Почему при делении ядер происходит выделение энергии. Энергия деления

Вся эта путаница теперь вполне понятна. Оказа­лось, что под действием нейтронов в уране может про­исходить ядерное превращение нового типа. Это пре­вращение, обнаруженное в 1938 г. Ганом и Штрасма - ном и ставшее известным в начале 1939 г., состоит в том, что, захватив нейтрон, ядро урана может раз - делиться на две половинки.

Во всех других ядерных реакциях из ядра выле­тает, самое большее, альфа-частица. Здесь же из урана получаются два ядра среднего атомного веса, напри­мер, криптон и барий:

(уран) 2|| + нейтрон ->. (уран) Щ (криптон) ^ -[- (барий)’|?.

Энергия связи осколков, т. е. ядер криптона и бария, значительно больше, чем урана. Поэтому при делении урана выделяется огромная энергия в 170 миллионов вольт, т. е. в 10 раз больше, чем при разрушении лигия протонами. Энергия, выделяющаяся при делении, пере­ходит в кинетическую энергию осколков урана, т. е. эти осколки приобретают громадную скорость.

Деление урана, между прочим, аналогично расщеп­лению ЛИТИЯ:

(литий) -{- протон } (бериллий) ® -».(гелий) 2+ (гелий) *.

В обоих случаях ядро делится на две половинки, и при­чины выделения энергии также одинаковы. Однако, ядра, более тяжёлые, чем литий, всегда выбрасывают, самое большее, альфа-частицу; при разрушений лития также получаются лишь альфа-частицы. Стало быть, деление урана является совсем особым явлением.

Посмотрим, как это деление урана происходит. Ядро урана, состоящее более чем из двухсот частиц, подобно маленькой круглой заряжённой капельке и имеет шарообразную форму (рис. 16,а). Если же мы начнём изменять форму ядра, то будет происходить со­вершенно то же, что и с капелькой. При небольшом

48 растяжении ядра оно стремится вернуться к своей пер­воначальной шарообразной форме, так как в этом случае поверхность ядра самая маленькая; увеличе­ние же поверхности не выгодно, оно требует затраты энергии.

Но если мы сильно изменим - форму ядра, - так, как это показано на рис. 16,в, - то ядру будет уже вы­

Годнее развалиться на две половинки, потому что обе части ядра отталкиваются друг от друга электрически­ми силами, и это отталкиваниё становится существен-

Нее, чем проигрыш энергии, связанный с увеличением поверхности.

Таким образом, для того чтобы произошло деление ядра урана, нужно вызвать в ядре сильные движения, которые привели бы к нужному изменению его формы.

4 В. Л. Гинзбург 49

Попадающий в ядро урана нейтрон как раз и может возбудить сильные движения и тем самым привести к делению этого ядра. При делении получаются различ­ные осколки, напримгр, криптон и барий, или рубидий и цезий (от случая к случаю может получиться либо одна пара ядер, либо другая).

Осколки можно наблюдать в камере Вильсона (рис. 17).

Для всех осколков, получающихся при делении ура­на, характерна, однако, одна особенность - они ока­зываются очень перегружёнными нейтронами. Дело в

Том, что в более тяжёлых элементах отношение чис­ла нейтронов к числу протонов больше, чем в лёгких элементах.

Например, в уране2!! имеется 146 нейтронов и 92 протона, а в кислороде’в число нейтронов и прото­нов одинаково.

Существующие в природе изотопы криптона и бария имеют соответственно самое большее 50 и 82 нейтрона, или в сумме 132 нейтрона. Между тем, в ядре урана с весом 239, распадающемся на криптон и барий, имеет­ся 147 нейтронов; поэтому ядра криптона и бария, об­разовавшиеся при делении урана, вместе будут иметь 50

15 лишних нейтронов. Это обстоятельство приводит к тому, что в осколках, получившихся от деления урана, лишние нейтроны превращаются в протоны, т. е. эти осколки оказываются радиоактивными и испускают бе­та-частицы. Криптон, например, распадается таким образом:

(криптон) 3(Г> (рубидий) 37-- (электрон) (стронций) 38-)- (электрон).

Таким образом, при делении урана появляется очень «много элементов, большинство из которых радиоак­тивно.

Но перегрузка осколков нейтронами так велика, что одной радиоактивностью дело не ограничивается, и несколько нейтронов просто вылетает в свободном виде.

Следовательно, при делении урана, вызываемом нейтронами, освобождаются новые нейтроны, количест­во которых равно двум или трём на одно разваливаю­щееся ядро (рис. 18).

Этот факт и играет решающую роль в использова­нии ядерной энергии.

Деление урана оказывается ядерным превращением как раз такого типа, при котором один нейтрон приво­дит к вылету нескольких новых нейтронов. Одновре­менно выделяется большая энергия. Если нейтроны, образовавшиеся при делении, могут с успехом вызы­вать новые деления ядер, то число нейтронов и разби­тых ядер будет всё время нарастать, и реакция не пре­кратится.

Более того, если не принять специальных мер, то эта реакция будет нарастать так бурно, что получится взрыв. Подобная реакция, нарастающая без всяких внешних источников, как мы уже говорили, называется цепной реакцией.

Оказалось, что в уране такая цепная реакция при определённых условиях может быть осуще­ствлена.

Именно таким образом и была впервые высвобож­дена ядерная энергия.

Делением атомных ядер называется процесс раскалывания ядра на две примерно равные части. Обычно такой процесс происходит, когда в тяжелое ядро попадает какая-нибудь частица – нейтрон, протон, альфа-частица и др. В таких случаях деление называется вынужденным. Но иногда деление происходит и самопроизвольно, такое деление называется спонтанным.

Механизм вынужденного деления. Когда в ядро попадает какая-то частица (например, нейтрон), то внутри ядра выделяется её энергия связи Е св . К ней добавляется значительная часть кинетической энергии частицы Е , в результате чего ядро приходит в возбужденное состояние, причем его полная энергия возбуждения оказывается равной Е * = Е св + Е·А/(А+1). Это возбуждение проявляется в форме ускоренного движения всех нуклонов ядра, ядро «кипит», по его поверхности бегут волны и т.п. Дальше происходит одно из двух. Либо избыточная энергия уйдет из ядра с испусканием одного или нескольких гамма-квантов (т.е. произойдет радиационный захват влетевшей частицы). Либо в результате колебаний ядерной «жидкости» в ядре образуется перетяжка, ядро примет форму гантели, и под влиянием кулоновского отталкивания зарядов двух половинок этой «гантели», перетяжка лопнет, и две части бывшего ядра разлетятся в противоположные стороны с большой энергией, полученной от тех же сил кулоновского отталкивания одноименных электрических зарядов. Образовавшиеся половинки первоначального ядра называются осколками деления . Под влиянием сил поверхностного натяжения они приобретут сферическую форму и станут ядрами новых атомов с массами, равными примерно половине массы ядра урана, т.е. атомами элементов, лежащих в середине таблицы Менделеева.

Потенциальный барьер деления. Для того чтобы ядро разделилось, ему необходимо вначале придать достаточно большую деформацию, которая возникает в результате сообщенной ядру энергии возбуждения – в противном случае ядро стянется в сферу и деление не произойдет. Минимальная энергия возбуждения, при котором деление становится возможным, называется потенциальным барьером деления и обозначается символом U f . Деление возможно, если энергия возбуждения ядра Е * > U f . Если же Е * < U f , то деление невозможно. У всех тяжелых ядер (тория, урана, плутония и др.) значения U f примерно одинаковы и равны 5,1 – 5,4 МэВ. При таких условиях все тяжелые ядра должны были бы проявлять одинаковые способности к делению. Однако это не так.

Известно, что по отношению к делению нейтронами ядра делятся на две различные группы:

    нечетные ядра, такие как 233 U , 235 U , 239 Pu , 241 Pu . Они легко делятся любыми, даже тепловыми нейтронами, поэтому их часто называют «топливными» ядрами;

    четно-четные ядра 232 Th , 234 U , 238 U , 240 Pu , 242 Pu тепловыми нейтронами не делятся, поэтому их часто называют «сырьевыми».

Происходит это потому, что при попадании нейтрона в нечетное ядро образуется четно-четное ядро (например, 235 U + n → 236 U ), энергия связи нейтрона в котором особенно велика, так что даже при нулевой кинетической энергии нейтрона энергия возбуждения оказывается больше высоты барьера деления, и ядро легко делится.

При попадании же нейтрона в четно-четное ядро (например, 238 U + n → 239 U ), образуется нечетное ядро, энергия связи нейтрона в котором значительно меньше, и её не хватает для преодоления барьера деления. Но если в последнем случае в ядро попадет не тепловой, а быстрый нейтрон с достаточно большой кинетической энергией, то может оказаться, что суммарная энергия возбуждения Е * > U f , и деление произойдет. Минимальная кинетическая энергия нейтрона, при которой становится возможным деление четно-четного ядра, называется пороговой энергией деления Е пор . Для ядра 238 U эта энергия Е пор ≈ 1 МэВ. Примерно такие же значения имеют пороговые энергии и для других четно-четных ядер. Так что все такие ядра тоже делятся, но только быстрыми нейтронами.

Спонтанное деление. Из-за большой перегрузки протонами, которые отталкиваются друг от друга электростатическими силами и тем самым пытаются разорвать ядро, тяжелые ядра оказываются крайне неустойчивыми и поэтому способны делиться сами, без всякого воздействия извне. Такое самопроизвольное деление и называется спонтанным делением . Происходит спонтанное деление подобно альфа-распаду путем туннельного эффекта прохождения осколков через барьер деления. Но из-за большого заряда осколков, их вероятность прохождения через потенциальный барьер при делении ядер урана оказывается значительно меньше, чем для альфа-частиц, а период полураспада по отношению к спонтанному делению, соответственно, гораздо больше. Так для альфа-распада ядер урана-238 период T α = 4,5·10 9 лет, тогда как для спонтанного деления T f = 10 16 лет, т.е. в 2,5 миллиона раз больше. По мере увеличения заряда ядра значения T f быстро уменьшаются. Так для ядер искусственных трансурановых элементов (см. ниже) с Z>100 величина T f измеряется минутами и даже секундами, причем для некоторых нуклидов спонтанное деление становится даже более предпочтительным видом распада. Это позволяет считать спонтанное деление четвертым видом радиоактивного распада в дополнение к альфа-, бета- и гамма-распадам.

Выделение энергии при делении ядер. График на рис.1.1. показывает, что удельная энергия связи нуклонов у ядер урана (≈ 7,5 МэВ/нуклон) существенно меньше, чем у ядер с вдвое меньшей массой (≈ 8,4 МэВ/нуклон), которые получаются при делении в виде осколков. Это означает, что осколки связаны гораздо сильнее, чем ядра урана, и при их образовании за счет перегруппировки нуклонов выделяется лишняя энергия связи в количестве примерно 0,9 МэВ на нуклон. А так как в процессе деления одного ядра участвуют 236 нуклонов, то общее выделение энергии при делении одного ядра составляет 236·0,9 ≈ 212 МэВ. Основная часть этой энергии достается осколкам в виде их кинетической энергии. Но при делении ядер кроме осколков выделяется еще несколько разных частиц, которые уносят остальную энергию. Примерное распределение энергии между различными частицами при делении ядер урана тепловыми нейтронами приведено в табл.1.3. Суммарное количество энергии (215 МэВ) хорошо согласуется со сделанной выше оценкой (212 МэВ). Из этого количества энергии 10 МэВ уносятся антинейтрино в космическое пространство и являются т.о. «безвозвратными потерями». Остальная энергия поглощается в различных материалах реактора и в конечном итоге превращается в тепловую энергию, которая используется либо непосредственно (в АСТ и АТЭЦ), либо для получения электрического тока (в АЭС и АТЭЦ).

Таблица 1.3. Распределение энергии при делении тяжелых ядер

Форма выделения

Энергия (МэВ)

Кинетическая энергия осколков деления

Кинетическая энергия вторичных нейтронов деления

Энергия мгновенного гамма-излучения при делении

Энергия, уносимая электронами при бета-распаде осколков

Энергия, уносимая антинейтрино при бета-распаде осколков

Энергия гамма-излучения, сопровождающего бета-распад осколков

Энергия, выделяющаяся при захвате нейтронов ядрами среды

Эффективные сечения деления. Ядра, делящиеся тепловыми нейтронами, способны также делиться промежуточными и быстрыми нейтронами, поэтому для них, так же как и при радиационном захвате (см. выше), необходимо рассмотреть особенности поведения сечений деления во всех трех областях.

В области тепловых нейтронов сечения деления изменяются с ростом энергии также по закону «1/v». Усредненные по этой области значения сечений деления σ f приведены в табл.1.4.

Таблица 1.4. Сечения деления некоторых ядер тепловыми нейтронами

Параметр

Единица измерения

Делящиеся нуклиды

α = σ n,γ /σ f

К сожалению, при попадании нейтрона в ядро урана или плутония может происходить не только деление, но и радиационный захват нейтрона без деления, например 235 U(n,γ) 236 U. Этот процесс для работы реактора вреден, и притом вдвойне:

    теряется нейтрон, который не сможет участвовать в цепной реакции деления;

    теряется ядро ядерного топлива 235 U, превращающееся в четно-четное ядро 236 U, которое, как отмечалось выше, тепловыми нейтронами не делится.

Но как видно по табл.5, сечения деления во всех случаях оказываются больше сечений радиационного захвата, поэтому полезный процесс деления происходит с большей вероятностью, чем нежелательный процесс радиационного захвата. Особенно наглядно это демонстрируют отношения сечений этих двух процессов (последняя строка в табл.1.4).

В области промежуточных нейтронов в зависимости сечений деления от энергии, так же как и при радиационном захвате, проявляются резонансные пики. В среднем в этой области значения параметра «альфа» оказываются даже несколько больше, чем в области тепловых нейтронов, поэтому реакторы на промежуточных нейтронах хотя и строятся, но большого распространения они не получили.

В области быстрых нейтронов зависимость сечений деления от энергии нейтронов становится гладкой, но в отличие от сечений радиационного захвата, сечения деления не только не убывают с ростом энергии нейтронов, а даже несколько увеличиваются. Это приводит к значительному улучшению отношения вероятностей радиационного захвата нейтронов и деления, особенно для плутония, для которого на быстрых нейтронах отношение α = 0,029 , т.е. в 12 с лишним раз лучше, чем для тепловых нейтронов. С этим обстоятельством связано одно из основных преимуществ ядерных реакторов, работающих на быстрых нейтронах, по сравнению с тепловыми реакторами.

Сечения деления четно-четных нуклидов до порога деления равны, естественно, нулю, а выше порога они хотя и отличаются от нуля, но никогда не приобретают больших значений. Так сечение деления 238 U при энергиях выше 1 МэВ оказывается порядка 0,5 барн.

Осколки деления. Несмотря на большую энергию (примерно по 82 МэВ у каждого осколка), пробеги осколков в воздухе оказываются не больше, а даже несколько меньше пробегов альфа-частиц (около 2 см). И это несмотря на то, что альфа-частицы имеют значительно меньшие энергии (4 – 9 МэВ). Происходит это потому, что электрический заряд осколка значительно больше заряда альфа-частицы, и поэтому он гораздо интенсивнее теряет энергию на ионизацию и возбуждение атомов среды.

Более точные измерения показали, что пробеги осколков, как правило, оказываются не одинаковыми, и группируются около значений 1,8 и 2,2 см.

Вообще при делении могут образовываться осколки с самыми различными массовыми числами в пределах от 70 до 160 (т.е. около 90 различных значений), но образуются осколки с такими массами с разными вероятностями. Эти вероятности принято выражать т.н. выходами осколков Y А с данным массовым числом А : Y А = N A / N f , где N A – число осколков с массовым числом А , возникших при N f , делений ядер. Обычно величину Y А выражают в процентах.

Кривая распределения выходов осколков деления по массовым числам имеет два максимума (или «горба»), при этом один максимум находится в области А=90, а второй в районе А=140. Отметим, что именно ядра примерно этих масс чаще всего встречаются в следах –выпадениях осадков после ядерных испытаний или ядерных аварий. Достаточно вспомнить следы таких нуклидов как 131 I, 133 I, 90 Sr, 137 Сs.

Отношение числа нейтронов к числу протонов в осколках в первый момент оказывается примерно таким же, каким оно было в ядре урана, т.е. 143:92 = 1,55. Но у стабильных ядер со средними значениями масс, к которым относятся осколки, это отношение значительно ближе к единице: например, у стабильного ядра 118 Sn это отношение равно 1,36. Это означает, что ядра осколков сильно перегружены нейтронами, и они будут стремиться избавиться от этой перегрузки путем бета-распадов, при которых нейтроны превращаются в протоны. При этом, для того, чтобы первичный осколок превратился в стабильный нуклид, может потребоваться несколько последовательных бета-распадов, образующих целую цепочку, например:

(стабилен).

Здесь под стрелочками приведены периоды полураспада нуклидов: s -секунды, h -часы, y -годы. Заметим, что осколком деления принято называть только самое первое ядро, непосредственно возникающее при делении ядра урана (в данном случае – 135 Sb ). Все остальные нуклиды, возникающие в результате бета-распадов, вместе с осколками и стабильными конечными нуклидами, называют продуктами деления . Поскольку вдоль цепочки массовое число не изменяется, то всего таких цепочек при делении ядер урана может образоваться столько, сколько может возникнуть массовых чисел, т.е. примерно 90. А так как в каждой цепочке содержится в среднем 5 радиоактивных нуклидов, то всего среди продуктов деления можно насчитать около 450 радионуклидов с самыми различными периодами полураспада от долей секунды до миллионов лет. В ядерном реакторе накопление продуктов деления создает определенные проблемы, т.к. во-первых, они поглощают нейтроны и тем самым затрудняют протекание цепной реакции деления, а во-вторых, из-за их бета-распада возникает остаточное тепловыделение, которое может продолжаться очень долго после остановки реактора (в остатках чернобыльского реактора тепловыделение продолжается и поныне). Значительную опасность радиоактивность продуктов деления создает и для человека.

Вторичные нейтроны деления. Нейтроны, вызывающие деление ядер, называются первичными, а нейтроны, возникающие при делении ядер – вторичными. Вторичные нейтроны деления испускаются осколками в самом начале их движения. Как уже отмечалось, осколки непосредственно после деления оказываются сильно перегруженными нейтронами; при этом энергия возбуждения осколков превышает энергию связи нейтронов в них, что и предопределяет возможность вылета нейтронов. Покидая ядро осколка, нейтрон уносит с собой часть энергии, в результате чего энергия возбуждения ядра осколка снижается. После того, как энергия возбуждения ядра осколка станет меньше энергии связи нейтрона в нём, вылет нейтронов прекращается.

При делении разных ядер образуется различное число вторичных нейтронов, обычно от 0 до 5 (чаще всего 2-3). Для расчетов реакторов особое значение имеет среднее число вторичных нейтронов, испускаемых в расчете на один акт деления. Это число обозначается обычно греческой буквой ν (ню) или, чаще ν f . Значения ν f зависят от типа делящегося ядра и от энергии первичных нейтронов. Некоторые примеры приведены в таблице 1.5. Приведенные в этой таблице данные показывают, что значения ν f увеличиваются как с ростом заряда и массы делящегося ядра, так и с увеличением энергии первичных нейтронов.

Таблица 1.5. Средние количества вторичных нейтронов, образующихся при делении ядер тепловыми и быстрыми нейтронами

Исходное

Значения ν f при различных энергиях первичных нейтронов

Тепловые нейтроны

Быстрые нейтроны

С последним обстоятельством связано еще одно преимущество реакторов на быстрых нейтронах – большее число вторичных нейтронов позволяет осуществлять в них процесс расширенного воспроизводства ядерного топлива (см. ниже). Вторичные нейтроны возникают и при спонтанном делении ядер. Так ν f (U-238) = 1,98, а ν f (Cf-252) = 3,767.

Процесс испускания вторичных нейтронов сильно возбужденными ядрами осколков напоминает процесс испарения молекул с поверхности сильно нагретой капли жидкости. Поэтому энергетический спектр вторичных нейтронов похож на распределение Максвелла молекул при тепловом движении. Максимум этого спектра лежит при энергии 0,8 МэВ, а средняя энергия вторичных нейтронов деления оказывается порядка 2 МэВ.

Основная часть вторичных нейтронов вылетает из ядер осколков в среднем за время 10 -14 с после деления ядра, т.е. практически мгновенно. Поэтому эту часть вторичных нейтронов называют мгновенными нейтронами. Но существуют еще и т.н. запаздывающие нейтроны, играющие важную и совершенно особую роль в реакторах.

Запаздывающие нейтроны при делении ядер. Опыт показывает, что малая доля вторичных нейтронов (обычно < 1 %) испускается облученным нейтронами образцом делящегося материала спустя долгое время после прекращения облучения, когда деления ядер в образце тоже, естественно, уже не происходят. Происхождение запаздывающих нейтронов связано с бета-распадом некоторых осколков деления. Если бета-распад происходит на уровень конечного ядра, энергия возбуждения которого превышает энергию связи нейтрона, то распад ядра из этого состояния может произойти не путем испускания гамма-кванта, как обычно, а путем испускания нейтрона. Вылет нейтрона происходит практически в то же мгновение, как только образуется возбужденное ядро, но относительно процесса деления исходного ядра этот момент оказывается отодвинутым на время, которое потребовалось для бета-распада осколка. Поэтому запаздывающие нейтроны вылетают практически одновременно с бета-частицами, и их выход во времени описывается таким же экспоненциальным законом и с тем же периодом полураспада, что и бета-распад осколка.

Доля запаздывающих нейтронов определяется как отношение числа запаздывающих нейтронов к числу всех вторичных нейтронов деления: β = N зап. n / N n . Значения β для некоторых ядер при делении их нейтронами различных энергий приведены в табл.1.6.

Таблица 1.6. Доли запаздывающих нейтронов при делении ядер

Исходный

Β (%) при делении ядер

Тепловыми нейтронами

Нейтронами с энергией 2 МэВ

233 U

235 U

238 U

239 Pu

Поскольку запаздывающие нейтроны могут возникать при распаде различных ядер -осколков (называемых ядрами - предшественниками запаздывающих нейтронов), каждый из которых распадается со своим периодом полураспада, то и запаздывающие нейтроны образуют несколько групп, каждая из которых имеет свой период полураспада. Основные параметры этих групп приведены в табл. 1.7. В этой таблице относительные выходы запаздывающих нейтронов нормированы на единицу. Энергии запаздывающих нейтронов несколько меньше средней энергии мгновенных нейтронов (2 МэВ), так как они вылетают из менее возбужденных осколков. Периоды полураспада групп запаздывающих нейтронов не совсем точно совпадают с периодами полураспада выделенных предшественников, так как на самом деле предшественников запаздывающих нейтронов гораздо больше – некоторые исследователи находили их до нескольких десятков. Нейтроны от предшественников с близкими периодами сливаются в одну группу с некоторым усредненным периодом, который и заносится в таблицы. По этой же причине выходы групп и их периоды зависят от типа делящегося ядра и энергии первичных нейтронов, так как при изменениях этих двух параметров изменяются выходы осколков деления, а, следовательно – изменяется и состав групп.

Таблица 1.7. Параметры групп запаздывающих нейтронов при делении 235 U тепловыми нейтронами

Номер группы

Период полураспада (сек)

Относительный выход

Средняя энергия (кэВ)

Основной предшественник

I -137

I -138

Запаздывающие нейтроны играют определяющую роль в деле управления цепной реакцией деления и работой всего ядерного реактора в целом.

Мгновенное гамма-излучение при делении. Когда после вылета из осколка последнего нейтрона энергия возбуждения ядра осколка оказывается ниже энергии связи нейтрона в нем, дальнейший вылет мгновенных нейтронов оказывается невозможным. Но некоторая лишняя энергия в осколке еще остается. Эта избыточная энергия уносится из ядра серией испускаемых гамма-квантов. Как отмечалось выше, суммарная энергия мгновенных гамма-квантов составляет около 8 МэВ, среднее их число на одно деление равно приблизительно 10, следовательно, средняя энергия одного гамма-кванта при делении тяжелых ядер равна примерно 0,8 МэВ.

Таким образом, ядерный реактор является мощным источником не только нейтронов, но и гамма-излучения, и защищаться приходится от обоих этих видов излучений.

Делением ядер называется процесс, при котором из одного атомного ядра образуется 2 (иногда 3) ядра-осколка, которые являются близкими по массе.

Этот процесс является выгодным для всех β -стабильных ядер с массовым числом А > 100.

Деление ядер урана было выявлено в 1939 году Ганом и Штрасманом, однозначно доказавшие, что при бомбардировке нейтронами ядер урана U образуются радиоактивные ядра с массами и зарядами, приблизительно в 2 раза меньшими массы и заряда ядра урана. В том же году Л. Мейтнером и О. Фришером был введен термин «деление ядер » и было отмечено, что при этом процессе выделяется огром-ная энергия, а Ф. Жолио-Кюри и Э. Ферми одновременно выяснили, что при делении испускаются несколько нейтронов (нейтроны деления) . Это стало основой для выдвижения идеи самоподдерживающейся цепной реакции деления и использования деления ядер как источника энергии. Основой современной ядерной энергетики является деление ядер 235 U и 239 Pu под действием нейтронов.

Деление ядра может происходить благодаря тому, что масса покоя тяжелого ядра оказывается большей суммы масс покоя осколков, которые возникают в процессе деления.

Из графика видно, что этот процесс оказывается выгодным с энергетической точки зрения.

Механизм деления ядра можно объяснить на основе капельной модели, со-гласно которой сгусток нуклонов напоминает капельку заряженной жид-кости. Ядро удерживают от распада ядерные силы притяже-ния, большие, чем силы кулоновского отталкивания, которые действуют между протонами и стремящиеся разорвать ядро.

Ядро 235 U имеет форму шара. После поглощения нейтрона оно воз-буждается и деформируется, приобретая вытянутую форму (на рисунке б ), и растягивается до тех пор, пока силы отталкивания между половинка-ми вытянутого ядра не станут больше сил притяжения, действующих в перешейке (на рисунке в ). После этого ядро разрывается на две части (на рисунке г ). Осколки под действием кулоновских сил отталкивания раз-летаются со скоростью, равной 1/30 скорости света.

Испускание нейтронов в процессе деления , о котором мы говорили выше, объясняется тем, что относительное число нейтронов (по отношению к числу протонов) в ядре увеличивается с возрастанием атом-ного номера, и для образовавшихся при делении осколков число нейтронов становится большим, чем это возможно для ядер атомов с меньшими номерами.

Деление зачастую происходит на осколки неравной массы. Эти осколки являются радиоактивными. После серии β -распадов в итоге образуются стабильные ионы.

Кроме вынужденного , бывает и спонтанное деление ядер урана , которое было от-крыто в 1940 году советскими физиками Г. Н. Флеровым и К. А. Петржаком. Период полураспада для спонтанного деления соответствует 10 16 годам, что в 2 млн. раз больше периода полураспада при α -распаде урана.

Синтез ядер происходит в термоядерных реакциях. Термоядерные реакции — это реак-ции слияния легких ядер при очень высокой температуре. Энергия, которая выделяется при слиянии (синтезе), будет максимальной при синтезе легких элементов, которые обладают наименьшей энергией связи. При соединении двух легких ядер, например, дейтерия и трития, образуется более тяжелое ядро гелия с большей энергией связи:

При таком процессе ядерного синтеза происходит выделение значительной энергии (17,6 Мэв), равная разности энергий связи тяжелого ядра и двух легких ядер . Образующийся при реакциях нейтрон приобретает 70% этой энергии. Сравнение энергии, которая приходится на один нуклон в реакциях ядерного деления (0,9 Мэв) и синтеза (17,6 Мэв), показывает, что реакция синтеза легких ядер энергетически является более выгодной, чем реакция деления тяжелых.

Слияние ядер происходит под действием сил ядерного притяжения, поэтому они должны сблизиться до расстояний, меньших 10 -14 , на которых действуют ядерные силы. Этому сближению препятствует кулоновское отталкивание положительно заряженных ядер. Его можно пре-одолеть лишь за счет большой кинетической энергии ядер, которые превышают энергию их кулоновского отталкивания. Из соответствующих расчетов видно, что кинетическую энергию ядер, которая нужна для реакции синтеза, можно достигнуть при температурах порядка сотен миллионов градусов , поэтому эти реакции имеют название термоядерных .

Термоядерный синтез — реакция, в которой при высокой температуре, большей 10 7 К, из легких ядер синтезируются более тяжелые ядра.

Термоядерный синтез — источник энергии всех звезд, в том числе, и Солнца.

Основным процессом, при котором происходит освобождение термоядерной энергии в звездах, является превращение водорода в гелий. За счет дефекта массы в этой реакции масса Солнца уменьшается каждую секунду на 4 млн тонн .

Большую кинетическую энергию , которая нужна для термоядерного синтеза, ядра водорода получают в результате сильного гравитационного притяжения к центру звезды. После этого при слиянии ядер гелия образуются и более тяжелые элементы.

Термоядерные реакции играют одну из главных ролей в эволюции химического состава вещества во Вселенной. Все эти реакции происходят с выделением энергии, которая излучается звездами в виде света на протяжении миллиардов лет.

Осуществление управляемого термоядерного синтеза предоставило бы человечеству новый, практически неисчерпаемый источник энергии. И дейтерий, и тритий, нужные для его осуществления , вполне доступны. Первый содержится в воде морей и океанов (в количестве, достаточном для использования в течение миллиона лет), второй может быть получен в ядерном реакторе при облучении жидкого лития (запасы которого огромны) нейтронами:

Одним из важнейших преимуществ управляемого термоядерного синтеза является отсутствие радиоактивных отходов при его осуществлении (в отличие от реакций деления тяжелых ядер урана).

Главным препятствием на пути осуществления управляемого термоядерного синтеза является невозможность удержания высокотемпературной плазмы с помощью сильных магнитных полей в течение 0,1-1 . Однако существует уверенность в том, что рано или поздно термоядерные ре-акторы будут созданы.

Пока же получилось произвести только неуправляемую реакцию синтеза взрывного типа в водородной бомбе.

Изучение взаимодействия нейтронов с веществом привело к открытию ядерных реакций нового типа. В 1939 г. О. Ган и Ф. Штрассман исследовали химические продукты, получающиеся при бомбардировке нейтронами ядер урана. Среди продуктов реакции был обнаружен барий - химический элемент с массой много меньше, чем масса урана. Задача была решена немецкими физиками Л. Мейтнерома и О. Фришем, показавшими, что при поглощении нейтронов ураном происходит деление ядра на два осколка:

где k > 1.

При делении ядра урана тепловой нейтрон с энергией ~ 0,1 эВ освобождает энергию ~ 200 МэВ. Существенным моментом является то, что этот процесс сопровождается появлением нейтронов, способных вызывать деление других ядер урана, – цепная реакция деления . Таким образом, один нейтрон может дать начало разветвленной цепи делений ядер, причем число ядер, участвующих в реакции деления будет экспоненциально возрастать. Открылись перспективы использования цепной реакции деления в двух направлениях :

· управляемая ядерная реакция деления – создание атомных реакторов;

· неуправляемая ядерная реакция деления – создание ядерного оружия.

В 1942 г. в США был построен первый ядерный реактор. В СССР первый реактор был запущен в 1946 г. В настоящее время тепловая и электрическая энергия вырабатывается в сотнях ядерных реакторов, работающих в различных странах мира.

Как видно из рис. 4.2, с ростом значения А удельная энергия связи увеличивается вплоть до А » 50. Это поведение можно объяснить сложением сил; энергия связи отдельного нуклона усиливается, если его притягивают не один или два, а несколько других нуклонов. Однако в элементах со значениями массового числа больше А » 50 удельная энергия связи постепенно уменьшается с ростом А. Это связано, с тем, что ядерные силы притяжения являются короткодействующими радиусом действия порядка размеров отдельного нуклона. За пределами этого радиуса преобладают силы электростатического отталкивания. Если два протона удаляются более чем на 2,5×10 - 15 м, то между ними преобладают силы кулоновского отталкивания, а не ядерного притяжения.

Следствием такого поведения удельной энергии связи в зависимости от А является существование двух процессов - синтеза и деления ядер . Рассмотрим взаимодействие электрона и протона. При образовании атома водорода высвобождается энергия 13,6 эВ и масса атома водорода оказы­вается на 13,6 эВ меньше суммы масс свободного электрона и протона. Аналогично, масса двух легких ядер превышает мaccу после их соединения на DМ . Если их соединить, то они сольются с выделением энергии DМс 2 . Этот процесс называется синтезом ядер . Разность масс может превышать 0,5 %.

Если расщепляется тяжелое ядро на два более легких ядра, то их масса будет меньше массы родительского ядра на 0,1 %. У тяжелых ядер существует тенденция к делению на два более легких ядра с выделением энергии . Энергия атомной бомбы и ядерного реактора представляет собой энергию , высвобождающуюся при делении ядер . Энергия водородной бомбы - это энергия, выделяющаяся при ядерном синтезе. Альфа-распад можно рассматривать как сильно асимметричное деление, при котором родительское ядро М расщепляется на маленькую альфа-частицу и большое остаточное ядро . Альфа-распад возможен, только если в реакции

масса М оказывается больше суммы масс и альфа-частицы. У всех ядер с Z > 82 (свинец) .При Z > 92 (уран) полупериоды альфа-распада оказываются значительно длиннее возраста Земли, и такие элементы не встречаются в природе. Однако их можно создать искусственно. Например, плутоний (Z = 94) можно получить из урана в ядерном реакторе. Эта процедура стала обычной и обходится всего в 15 долларов за 1 г. До сих пор удалось получить элементы вплоть до Z = 118, однако гораздо более дорогой ценой и, как правило, в ничтожных количествах. Можно надеяться, что радиохимики научатся получать, хотя и в небольших количествах, новые элементы сZ > 118.

Если бы массивное ядро урана удалось разделить на две группы нуклонов, то эти группы нуклонов перестроились бы в ядра с более сильной связью. В процессе перестройки выделилась бы энергия. Спонтанное деление ядер разрешено законом сохранения энергии. Однако потенциальный барьер в реакции деления у встречающихся в природе ядер настолько высок, что вероятность спонтанного деления оказывается много меньше вероятности альфа-распада. Период полураспада ядер 238 U относительно спонтанного деления составляет 8×10 15 лет. Это более чем в миллион раз превышает возраст Земли. Если нейтрон сталкивается с тяжелымядром, то оно может перейти на более высокий энергетический уровень вблизи вершины электростатического потенциального барьера, в результате возрастет вероятность деления. Ядро в возбужденном состоянии может обладать значительным моментом импульса и приобрести овальную форму. Участки на периферии ядра легче проникают сквозь барьер, поскольку они частично уже находятся за барьером. У ядра овальной формы роль барьера еще больше ослабляется. При захвате ядром или медленного нейтрона образуются состояния с очень короткими временами жизни относительно деления. Разность масс ядра урана и типичных продуктов деления такова, что в среднем при делении урана высвобождается энергия 200 МэВ. Масса покоя ядра урана 2,2×10 5 МэВ. В энергию превращается около 0,1 % этой массы, что равно отношению 200 МэВ к величине 2,2×10 5 МэВ.

Оценка энергии , освобождающейся при делении , может быть получена из формулы Вайцзеккера :

При делении ядра на два осколка изменяется поверхностная энергия и кулоновская энергия , причем поверхностная энергия увеличивается, а кулоновская энергия уменьшается. Деление возможно в том случае, когда энергия, высвобождающаяся при делении, Е > 0.

Здесь A 1 = A /2, Z 1 = Z /2. Отсюда получим, что деление энергетически выгодно, когда Z 2 /A > 17. Величина Z 2 /A называется параметром делимости . Энергия Е , освобождающаяся при делении, растет с увеличением Z 2 /A .

В процессе деления ядро изменяет форму - последовательно проходит черезследующие стадии (рис. 9.4): шар, эллипсоид, гантель, два грушевидных осколка, два сферических осколка.

После того как деление произошло, и осколки находятся друг от друга на расстоянии много большем их радиуса, потенциальную энергию осколков, определяемую кулоновским взаимодействием между ними, можно считать равной нулю.

Вследствие эволюции формы ядра, изменение его потенциальной энергии определяется изменением суммы поверхностной и кулоновской энергий . Предполагается, что объем ядра в процессе деформации остается неизменным. Поверхностная энергия при этом возрастает, так как увеличивается площадь поверхности ядра. Кулоновская энергия уменьшается, так как увеличивается среднее расстояние между нуклонами. В случае малых эллипсоидальных деформаций рост поверхностной энергии происходит быстрее, чем уменьшение кулоновской энергии.

В области тяжелых ядер сумма поверхностной и кулоновской энергий увеличивается с увеличением деформации. При малых эллипсоидальных деформациях рост поверхностной энергии препятствует дальнейшему изменению формы ядра, а следовательно и делению. Наличие потенциального барьера препятствует мгновенному самопроизвольному делению ядер. Для того чтобы ядро мгновенно разделилось, ему необходимо сообщить энергию, превышающую высоту барьера деления Н .

Высота барьера Н тем больше, чем меньше отношение кулоновской и поверхностной энергии в начальном ядре. Это отношение, в свою очередь, увеличивается с увеличением параметра делимости Z 2 /А. Чем тяжелее ядро, тем меньше высота барьера Н , так как параметр делимости увеличивается с ростом массового числа:

Более тяжелым ядрам, как правило, нужно сообщить меньшую энергию, чтобы вызвать деление. Из формулы Вайцзеккера следует, что высота барьера деления обращается в нуль при . Т.е. согласно капельной модели в природе должны отсутствовать ядра с , так как они практически мгновенно (за характерное ядерное время порядка 10 –22 с) самопроизвольно делятся. Существование атомных ядер с («остров стабильности ») объясняется оболочечной структурой атомных ядер. Самопроизвольное деление ядер с , для которых высота барьера Н не равна нулю, с точки зрения классической физики невозможно. С точки зрения квантовой механики такое деление возможно в результате прохождения осколков через потенциальный барьер и носит название спонтанного деления . Вероятность спонтанного деления растет с увеличением параметра делимости , т.е. с уменьшением высоты барьера деления.

Вынужденное деление ядер с может быть вызвано любыми частицами: фотонами, нейтронами, протонами, дейтронами, α-частицами и т.д., если энергия, которую они вносят в ядро, достаточна для преодоления барьера деления.

Массы осколков, образующихся при делении тепловыми нейтронами, не равны. Ядро стремится разделиться таким образом, чтобы основная часть нуклонов осколка образовала устойчивый магический остов. На рис. 9.5 приведено распределение по массам при делении . Наиболее вероятная комбинация массовых чисел - 95 и 139.

Отношение числа нейтронов к числу протонов в ядре равно 1,55, в то время как у стабильных элементов, имеющих массу, близкую к массе осколков деления, это отношение 1,25 - 1,45. Следовательно, осколки деления сильно перегружены нейтронами и неустойчивы к β-распаду - радиоактивны.

В результате деления высвобождается энергия ~ 200 МэВ. Около 80 % ее приходится на энергию осколков. За один акт деления образуется более двух нейтронов деления со средней энергией ~ 2 МэВ.

В 1 г любого вещества содержится . Деление 1 г урана сопровождается выделением ~ 9×10 10 Дж. Это почти в 3 млн раз превосходит энергию сжигания 1 г угля (2,9×10 4 Дж). Конечно, 1 г урана обходится значительно дороже 1 г угля, ностоимость 1 Дж энергии, полученной сжиганием угля, оказывается в 400 раз выше, чем в случае уранового топлива. Выработка 1 кВт×ч энергии обходилась в 1,7 цента на электростанциях, работающих на угле, и в 1,05 цента на ядерных электростанциях.

Благодаря цепной реакции процесс деления ядер можно сделать самоподдерживающимся . При каждом делении вылетают 2 или 3 нейтрона (рис. 9.6). Если одному из этих нейтронов удастся вызвать деление другого ядра урана, то процесс будет самоподдерживающимся.

Совокупность делящегося вещества, удовлетворяющая этому требованию, называется критической сборкой . Первая такая сборка, названная ядерным реактором , была построена в 1942 г. под руководством Энрико Ферми на территории Чикагского университета. Первый ядерный реактор был запущен в 1946 г. под руководством И. Курчатова в Москве. Первая атомная электростанция мощностью 5 МВт была пущена в СССР в 1954 г. в г. Обнинске (рис. 9.7).

Массу и можно также сделать надкритической . В этом случае возникающие при делении нейтроны будут вызывать несколько вторичных делений. Поскольку нейтроны движутся со скоростями, превышающими 10 8 см/с, надкритическая сборка может полностью прореагировать (или разлететься) быстрее, чем за тысячную долю секунды. Такое устройство называется атомной бомбой . Ядерный заряд из плутония или урана переводят в надкритическое состояние обычно с помощью взрыва. Подкритическую массу окружают химической взрывчаткой. При ее взрыве плутониевая или урановая масса подвергается мгновенному сжатию. Поскольку плотность сферы при этом значительно возрастает, скорость поглощения нейтронов оказывается выше скорости потери нейтронов за счет их вылета наружу. В этом и заключается условие надкритичности.

На рис. 9.8 изображена схема атомной бомбы «Малыш», сброшенной на Хиросиму. Ядерной взрывчаткой в бомбе служил , разделенный на две части, масса которых была меньше критической. Необходимая для взрыва критическая масса создавалась в результате соединения обеих частей «методом пушки» с помощью обычной взрывчатки.

При взрыве 1 т тринитротолуола (ТНТ) высвобождается 10 9 кал, или 4×10 9 Дж. При взрыве атомной бомбы, расходующей 1 кг плутония , высвобождается около 8×10 13 Дж энергии.

Или это почти в 20 000 раз больше, чем при взрыве 1 т ТНТ. Такая бомба называется 20-килотонной бомбой. Современные бомбы мощностью в мегатонны в миллионы раз мощнее обычной ТНТ-взрывчатки.

Производство плутония основано на облучении 238 U нейтронами, ведущем к образованию изотопа 239 U, который в результате бета-распада превращается в 239 Np, а затем после еще одного бета-распада в 239 Рu. При поглощении нейтрона с малой энергией оба изотопа 235 U и 239 Рu испытывают деление. Продукты деления характеризуются более сильной связью (~ 1 МэВ на нуклон), благодаря чему в результате деления высвобождается примерно 200 МэВ энергии.

Каждый грамм израсходованного плутония или урана порождает почти грамм радиоактивных продуктов деления, обладающих огромной радиоактивностью.

Для просмотра демонстраций щелкните по соответствующей гиперссылке: