1/2 - время, за которое исходное число радиоактивных ядер в среднем уменьшится в двое:

,
откуда
.

Среднее время жизни τ определим следующим образом. Число ядер δN (t ), испытавших распад за промежуток времени (t , t + dt ), определяется правой частью выражения (3.4): δN (t ) = λNdt . Время жизни каждого из этих ядер равно t . Значит сумма времен жизни всех N 0 имевшихся первоначально ядер определяется интегрированием выражения tδN (t ) по времени от 0 до ∞. Разделив сумму времен жизни всех N 0 ядер на N 0 , мы и найдем среднее время жизни τ рассматриваемого ядра:

Заметим, что τ равно, как следует из (3.5) промежутку времени, за которое первоначальное количество ядер уменьшается в e раз.

Сравнивая (3.8) и (3.9.2), видим, что период полураспада T 1/2 и среднее время жизни τ имеют один и тот же порядок и связаны между собой соотношением:

.

Сложный радиоактивный распад

Сложный радиоактивный распад может протекать в двух случаях:

Физический смысл этих уравнений состоит в том, что количество ядер 1 убывает за счет их распада, а количество ядер 2 пополняется за счет распада ядер 1 и убывает за счет своего распада. Например, в начальный момент времени t = 0 имеется N 01 ядер 1 и N 02 ядер 2. С такими начальными условиями решение системы имеет вид:

Если при этом N 02 = 0, то

.

Для оценки значения N 2 (t ) можно использовать графический метод (см. рисунок 3.2) построения кривых e −λt и (1 − e −λt ). При этом ввиду особых свойств функции e −λt очень удобно ординаты кривой строить для значений t , соответствующих T , 2T , … и т.д. (см. таблицу 3.1). Соотношение (3.13.3) и рисунок 3.2 показывают, что количество радиоактивного дочернего вещества возрастает с течением времени и при t >> T 2 (λ 2 t >> 1) приближается к своему предельному значению:

и носит название векового , или секулярного равновесия . Физический смысл векового уравнения очевиден.

t e −λt 1 − e −λt
0 1 0
1T 1/2 = 0.5 0.5
2T (1/2) 2 = 0.25 0.75
3T (1/2) 3 = 0.125 0.875
... ... ...
10T (1/2) 10 ≈ 0.001 ~0.999


Рисунок 3.3. Сложный радиоактивный распад.
Так как, согласно уравнению (3.4), λN равно числу распадов в единицу времени, то соотношение λ 1 N 1 = λ 2 N 2 означает, что число распадов дочернего вещества λ 2 N 2 равно числу распадов материнского вещества, т.е. числу образующихся при этом ядер дочернего вещества λ 1 N 1 . Вековое уравнение широко используется для определения периодов полураспада долгоживущих радиоактивных веществ. Этим уравнением можно пользоваться при сравнении двух взаимно превращающихся веществ, из которых второе имеет много меньший период полураспада, чем первое (T 2 << T 1 ) при условии, что это сравнение производится в момент времени t >> T 2 (T 2 << t << T 1 ). Примером последовательного распада двух радиоактивных веществ является превращение радия Ra в радон Rn. Известно, что 88 Ra 226 , испуская с периодом полураспада T 1 >> 1600 лет α-частицы, превращается в радиоактивный газ радон (88 Rn 222), который сам является радиоактивным и испускает α-частицы с периодом полураспада T 2 ≈ 3.8 дня . В этом примере как раз T 1 >> T 2 , так что для моментов времени t << T 1 решение уравнений (3.12) может быть записано в форме (3.13.3).

Для дальнейшего упрощения надо, чтобы начальное количество ядер Rn было равно нулю (N 02 = 0 при t = 0). Это достигается специальной постановкой опыта, в котором изучается процесс превращения Ra в Rn. В этом опыте препарат Ra помещается в стеклянную колбочку с трубкой, соединенной с насосом. Во время работы насоса выделяющийся газообразный Rn сразу же откачивается, и концентрация его в колбочке равна нулю. Если в некоторый момент при работающем насосе изолировать колбочку от насоса, то с этого момента, который можно принять за t = 0, количество ядер Rn в колбочке начнет возрастать по закону (3.13.3):N Ra и N Rn - точным взвешиванием, а λ Rn - по определению периода полураспада Rn, который имеет удобное для измерений значение 3.8 дня . Таким образом, четвертая величина λ Ra может быть вычислена. Это вычисление дает для периода полураспада радия T Ra ≈ 1600 лет , что совпадает с результатами определения T Ra методом абсолютного счета испускаемых α-частиц.

Радиоактивность Ra и Rn была выбрана в качестве эталона при сравнении активностей различных радиоактивных веществ. За единицу радиоактивности - 1 Ки - приняли активность 1 г радия или находящегося с ним в равновесии количества радона. Последнее легко может быть найдено из следующих рассуждений.

Известно, что 1 г радия претерпевает в секунду ~3.7∙10 10 распадов . Следовательно.

ЛАБОРАТОРНАЯ РАБОТА № 19

ИЗУЧЕНИЕ ЗАКОНА РАДИОАКТИВНОГО РАСПАДА

И СПОСОБОВ ЗАЩИТЫ ОТ РАДИОАКТИВНОГО ИЗЛУЧЕНИЯ

Цель работы : 1)изучение закона радиоактивного распада; 2)исследование закона поглощения g- и b- лучей веществом.

Задачи работы : 1) определение линейных коэффициентов поглощения радиоактивного излучения различных материалов; 2) определение толщины слоя половинного ослабления этих материалов; 3) определение периода полураспада и постоянной распада химического элемента.

Обеспечивающие средства : компьютер с Windows.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Введение

Состав атомного ядра

Ядро любого атома состоит из частиц двух типов – протонов и нейтронов. Протон представляет собой ядро простейшего атома – водорода . Он имеет положительный заряд, по величине равный за­ряду электрона, и массу 1,67×10-27 кг. Нейтрон, существование кото­рого было установлено только в 1932 году англичанином Джеймсом Чедвиком, электрически нейтрален, а масса почти совпадает с мас­сой протона . Нейтроны и протоны, представляющие собой два со­ставных элемента атомного ядра, объединяют общим наименова­нием нуклонов. Число протонов в ядре (или в нуклиде) называется атомным номером и обозначается буквой Z. Общее число нуклонов, т.е. нейтронов и протонов, обозначается буквой А и называется мас­совым числом. Обычно химические элементы принято обозначать символом или , где Х – символ химического элемента.

Радиоактивность

Явление радиоактивности состоит в спонтанном (самопроиз­вольном) превращении ядер одних химических элементов в ядра других элементов с испусканием радиоактивных излучений .

Ядра, подверженные такому распаду, называются радиоактивными. Ядра, не испытывающие радиоактивного распада, называются ста­бильными. В процессе распада у ядра может изменяться как атом­ный номер Z, так и массовое число А.

Радиоактивные превращения протекают самопроизвольно. На скорость их течения не оказывают никакого воздействия изменения температуры и давления, наличие электрического и магнитного по­лей, вид химического соединения данного радиоактивного элемента и его агрегатное состояние.

Радиоактивный распад характеризуется временем его проте­кания, сортом и энергиями испускаемых частиц, а при вылете из ядра нескольких частиц еще и относительными углами между на­правлениями вылета частиц. Исторически радиоактивность является первым ядерным процессом, обнаруженным человеком (А. Бекке­рель, 1896).

Различают радиоактивность естественную и искусственную.

Естественная радиоактивность встречается у неустойчивых ядер, существующих в природных условиях. Искусственной называют радиоактивность ядер, образованных в результате различных ядерных реакций. Принципиального различия между искусственной и естественной радиоактивностями нет. Им присущи общие закономерности.

В атомных ядрах возможны и действительно наблюдаются че­тыре основных типа радиоактивности: a-распад, b-распад, g-распад и спонтанное деление.

Явление a-распада состоит в том, что тяжелые ядра самопро­извольно испускают a-частицы (ядра гелия 2 Н 4). При этом массовое число ядра уменьшается на четыре единицы, а атомный номер – на две:

Z Х А ® Z -2 Y А-4 + 2 Н 4 .

a-частица состоит из четырех нуклонов: двух нейтронов и двух протонов.

В процессе радиоактивного распада ядро может испускать не только частицы, входящие в его состав, но и новые частицы, рож­дающиеся в процессе распада. Процессами такого рода являются b- и g- распады.

Понятие b-распада объединяет три вида ядерных пре­вращений: электронный (b -) распад, позитронный (b +) распад и элек­тронный захват.

Явление b - -распада состоит в том, что ядро самопроизвольно испускают электрон е - и легчайшую электрически нейтральную час­тицу антинейтрино , переходя при этом в ядро с тем же массовым числом А, но с атомным номером Z, но единицу большим:

Z Х А ® Z +1 Y А + е - + .

Необходимо подчеркнуть, что испускаемый при b - -распаде электрон не имеет отношения к орбитальным электронам. Он рождается внутри самого ядра: один из нейтронов превращается в протон и при этом испускает электрон.

Другим типом b-распада является процесс, в котором ядро ис­пускает позитрон е + и другую легчайшую электрически нейтраль­ную частицу – нейтрино n. При этом один из протонов превращается в нейтрон:

Z Х А ® Z -1 Y А + е + +n.

Этот распад называют позитронным или b + -распадом.

В круг b-распадных явлений входит также электронный захват (часто называемый также К-захватом), при котором ядро поглощает один из электронов атомной оболочки (обычно из К-оболочки), ис­пуская нейтрино. При этом, как и в позитронном распаде, один из протонов превращается в нейтрон:

е - + Z Х А ® Z -1 Y А +n.

К g- излучению относят электромагнитные волны, длина которых значительно меньше межатомных расстояний:

где d - имеет порядок 10 -8 см. В корпускулярной картине это излучение представляет собой поток частиц, называемых g- квантами. Нижний предел энергии g- квантов

Е = 2p с/l

имеет порядок десятков кэВ. Естественного верхнего предела нет. В современных ускорителях получаются кванты с энергией вплоть до 20 ГэВ.

Распад ядра с испусканием g - излучения во многом напоми­нает испускание фотонов возбужденными атомами. Подобно атому, ядро может находиться в возбужденном состоянии. При переходе в состояние с более низкой энергией, или основное состояние, ядро испускает фотон. Так как g-излучение не несет заряда, при g - распаде не происходит превращения одного химического элемента в другой.

Основной закон радиоактивного распада

Радиоактивный распад – это статистическое явление: невозможно предсказать, когда распадается данное нестабильное ядро, можно лишь сделать некоторые вероятностные суждения об этом событии. Для большой совокупности радиоактивных ядер можно получить статистический закон, выражающий зависимость не распавшихся ядер от времени.

Пусть за достаточно малый интервал времени распадается ядер. Это число пропорционально интервалу времени, а так же общему числу радиоактивных ядер:

где – постоянная распада, пропорциональная вероятности распада радиоактивного ядра и различная для разных радиоактивных веществ. Знак «-» поставлен в связи с тем, что < 0, так как число не распавшихся радиоактивных ядер убывает со временем.

Разделим переменные и проинтегрируем (1) с учётом того, что нижние пределы интегрирования соответствует начальным условиям (при , где – начальное число радиоактивных ядер), а верхние – текущим значениям и :

(2)

Потенцируя выражение (3), имеем

Это и есть основной закон радиоактивного распада : число не распавшихся радиоактивных ядер убывает со временем по экспоненциальному закону.

На рис.1 изображены кривые распада 1 и 2, соответствующие веществам с разными постоянными распада (λ 1 > λ 2), но с одинаковым начальным числом радиоактивных ядер. Линия 1 соответствует более активному элементу.

На практике вместо постоянной распада чаще используют другую характеристику радиоактивного изотопа – период полураспада . Это время, в течение которого распадается половина радиоактивных ядер. Естественно, что это определение справедливо для достаточно большого числа ядер. На рис.1 показано, как с помощью кривых 1 и 2 можно найти периоды полураспада ядер: проводится прямая, параллельная оси абсцисс через точку с ординатой , до пересечения с кривыми. Абсциссы точек пересечения прямой и линий 1 и 2 дают периоды полураспада Т 1 и Т 2.

(8)

Таким образом, активность препарата тем больше, чем больше радиоактивных ядер и чем меньше их период полураспада. Активность препарата со временем убывает по экспоненциальному закону.

Единица активности – беккерель (Бк), что соответствует активности нуклида в радиоактивном источнике, в котором за 1 с происходит один акт распада.

Наиболее употребительной единицей активности является кюри (Ки): 1 Ки = 3,7×10 10 с -1 , кроме нее существует еще одна внесистемная единица активности – резерфорд (Рд): 1 Рд = 10 6 Бк = 10 6 с -1

Для характеристики активности единицы массы радиоактивного источника вводят величину, называемую удельной массовой активностью и равную отношению активности изотопа к его массе. Удельная массовая активность выражается в беккерелях на килограмм ().


Похожая информация.