Что такое дипольный момент в физике. Дипольный момент

До сих пор предполагалось, что заряды и их поля находятся в вакууме. В последующих параграфах мы рассмотрим, какое влияние на электрическое поле и на взаимодействие электрических зарядов оказывает вещественная среда - проводники и диэлектрики.

Электрический диполь это система, состоящая из двух одинаковых по значению, но разных по знаку точечных заряда (+q,- q), расстояние ℓ между которыми (плечо диполя) значительно меньше расстояния до рассматриваемых точек поля (рис.12.16).

Основной характеристикой диполя является его электрический, или дипольный момент.

Дипольный момент –это вектор, направленный по оси диполя (прямой, проходящей через оба заряда) от отрицательного заряда к положительному и равный произведению заряда │q│ на плечо ℓ.

(12.35)

Единица электрического момента диполя – кулон-метр (Кл۰м).

Если диполь поместить в однородное электростатическое поле напряжён-ностью Е (рис.12.17), то на каждый из его зарядов действует сила: на положительныйF + = +qE, на отрицательный F - = - qE. Эти силы равны по модулю, но противоположны по направлению. Они образуют пару сил, плечо которой ℓsinα, и создают момент пары сил М. Вектор
направлен перпендикулярно векторами(см.рис. – на нас). Модуль
определяется соотношениемM=qEℓsinα, где α – угол между векторами и.

M=qEℓsinα=рЕsinα

или в векторной форме

(12.36)

Таким образом, на диполь в однородном электрическом поле действует вращающий момент, зависящий от электрического момента, ориентации диполя в поле и напряжённость поля.

В однородном поле момент пары сил стремится повернуть диполь так, чтобы векторы ии были параллельны.

§ 12.6 Поле диполя

Определим напряжённость электростатического поля в точке, лежащей посередине на оси диполя (рис.12.18). Напряжённость поля в точке О равна векторной сумме напряжённостейи, создаваемых положительным и отрицательным зарядом в отдельности.

На оси диполя между зарядами -q и +q векторы напряжённости инаправлены в одну сторону, поэтому результирующая напряжённость по модулю равна их сумме.

Если же находить напряжённость поле в точке А, лежащей на продолжении оси диполя (рис.12.18), то векторы ибудут направлены в разные стороны и результирующая напряжённость по модулю равна их разности:

(r - расстояние между средней точкой диполя и точкой, лежащей на оси диполя, в которой определяется напряжённость поля).

Пренебрегая в знаменателе величиной , так какr >>ℓ получим

(р- электрический момент диполя).

Напряжённость поля в точке С, лежащей на перпендикуляре, восстановленном из средней точки диполя (рис.12.19). Так как расстояние от зарядов +q и - q до точки В одинаковое r 1 = r 2 , то

Вектор результирующей напряжённости в точке В по модулю равен

Из рисунка видно, что
, тогда

Напряжённость поля диполя в произвольной точке определяется по формуле

(12.39)

(р- электрический момент диполя, r - расстояние от центра диполя до точки, в которой определяется напряжённость поля, α - угол между радиус-вектором r и плечом диполя ℓ).

Электрический диполь - идеализированная электронейтральная система, состоящая из точечных и равных по абсолютной величине положительного и отрицательногоэлектрических зарядов.

Другими словами, электрический диполь представляет собой совокупность двух равных по абсолютной величине разноимённых точечных зарядов, находящихся на некотором расстоянии друг от друга

Произведение вектора проведённого от отрицательного заряда к положительному, на абсолютную величину зарядовназывается дипольным моментом:

Во внешнем электрическом поле на электрический диполь действует момент силкоторый стремится повернуть его так, чтобы дипольный момент развернулся вдоль направления поля.

Потенциальная энергия электрического диполя в (постоянном) электрическом поле равна (В случае неоднородного поля это означает зависимость не только от момента диполя - его величины и направления, но и от места, точки нахождения диполя).

Вдали от электрического диполя напряжённость его электрического поляубывает с расстояниемкакто есть быстрее, чем уточечного заряда().

Любая в целом электронейтральная система, содержащая электрические заряды, в некотором приближении (то есть собственно в дипольном приближении ) может рассматриваться как электрический диполь с моментомгде- заряд-го элемента,- его радиус-вектор. При этом дипольное приближение будет корректным, если расстояние, на котором изучается электрическое поле системы, велико по сравнению с её характерными размерами.

Магнитный диполь

Магнитный диполь - аналог электрического, который можно представить себе как систему двух «магнитных зарядов» (эта аналогия условна, так как магнитных зарядов, с точки зрения современнойэлектродинамики, не существует). В качестве модели магнитного диполя можно рассматривать небольшую (по сравнению с расстояниями, на которых изучается генерируемое диполеммагнитное поле) плоскую замкнутую проводящую рамку площадипо которой течёт токПри этом магнитным моментом диполя (в системеСГСМ) называют величинугде- единичный вектор, направленный перпендикулярно плоскости рамки в том направлении, при наблюдении в котором ток в рамке представляется текущим по часовой стрелке.

Выражения для вращающего момента, действующего со стороны магнитного поля на магнитный диполь, и потенциальной энергии постоянного магнитногодиполя в магнитном поле, аналогичны соответствующим формулам для взаимодействия электрического диполя с электрическим полем, только входят тудамагнитный моментивектор магнитной индукции:

Поле колеблющегося диполя

В этом разделе рассматривается поле, создаваемое точечным электрическим диполем находящимся в заданной точке пространства.

Сист.зарядов:

Q=q 1 +q 2 +…+q n =Σq i

Дип.момент сист.зар.

→ → → → → → → n→ →

p=r 1 q 1 +r 2 q 2 +…+r n q n =Σr i q i

26. Теорема Гаусса для вектора e.

Рассмотрим поле точечного заряда q и вычислим поток вектора Е через замкнутую поверхность S, заключающую в себе заряд (рис.). Количество линий вектора Е, начинающихся на точечном заряде +q или заканчивающихся на заряде –q, численно равно q/ε0.

Согласно формуле Ф[a] (=)N[нач] – N[оканч] поток вектора Е через любую замкнутую поверхность равен числу линий, выходящих наружу, т.е. начинающихся на заряде, если он положителен, и числу линий, входящих внутрь, т.е. оканчивающихся на заряде, если он отрицателен. Учтя, что количество начинающихся или оканчивающихся на точечном заряде линий численно равно q/ε0, можно написать, что Ф[E] = q/ε0.

Знак потока совпадает со знаком заряда q. Размерность обеих частей этого равенства одинакова.

Теперь допустим, что внутри замкнутой поверхности находятся N точечных зарядов q1, q2,...,q[N]. В силу принципа суперпозиции напряженность Е поля, создаваемая всеми зарядами, равна сумме напряженностей Е[i], создаваемых каждым зарядом в отдельности: Е = ∑E[i].

Поэтому Ф[E] = ∫ EdS= ∫ (∑E[i])=∑ ∫ E[i]dS. Каждый из интегралов, стоящих под знаком суммы, равен q[i]/ε0. следовательно,

Ф[E]= ∫ EdS=1/ε0∑ q[i].

Доказанное утверждение носит название теоремы Гаусса. Эта теорема гласит, что поток вектора напряженности электрического поля через замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности зарядов, деленной на ε0.

27. Объемная, поверхностная и линейная плотность зарядов. Поле одной и двух заряженных плоскостей. Поле заряженных цилиндрических и сферических поверхностей. Поле заряженного шара.

1.Объемной плотностью непрерывного распределения зарядов называется отношение заряда к объему:

где ℮וֹ - элементарные заряды в объеме ∆Vф (с учетом их знака); ∆Q - полный заряд, заключенный в ∆Vф. Объем ∆Vф является малым, но не бесконечно малым в математическом смысле. ∆Vф зависит от конкретных условий.

2.Лине́йная плотность электрического заряда - предел отношения электрического заряда, находящегося в элементе линии, к длине этого элемента линии, который содержит данный заряд, когда длина этого элемента стремится к нулю.

3.Поверхностная плотность заряда

{ σ = 1/(∆Sф∑[∆Sф] ℮1)=dQ/dS}

где dS - бесконечно малый участок поверхности.

Поле бесконечной однородно заряженной плоскости. Пусть поверхностная плотность заряда во всех точках плоскости одинакова и равна σ ; для определенности будем считать заряд положительным. Из соображений симметрии вытекает, что напряженность поля в любой точке имеет направление перпендикулярное к плоскости. Действительно, поскольку плоскость бесконечна и заряжена однородно, нет никаких оснований к тому, чтобы вектор Е отклонялся в какую-либо сторону от нормали к плоскости. Далее очевидно, что в симметричных относительно плоскости точках напряженность поля одинакова по модулю и противоположна по направлению. Из теоремы Гаусса следует что на любых расстояниях от плоскости напряженность поля одинакова

Чтобы понять механизм поведения диэлектриков в поле на микроскопическом уровне, нам надо сначала объяснить, как может электрически нейтральная система реагировать на внешнее электрическое поле. Простейший случай - полное отсутствие зарядов - нас не интересует. Мы знаем наверняка, что в диэлектрике имеются электрические заряды - в составе атомов, молекул, ионов кристаллической решетки и т. д. Поэтому мы рассмотрим следующую по простоте конструкции электронейтральную систему - два равных по величине и противоположных по знаку точечных заряда +q и –q , находящихся на расстоянии l друг от друга. Такая система называется электрическим диполем .

Рис. 3.6. Электрический диполь

Линии напряженности электрического поля и эквипотенциальные поверхности электрического диполя выглядят следующим образом (рис. 3.7, 3.8, 3.9)

Рис. 3.7. Линии напряженности электрического поля электрического диполя

Рис. 3.8. Эквипотенциальные поверхности электрического диполя

Рис. 3.9. Линии напряженности электрического поля и эквипотенциальные поверхности

Основной характеристикой диполя является . Введем вектор l , направленный от отрицательного заряда (–q ) к положительному (+q ), тогда вектор р , называемый электрическим моментом диполя или просто дипольным моментом , определяется как

Рассмотрим поведение «жесткого» диполя - то есть расстояние которого не меняется - во внешнем поле Е (рис. 3.10).

Рис. 3.10. Силы, действующие на электрический диполь, помещенный во внешнее поле

Пусть направление дипольного момента составляет с вектором Е угол . На положительный заряд диполя действует сила, совпадающая по направлению с Е и равная F 1 = +qE , а на отрицательный - противоположно направленная и равная F 2 = –qE . Вращающий момент этой пары сил равен

Так как ql = р , то М = рЕ sin или в векторных обозначениях

(Напомним, что символ

означает векторное произведение векторов а и b .) Таким образом, при неизменном дипольном моменте молекулы () механический момент, действующий на нее, пропорционален напряженности Е внешнего электрического поля и зависит от угла между векторами р и E .

Под действием момента сил М диполь поворачивается, при этом совершается работа

которая идет на увеличение его потенциальной энергии. Отсюда получаем потенциальную энергию диполя в электрическом поле

если положить const = 0.

Из рисунка видно, что внешнее электрическое поле стремится повернуть диполь таким образом, чтобы вектор его электрического момента р совпал по направлению с вектором Е . В этом случае , а, следовательно, и М = 0. С другой стороны, при потенциальная энергия диполя во внешнем поле принимает минимальное значение , что соответствует положению устойчивого равновесия. При отклонении диполя от этого положения снова возникает механический момент, который возвращает диполь в первоначальное положение. Другое положение равновесия, когда дипольный момент направлен против поля является неустойчивым . Потенциальная энергия в этом случае принимает максимальное значение и при небольших отклонениях от такого положения возникающие силы не возвращают диполь назад, а еще больше отклоняют его.

На рис. 3.11 показан опыт, иллюстрирующий возникновение момента электрических сил, действующих на диэлектрик в электрическом поле. На удлиненный диэлектрический образец, расположенный под некоторым углом к силовым линиям электростатического поля, действует момент сил, стремящийся развернуть этот образец вдоль поля. Диэлектрическая палочка, подвешенная за середину внутри плоского конденсатора, разворачивается перпендикулярно его пластинам после подачи на них высокого напряжения от электростатической машины. Появление вращающего момента обусловлено взаимодействием поляризовавшейся палочки с электрическим полем конденсатора.

Рис. 3.11. Момент электрических сил, действующих на диэлектрик в электрическом поле

В случае неоднородного поля на рассматриваемый диполь будет действовать еще и равнодействующая сила F paвн, стремящаяся его сдвинуть. Мы рассмотрим здесь частный случай. Направим ось х вдоль поля Е . Пусть диполь под действием поля уже повернулся вдоль силовой линии, так что отрицательный заряд находится в точке с координатой x , а положительный заряд расположен в точке с координатой х + l . Представим себе, что величина напряженности поля зависит от координаты х . Тогда равнодействующая сила F paвн равна

Такой же результат может быть получен из общего соотношения

где энергия П определена в (3.8). Если Е увеличивается с ростом x , то

и проекция равнодействующей силы положительна. Это значит, что она стремиться втянуть диполь в область, где напряженность поля больше. Этим объясняется известный эффект, когда нейтральные кусочки бумаги притягиваются к наэлектризованной расческе. В плоском конденсаторе с однородным полем они остались бы неподвижными.

Рассмотрим несколько опытов, иллюстрирующих возникновение силы, действующей на диэлектрик, помещенный в неоднородное электрическое поле.

На рис. 3.12 показано втягивание диэлектрика в пространство между обкладками плоского конденсатора. В неоднородном электростатическом поле на диэлектрик действуют силы, втягивающие его в область более сильного поля.

Рис. 3.12. Втягивание жидкого диэлектрика в плоский конденсатор

Это демонстрируется при помощи прозрачного сосуда, в который помещен плоский конденсатор, и налито некоторое количество жидкого диэлектрика - керосина (рис.3.13). Конденсатор присоединен к высоковольтному источнику питания - электростатической машине. При ее работе на нижнем краю конденсатора, в области неоднородного поля, на керосин действует сила, втягивающая его в пространство между пластинами. Поэтому уровень керосина внутри конденсатора устанавливается выше, чем снаружи. После выключения поля уровень керосина между пластинами падает до его уровня в сосуде.

Рис. 3.13. Втягивание керосина в пространство между обкладками плоского конденсатора

В реальных веществах нечасто встречаются диполи, образованные только двумя зарядами. Обычно мы имеем дело с более сложными системами. Но понятие электрического дипольного момента применимо и к системам со многими зарядами. В этом случае дипольный момент определяется как

где , - величина заряда с номером i и радиус-вектор, определяющий его местоположение, соответственно. В случае двух зарядов мы приходим к прежнему выражению

Пусть наша система зарядов электрически нейтральна. В ней есть положительные заряды, величины которых и местоположения мы обозначим индексом «+». Индексом «–» мы снабдим абсолютные величины отрицательных зарядов и их радиус-векторы. Тогда выражение (3.10) может быть записано в виде

В (3.11) в первом слагаемом суммирование ведется по всем положительным зарядам, а во втором - по всем отрицательным зарядам системы.

Выражения (3.13) аналогичны формулам для центра масс в механике, и потому мы назвали их центрами положительных и отрицательных зарядов, соответственно. С этими обозначениями и с учетом соотношения (3.12) мы записываем электрический дипольный момент (3.11) системы зарядов в виде

где l -вектор, проведенный из центра отрицательных зарядов в центр положительных зарядов. Смысл нашего упражнения заключается в демонстрации, что любую электрически нейтральную систему зарядов можно представить как некий эквивалентный диполь.

Вернемся к электрическим системам, которые можно представить как системы точечных зарядов. Положим, что на протяжении интересующей нас системы зарядов электрическое поле однородно. Тогда формула силы, действующей на систему, имеет вид

где полный заряд системы. Если тело электрически нейтрально, как, скажем, атом или молекула, то сила, действующая на такое тело, содержащее равные количества положительных и отрицательных частиц, будет равна нулю. Значит ли это, что электрически нейтральное тело не обладает взаимодействием с электрическим полем? Нетрудно видеть, что нет. В однородном поле силы, действующие на заряды системы, параллельны друг другу. Мы можем отдельно сложить силы, действующие на положительные заряды, и отдельно силы, которые приложены к отрицательным зарядам. Как хорошо известно, равнодействующая параллельных сил приложена в центре «тяжести» тела. Слово «тяжесть» взято в кавычки, так как сейчас речь идет об электрическом центре тяжести. В результате все силы, действующие на заряды системы, находящейся в однородном поле, сведутся к двум антипараллельным силам, приложенным в центрах тяжести положительных и отрицательных зарядов (рис. 95). Если система электрически нейтральна, то обе силы будут одинаковы; полная сила будет равна нулю, но на тело будет действовать пара сил с моментом

Момент сил может подействовать на систему зарядов только в том случае, если центры «тяжести» положительных и отрицательных зарядов сдвинуты друг по отношению к другу.

Вектор равный по величине произведению положительного заряда системы на расстояние между центрами тяжести, носит название дипольного момента системы. Дипольный момент считают направленным от отрицательного центра к положительному. Дипольный момент системы определяет ее поведение в однородном поле. Система, предоставленная сама себе, поворачивается в однородном электрическом поле так, чтобы ее дипольный момент совпал с направлением электрического поля

В однородном поле все действия на нейтральную систему электрических зарядов сводятся к моменту силы где дипольный момент системы, равный произведению количества электричества одного знака на плечо диполя. Таким образом, нет нужды

рассматривать в однородном поле сложное расположение какой-либо системы зарядов; ее надо заменить соответствующим диполем.

Если система находится в неоднородном поле, то дипольный момент уже не будет исчерпывающим образом описывать ее свойства. Это видно из рис. 96. Четыре заряда, расположенных по углам квадрата, образуют электрически нейтральную систему с дипольным моментом, равным нулю (центры тяжести отрицательного и положительного зарядов совпадают).

В однородном поле на такую систему не действуют ни силы, ни момент силы. В неоднородных полях, разумеется, этот квадрат может и перемещаться поступательно и поворачиваться, так как силы, действующие на заряды, вообще говоря, различны. По аналогии с диполем такой системе дано название квадруполь. На том же рисунке изображена еще одна нейтральная система с нулевым дипольным моментом - октуполь.

Значительный интерес для учения о строении вещества, которым мы будем заниматься много позднее, представляет рассмотрение взаимодействий простейших электрических систем. Рассмотрим некоторые из них.

Заряд - заряд.

Взаимодействие двух точечных зарядов происходит по закону Кулона

Заряд-диполь.

Предоставленный сам себе диполь стремится повернуться так, чтобы установиться вдоль силовых линий.

После того как такой поворот произошел, диполь остается неподвижным в однородном поле, а в неоднородном будет втягиваться, как это видно из рис. 97, в область более сильного поля. В случае, если

неоднородное поле есть поле точечного заряда, диполь будет притягиваться к этому заряду. Сила притяжения равна

Если плечо диполя мало, то, приводя к общему знаменателю, мы получим, пренебрегая величиной по сравнению с а величиной по сравнению с следующую интересную формулу:

Обратим внимание на то, что сила взаимодействия заряда и диполя убывает с расстоянием быстрее, чем кулоновская сила, а именно, она обратно пропорциональна кубу расстояния.

Пример. Расстояние между атомами в молекуле равно 1,28 А, дипольный момент молекулы Тогда электрон, находящийся на расстоянии А от молекулы, притягивается к ней с силой дин.