Построить два подобных треугольника. Решение задач на построение методом подобия

Задача 1. Построить треугольник, зная два его угла и периметр.

Решение. Знание углов треугольника уже определяет его с точностью до преобразования подобия. Поэтому для решения задачи строим любой треугольник ЛС, с данными углами (рис. 277). Остается подобно преобразовать треугольник так, чтобы периметр его стал равен данной величине.

Для этого отложим стороны его на продолжениях стороны отрезок будет равен периметру треугольника . Возьмем любой отрезок KL, параллельный отрезку но равный заданному периметру. Соединим концы обоих параллельных отрезков и примем точку О пересечения линий за центр подобия. Построение вершин А и С искомого треугольника видно из рис. 277, стороны его АВ и СВ параллельны соответствующим сторонам треугольника .

В случае треугольник - уже искомый.

Задача 2. Дан угол, образованный лучами ОА и ОВ, и точка N внутри этого угла. Построить окружность, касающуюся сторон угла и проходящую через данную точку N (рис. 278).

Решение. Окружность, касающаяся сторон угла, должна иметь центр на биссектрисе этого угла. Возьмем на этой биссектрисе произвольную точку и построим окружность с центром в касающуюся сторон угла (ее радиус просто равен расстоянию точки от сторон угла). Если теперь преобразовать эту окружность подобно с центром подобия в вершине угла О, то вновь получится окружность с центром на биссектрисе; такая окружность снова будет касаться сторон угла, так как ее радиус, ведущий в точку касания, перейдет в силу сохранения углов в радиус, перпендикулярный к стороне угла. Остается обеспечить выполнение второго условия: преобразованная окружность должна пройти через точку N. Отсюда вытекает решение задачи. Проведем луч ON до пересечения с окружностью в точках и построим ее радиусы , ведущие в эти точки. Через данную точку N проведем прямые NC и NC, параллельные этим радиусам; точки их пересечения С, С с биссектрисой и дают возможные положения центра искомой окружности. Задача имеет два решения. Как изменится решение, если точка N лежит на биссектрисе угла?

Упражнения

1. Периметр треугольника равен 10 см, а его площадь Чему равен периметр подобного треугольника, если его площадь ?

2. Доказать, что равнобедренные треугольники, имеющие равные углы при вершине, подобны.

3. Построить треугольник, подобный данному и вписанный в окружность данного радиуса.

4. В данный треугольник ABC вписать квадрат так, чтобы одна его сторона лежала на стороне ВС треугольника, а две вершины находились на двух других сторонах треугольника.

206. Мы знаем (п. 175), что если ∠A (чер. 203 или 204) пересечь двумя параллельными KL и BC, то отношение двух любых отрезков на одной стороне этого угла равно отношению двух соответствующих отрезков на другой (напр., AK/KB = AL/LC; AB/AK = AC/AL и т. д.). Но мы видим, что у нас получились еще отрезки на самих параллельных, а именно KL и BC. Возникает вопрос, нельзя ли из отрезков AL, LC и AC, лежащих на одной стороне нашего угла A, выбрать такие два, чтобы их отношение равнялось отношению отрезков KL и BC.

Для этой цели мы прежде всего отрезок KL перенесем на прямую BC, для чего надо построить LD || AB; тогда BD = KL. Тогда вместо отрезков KL и BC мы можем рассматривать отрезки BD и BC, которые расположены на стороне CB угла C. Так как ∠C оказался пересеченным двумя параллельными, а именно прямыми AB и LD, то, применяя п. 175 к углу C, мы найдем

BD/BC = AL/AC или KL/BC = AL/AC.

Вопрос решен: удалось найти два отрезка AL и AC на стороне AC так, что их отношение = KL/BC. Зная еще, что AK/AB = AL/AC, мы можем теперь написать равенства:

AK/AB = AL/AC = KL/BC.

Рассматривая эти равенства, мы приходим к заключению, что ими связаны стороны двух полученных треугольников, а именно ∆AKL и ∆ABC. Возникает новый вопрос: не связаны ли как-либо и углы этих треугольников?

На последний вопрос ответ легко найти: ∠A у наших треугольников общий, ∠K = ∠B, как соответственные при параллельных KL и BC и секущей AB, и ∠L = ∠C, как соответственные при тех же параллельных, но при секущей AC.

Мы можем перенести ∆AKL (чер. 203) в другое место, или, что тоже самое, построить новый ∆A"K"L", равный ∆AKL; его стороны и углы будут соответственно равны сторонам и углам ∆AKL: AK = A"K", AL = A"L", KL = K"L", ∠A = ∠A", ∠K = ∠K", ∠L = ∠L".

Тогда мы получим ∆A"K"L", находящийся в такой же зависимости с ∆ABC, как и ∆AKL:
1) у этих треугольников углы попарно равны: ∠A" = ∠A, ∠K" = ∠B, ∠L" = ∠C;
2) для сторон имеем пропорции:

A"K"/AB = A"L"/AC = K"L"/BC (1)

Надо обратить внимание, что две стороны каждого отношения не случайно соединены в одно отношение, – нельзя, например, написать A"L"/AB = A"K"/BC = K"L"/AC. Надо уметь находить те стороны, которые должны быть членами одного отношения. Проще всего это сделать по углам треугольников: можно подметить, что стороны каждого отношения в равенствах (1) лежат в треугольниках против равных углов (A"K" против ∠L и AB против равного этому угла C и т. д.). Принято называть те стороны, которые служат членами одного отношения, сходственными (сторона A"K" сходна со стороною AB, A"L" - с AC и K"L" - с BC), причем сходственные стороны расположены в наших треугольниках против равных углов.

Равенство (1) можно прочесть сокращенно словами:

Стороны треугольника ∆A"K"L" пропорциональны сходственным сторонам ∆ABC.

Слово «пропорциональны» означает: отношение одной пары сходственных сторон треугольников A"K"L" и ABC равно отношению другой пары и равно отношению третьей пары.

Треугольники, обладающие двумя найденными выше признаками, называются подобными. Для обозначения подобия треугольников употребляют знак ~. Мы получили: ∆AKL ~ ∆ABC и также ∆A"K"L" ~ ∆ABC.

Можно теперь установить:

Два треугольника называются подобными, если углы одного равны попарно углам другого и сходственные стороны их пропорциональны.

Замечание . Возьмем из равенства (1) лишь одно, например, A"K"/AB = A"L"/AC. Применяя сюда свойство п. 178, получим: A"K"/A"L" = AB/AC, т. е. отношение двух сторон одного треугольника равно отношению двух сходственных сторон другого треугольника, подобного первому .

207. Основной признак подобия треугольников . Согласно предыдущему п., мы можем построить бесчисленное множество треугольников, подобных данному: для этого надо данный треугольник пересекать различными прямыми, параллельными одной из его сторон, и затем, если угодно, переносить каждый получаемый треугольник в другое место плоскости. Во всех получаемых треугольниках углы остаются неизменными, а отношение какой-либо стороны одного к сходственной стороне данного (масштаб подобия) меняется. Поэтому возникает мысль, недостаточно ли для подобия двух треугольников только равенства их углов.

Построим 2 треугольника: ∆ABC и ∆DEF (чер. 205) так, чтобы ∠A = ∠E и ∠B = ∠D. Тогда прежде всего находим, что ∠C = ∠F (ибо сумма углов каждого треугольника = 2d).

Наложим ∆DEF на ∆ABC так, чтобы, напр., точка E попала в точку A. Тогда вращением около этой точки можно достигнуть в силу равенства ∠E = ∠A того, чтобы ED и EF пошли соответственно по AB и AC; сторона DF должна занять такое положение KL, чтобы ∠AKL = ∠D = ∠B и ∠ALK = ∠F = ∠C, т. е., чтобы KL || BC, так как получаются равные соответственные углы.

Отсюда заключаем, что ∆DEF можно получить построением предыдущего п. и, следов., что ∆DEF ~ ∆ABC. Итак, если два угла одного треугольника равны соответственно двум углам другого, то эти треугольники подобны .

208. Задача . Построить четвертый пропорциональный к трем данным отрезкам.

Пусть даны отрезки a, b и c (чер. 206); требуется построить такой 4-й отрезок x, чтобы имела место пропорция a/b = c/x.

Строим две произвольных, пересекающихся в точке O, прямых AB и CD и откладываем от точки O на одной из них отрезки первого отношения: OA = a, OB = b (можно в одном, или в разных направлениях от точки O) и на другой прямой известный отрезок второго отношения OC = c. Затем соединим прямою концы тех отрезков, которые служат предыдущими членами нашей пропорции (если бы один из них не был известен, то надо соединить концы отрезков, служащих последующими членами данной пропорции); получим прямую AC, соединяющую концы отрезков a и c. Затем чрез точку B строим прямую BD || AC. Тогда поучим ∆OBD ~ ∆OAC (∠O = ∠O, как вертикальные и ∠C = ∠D, как внутренние накрест-лежащие, что достаточно по предыдущему п. для подобия наших треугольников). Отсюда имеем (п. 206) пропорциональность сходственных сторон:

OA/OB = OC/OD или a/b = c/OD,

отсюда вытекает, что искомый отрезок x = OD.

Если бы требовалось удовлетворить пропорции x/c = a/b, то надо было бы соединить точки B и C и через точку A построить AL || BD; тогда отрезок OL был бы искомым.

Замечание . Если мы построим отрезок x так, чтобы, напр., удовлетворилась пропорция x/c = a/b, то всякий другой отрезок x" не удовлетворит этой пропорции; если x" > x, то x"/c > x>c и, следовательно, x"/c > a/b, если x" < x, то x"/c < x/c и x"/c < a/b.

209. Другие признаки подобия треугольников . 1) Если две стороны одного треугольника пропорциональны двум сторонам другого и углы между ними равны, то эти два треугольника подобны.

Пусть имеем ∆ABC (чер. 207); возьмем произвольный отрезок ED и построим, согласно п. 208, отрезок x так, чтобы имела место пропорция x/AC = ED/AB. Наконец, построим ∆EDF так чтобы у него одною стороною служил отрезок ED, другою стороною отрезок EF = x и, наконец, чтобы ∠E = ∠A. Тогда ∆EDF и ∆ABC связаны между собою соотношениями:

1) ∠E = ∠A и 2) EF/AC = ED/AB.

Подобны ли эти треугольники?

Для получения ответа на этот вопрос надо лишь заметить, что мы можем построить треугольник, равный ∆EDF, иным, более простым способом. Для этого отложим на стороне AB отрезок AK = ED и построим KL || BC; тогда ∆AKL ~ ∆ABC (п. 197) и, след., AL/AC = AK/AB.

Так как AK = ED и так как можно лишь одним способом (замечание п. 208) удовлетворить пропорции x/AC = ED/AB, то отсюда заключаем, что EF = AL и что ∆AKL = ∆EDF. Поэтому ∆EDF наложением можно совместить с ∆AKL и, следовательно, ∆EDF ~ ∆ABC. Этим оправдывается признак пропорциональности, изложенный в начале этого п.

2) Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то эти треугольники подобны .

Пусть имеем ∆ABC (чер. 207); возьмем отрезок ED и построим согласно п. 208 два других отрезка x и y так, чтобы имели место пропорции: x/AC = ED/AB и y/BC = ED/AB. Построим затем по трем сторонам ED, x и y треугольник EDF (EF = x, DF = y).

Тогда ∆EDF и ∆ABC связаны между собою соотношениями:

1) EF/AC = ED/AB и 2) DF/BC = ED/AB

или, короче:

EF/AC = DF/BC = ED/AB.

Подобны ли эти треугольники?

Для решения этого вопроса заметим, что можно иным, более простым, способом построить треугольник, равный ∆EDF.

Для этого отложим на стороне AB отрезок AK = ED и построим KL || BC; тогда (п. 206) получим ∆AKL ~ ∆ABC и, след.,

AL/AC = KL/BC = AK/AB.

Так как отрезок AK = ED и так как, согласно замечанию п. 208, можно построить лишь один отрезок, удовлетворяющий пропорции x/AC = ED/AB, то заключаем, что AL = EF; также найдем, что KL = DF, откуда следует, что ∆EDF = ∆AKL, и наложением можно ∆EDF совместить с ∆AKL (иногда, может быть, придется для этого повернуть ∆EDF другою стороною). Поэтому ∆EDF ~ ∆ABC.

Этим оправдывается изложенный признак.

Подобным образом можно найти еще несколько признаков подобия, как вообще треугольников, так и каких-либо особых треугольников. Наприм., если гипотенуза и катет одного прямоугольного треугольника пропорциональны гипотенузе и катету другого, то эти треугольники подобны . Выяснение его справедливости основывается: 1) на замечании п. 208 и 2) на признаке равенства прямоугольных треугольников (п. 74, признак 4).

Замечание . В некоторых из следующих задач придется находить отношения отрезков, измеренных какою-либо единицею. Если, например, отрезок x = 7½ лин. един. и отрезок y = 3/10 лин. един. (линейная единица одна и та же), то, чтобы найти отношение отрезка x к отрезку y, надо выразить отрезок x числом, принимая за единицу отрезок y. Если y = 3/10 лин. единиц, то лин. един. = 10/3 * y и, следовательно,

x = (7½ * 10/3)y, откуда x/y = 7½ * 10/3 = 7½: 3/10,

т. е. для наложения отношения отрезков, измеренных какою-либо одною единицею, надо найти отношение чисел, выражающих наши отрезки, а отношение чисел, как известно из арифметики, находится при помощи деления.

210. Упражнения .

1. Даны 2 прямоугольных треугольника; острый угол одного из них = 41°, а острый угол другого = 49°. Узнать, подобны ли эти треугольники.

2. Даны ∆ABC и ∆KLM (чер. 208) так, что ∠B = ∠M и AB = 15 дм., BC = 18 дм., ML = 12 дм. и MK = 10 дм. Подобны ли эти треугольники? Если они подобны, то вычислить сторону AC, зная, что сторона KL = 5½ дм.

3. Даны ∆ABC и ∆KLM (чер. 208) так, что AB = 18 дм., BC = 20 дм., AC = 8 дм., KL = 6 дм., KM = 13½ дм., ML = 15 дм. Подобны ли эти треугольники? Как здесь узнать сходственные стороны?

4. В треугольниках ABC и KLM дано: AB = 16 дм., AC = 8 дм., BC = 20 дм., KL = 5 дм., MK = 10 дм. и ML = 12 дм. Подобны ли эти треугольники? Если не подобны, то как надо изменить сторону ML, чтобы треугольники оказались подобны?

5. Даны 2 подобных треугольника, стороны одного из которых равны соотв. 10, 14 и 16 дм. и большая сторона другого = 20 дм. Найти остальные 2 стороны второго треугольника.

6. Дан треугольник. Пользуясь способом п. 206, построить другой треугольник, подобный данному так, чтобы каждое отношение стороны нового треугольника к сходственной стороне второго было = ¾.
Сделать такое же построение, если вышеуказанное отношение должно равняться 2½.

211. Отношения высот и площадей подобных треугольников . Пусть имеем ∆ABC ~ ∆DEF (чер. 209). Следовательно, мы имеем: ∠A = ∠D, ∠B (∠ABC) = ∠E (∠DEF) и ∠C = ∠F (1) и

AB/DE = AC/DF = BC/EF (2)

Построим высоты BM и EN в наших треугольниках, опуская перпендикуляры на сходственные стороны; станем называть эти высоты сходственными. Тогда ∆ABM ~ ∆DEN, так как у них ∠A = ∠D на основании равенств (1) и ∠AMB = ∠DNE, как прямые углы (BM ⊥ AC и EN ⊥ DF), а этого достаточно для подобия наших треугольников (п. 207) и из их подобия получаем:

На основании равенств (2) можем последнее равенство продолжить:

BM/EN = AB/DE = AC/DF = BC/EF,

т. е. отношение сходственных высот подобных треугольников равно отношению сходственных сторон.

Из ряда последних равных отношений обратим внимание на пропорцию.

(Отношение сходственных высот = отношению оснований).

212. В п. 209 было указано, как находить отношение двух отрезков, измеренных одною и тою же единицею. Тоже относится и к нахождению отношения двух площадей, измеренных одною и тою же квадратною единицею: это отношение находится делением чисел, выражающих наши площади.

Мы будем в этом п., а равно во многих случаях и дальше под обозначением, например, AB понимать число, выражающее отрезок AB в каких-либо линейных единицах, также под обозначением «площадь ∆ABC» будем понимать число, выражающее площадь ∆ABC в квадратных единицах. При разборе одного вопроса все отрезки будут считаться измеренными одною и тою же линейною единицею, а все площади – соответствующими квадратными единицами.

Мы знаем (п. 201), что для измерения площади треугольника в квадратных единицах надо измерить его основание и высоту соответствующей линейною единицею и взять половину произведения полученных чисел.
Теперь, употребляя обозначение согласно вышесделанному условию, имеем для ∆ABC и ∆DEF (чер. 209)
площ. ∆ABC = (AC * BM) / 2 и площ. ∆DEF = (DF * EN) / 2.

Найдем отношение площадей наших треугольников делением

т. е. отношение площадей двух треугольников равно произведению отношения их оснований на отношение их высот .

Примем теперь во внимание, что мы имеем дело с подобными треугольниками - мы считаем, что ∆ABC ~ ∆DEF.

Тогда из предыдущего п. имеем:

Заменяя в формуле, выражающей отношение площадей треугольников, отношение высот равным ему отношением оснований, получаем:

Можем также сказать, что это отношение = (AB/DE) 2 . Итак,

отношение площадей подобных треугольников равно квадрату отношения их сходственных сторон .

Этот результат согласуется с найденным в п. 160 (упражнения 5, 6 и 7).

Упражнение . Найти отношение площадей подобных треугольников, данных в п. 210 (упражнения 2, 3, 5 и 6).

213. Отношение площадей треугольников, имеющих по равному углу. Пусть в ∆ABC и ∆DEF (чер. 210) имеем ∠A = ∠D, а другие углы не равны. Тогда наши треугольники не подобны. Мы так же, как и в предыдущем п., построим высоты BM и EN этих треугольников и найдем делением отношение их площадей

BM/EN = AB/DE (2)

Но теперь уже нельзя заменить отношение высот (BM/EN) отношением оснований (AC/DF), так как эти треугольники не подобны. Пользуясь (2) из (1) имеем:

т. е. отношение площадей двух треугольников, имеющих по равному углу, равно произведению отношений сторон, составляющих эти углы.

Упражнение . Дан треугольник; построить другой треугольник так, чтобы один угол остался неизменным, а стороны, составляющие этот угол, увеличились одна в 2 раза и другая в 3 раза. Как увеличится его площадь? Ответ, легко находимый вычислением, желательно вычислить геометрически.

Как правило, два треугольника считаются подобными если они имеют одинаковую форму, даже если они различаются размерами, повернуты или даже перевернуты.

Математическое представление двух подобных треугольников A 1 B 1 C 1 и A 2 B 2 C 2 , показанных на рисунке, записывается следующим образом:

ΔA 1 B 1 C 1 ~ ΔA 2 B 2 C 2

Два треугольника являются подобными если:

1. Каждый угол одного треугольника равен соответствующему углу другого треугольника:
∠A 1 = ∠A 2 , ∠B 1 = ∠B 2 и∠C 1 = ∠C 2

2. Отношения сторон одного треугольника к соответствующим сторонам другого треугольника равны между собой:
$\frac{A_1B_1}{A_2B_2}=\frac{A_1C_1}{A_2C_2}=\frac{B_1C_1}{B_2C_2}$

3. Отношения двух сторон одного треугольника к соответствующим сторонам другого треугольника равны между собой и при этом
углы между этими сторонами равны:
$\frac{B_1A_1}{B_2A_2}=\frac{A_1C_1}{A_2C_2}$ и $\angle A_1 = \angle A_2$
или
$\frac{A_1B_1}{A_2B_2}=\frac{B_1C_1}{B_2C_2}$ и $\angle B_1 = \angle B_2$
или
$\frac{B_1C_1}{B_2C_2}=\frac{C_1A_1}{C_2A_2}$ и $\angle C_1 = \angle C_2$

Не нужно путать подобные треугольники с равными треугольниками. У равных треугольников равны соответствующие длины сторон. Поэтому для равных треугольников:

$\frac{A_1B_1}{A_2B_2}=\frac{A_1C_1}{A_2C_2}=\frac{B_1C_1}{B_2C_2}=1$

Из этого следует что все равные треугольники являются подобными. Однако не все подобные треугольники являются равными.

Несмотря на то, что вышеприведенная запись показывает, что для выяснения, являются ли два треугольника подобными или нет, нам должны быть известны величины трех углов или длины трех сторон каждого треугольника, для решения задач с подобными треугольниками достаточно знать любые три величины из указанных выше для каждого треугольника. Эти величины могут составлять различные комбинации:

1) три угла каждого треугольника (длины сторон треугольников знать не нужно).

Или хотя бы 2 угла одного треугольника должны быть равны 2-м углам другого треугольника.
Так как если 2 угла равны, то третий угол также будет равным.(Величина третьего угла составляет 180 - угол1 - угол2)

2) длины сторон каждого треугольника (углы знать не нужно);

3) длины двух сторон и угол между ними.

Далее мы рассмотрим решение некоторых задач с подобными треугольниками. Сначала мы рассмотрим задачи, которые можно решить непосредственным использованием вышеуказанных правил, а затем обсудим некоторые практические задачи, которые решаются по методу подобных треугольников.

Практические задачи с подобными треугольниками

Пример №1: Покажите, что два треугольника на рисунке внизу являются подобными.

Решение:
Так как длины сторон обоих треугольников известны, то здесь можно применить второе правило:

$\frac{PQ}{AB}=\frac{6}{2}=3$ $\frac{QR}{CB}=\frac{12}{4}=3$ $\frac{PR}{AC}=\frac{15}{5}=3$

Пример №2: Покажите, что два данных треугольника являются подобными и определите длины сторон PQ и PR .

Решение:
∠A = ∠P и ∠B = ∠Q, ∠C = ∠R (так как ∠C = 180 - ∠A - ∠B и ∠R = 180 - ∠P - ∠Q)

Из этого следует, что треугольники ΔABC и ΔPQR подобны. Следовательно:
$\frac{AB}{PQ}=\frac{BC}{QR}=\frac{AC}{PR}$

$\frac{BC}{QR}=\frac{6}{12}=\frac{AB}{PQ}=\frac{4}{PQ} \Rightarrow PQ=\frac{4\times12}{6} = 8$ и
$\frac{BC}{QR}=\frac{6}{12}=\frac{AC}{PR}=\frac{7}{PR} \Rightarrow PR=\frac{7\times12}{6} = 14$

Пример №3: Определите длину AB в данном треугольнике.

Решение:

∠ABC = ∠ADE, ∠ACB = ∠AED и ∠A общий => треугольники ΔABC и ΔADE являются подобными.

$\frac{BC}{DE} = \frac{3}{6} = \frac{AB}{AD} = \frac{AB}{AB + BD} = \frac{AB}{AB + 4} = \frac{1}{2} \Rightarrow 2\times AB = AB + 4 \Rightarrow AB = 4$

Пример №4: Определить длину AD (x) геометрической фигуры на рисунке.

Треугольники ΔABC и ΔCDE являются подобными так как AB || DE и у них общий верхний угол C.
Мы видим, что один треугольник является масштабированной версией другого. Однако нам нужно это доказать математически.

AB || DE, CD || AC и BC || EC
∠BAC = ∠EDC и ∠ABC = ∠DEC

Исходя из вышеизложенного и учитывая наличие общего угла C , мы можем утверждать, что треугольники ΔABC и ΔCDE подобны.

Следовательно:
$\frac{DE}{AB} = \frac{7}{11} = \frac{CD}{CA} = \frac{15}{CA} \Rightarrow CA = \frac{15 \times 11}{7} = 23.57$
x = AC - DC = 23.57 - 15 = 8.57

Практические примеры

Пример №5: На фабрике используется наклонная конвеерная лента для транспортировки продукции с уровня 1 на уровень 2, который выше уровня 1 на 3 метра, как показано на рисунке. Наклонный конвеер обслуживается с одного конца до уровня 1 и с другого конца до рабочего места, расположенного на расстоянии 8 метров от рабочей точки уровня 1.

Фабрика хочет модернизировать конвеер для доступа к новому уровню, который находится на расстоянии 9 метров над уровнем 1, и при этом сохранить угол наклона конвеера.

Определите расстояние, на котором нужно установить новый рабочий пункт для обеспечения работы конвеера на его новом конце на уровне 2. Также вычислите дополнительное расстояние, которое пройдет продукция при перемещении на новый уровень.

Решение:

Для начала давайте обозначим каждую точку пересечения определенной буквой, как показано на рисунке.

Исходя из рассуждений, приведенных выше в предыдущих примерах, мы можем сделать вывод о том, что треугольники ΔABC и ΔADE являются подобными. Следовательно,

$\frac{DE}{BC} = \frac{3}{9} = \frac{AD}{AB} = \frac{8}{AB} \Rightarrow AB = \frac{8 \times 9}{3} = 24 м$
x = AB - 8 = 24 - 8 = 16 м

Таким образом, новый пункт должен быть установлен на расстоянии 16 метров от уже существующего пункта.

А так как конструкция состоит из прямоугольных треугольников, мы можем вычислить расстояние перемещения продукции следующим образом:

$AE = \sqrt{AD^2 + DE^2} = \sqrt{8^2 + 3^2} = 8.54 м$

Аналогично, $AC = \sqrt{AB^2 + BC^2} = \sqrt{24^2 + 9^2} = 25.63 м$
что является расстоянием, которое проходит продукция в данный момент при попадании на существующий уровень.

y = AC - AE = 25.63 - 8.54 = 17.09 м
это дополнительное расстояние, которое должна пройти продукция для достижения нового уровня.

Пример №6: Стив хочет навестить своего приятеля, который недавно переехал в новый дом. Дорожная карта проезда к дому Стива и его приятеля вместе с известными Стиву расстояниями показана на рисунке. Помогите Стиву добраться к дому его приятеля наиболее коротким путем.

Решение:

Дорожную карту можно геометрически представить в следующем виде, как показано на рисунке.

Мы видим, что треугольники ΔABC и ΔCDE подобны, следовательно:
$\frac{AB}{DE} = \frac{BC}{CD} = \frac{AC}{CE}$

В условии задачи сказано, что:

AB = 15 км, AC = 13.13 км, CD = 4.41 км и DE = 5 км

Используя эту информацию, мы можем вычислить следующие расстояния:

$BC = \frac{AB \times CD}{DE} = \frac{15 \times 4.41}{5} = 13.23 км$
$CE = \frac{AC \times CD}{BC} = \frac{13.13 \times 4.41}{13.23} = 4.38 км$

Стив может добраться к дому своего друга по следующим маршрутам:

A -> B -> C -> E -> G, суммарное расстояние равно 7.5+13.23+4.38+2.5=27.61 км

F -> B -> C -> D -> G, суммарное расстояние равно 7.5+13.23+4.41+2.5=27.64 км

F -> A -> C -> E -> G, суммарное расстояние равно 7.5+13.13+4.38+2.5=27.51 км

F -> A -> C -> D -> G, суммарное расстояние равно 7.5+13.13+4.41+2.5=27.54 км

Следовательно, маршрут №3 является наиболее коротким и может быть предложен Стиву.

Пример 7:
Триша хочет измерить высоту дома, но у нее нет нужных инструментов. Она заметила, что перед домом растет дерево и решила применить свою находчивость и знания геометрии, полученные в школе, для определения высоты здания. Она измерила расстояние от дерева до дома, результат составил 30 м. Затем она встала перед деревом и начала отходить назад, пока верхний край здания стал виден над верхушкой дерева. Триша отметила это место и измерила расстояние от него до дерева. Это расстояние составило 5 м.

Высота дерева равна 2.8 м, а высота уровня глаз Триши равна 1.6 м. Помогите Трише определить высоту здания.

Решение:

Геометрическое представление задачи показано на рисунке.

Сначала мы используем подобность треугольников ΔABC и ΔADE.

$\frac{BC}{DE} = \frac{1.6}{2.8} = \frac{AC}{AE} = \frac{AC}{5 + AC} \Rightarrow 2.8 \times AC = 1.6 \times (5 + AC) = 8 + 1.6 \times AC$

$(2.8 - 1.6) \times AC = 8 \Rightarrow AC = \frac{8}{1.2} = 6.67$

Затем мы можем использовать подобность треугольников ΔACB и ΔAFG или ΔADE и ΔAFG. Давайте выберем первый вариант.

$\frac{BC}{FG} = \frac{1.6}{H} = \frac{AC}{AG} = \frac{6.67}{6.67 + 5 + 30} = 0.16 \Rightarrow H = \frac{1.6}{0.16} = 10 м$

252. Понятие о подобии треугольников распространяется и на многоугольники. Пусть дан многоугольник ABCDE (чер. 245); выполним построение аналогичное п. 206. Построим диагонали AC и AD и, выбрав какую-либо точку K на стороне AB между точками A и B или вне отрезка AB, построим KL || BC до пересечения с диагональю AC, затем LM || CD до пересечения с AD и, наконец, MN || DE до пересечения с AE. Тогда получится многоугольник AKLMN, который связан с ABCD следующими зависимостями:

1) Углы одного многоугольника равны попарно углам другого: угол A у них общий, ∠K = ∠B (как соответственные), ∠KLM = ∠BCD, ибо ∠KLA = ∠BCA и ∠ALM = ∠ACD и т. д.

2) Сходственные стороны этих многоугольников пропорциональны, т. е. отношение одной пары сходственных сторон равно отношению другой пары, равно отношению третьей пары и т. д.

«Сходственные» стороны здесь надо понимать несколько иначе, чем для треугольников: здесь считаем сходственными сторонами те, которые заключены между равными углами, например, BC и KL.

Справедливость указанной пропорциональности видна следующим образом:

∆AKL ~ ∆ABC, следовательно, AK/AB = KL/BC = AL/AC
∆ALM ~ ∆ACD, следовательно, AL/AC = LM/CD = AM/AD
∆AMN ~ ∆ADE, следовательно, AM/AD = MN/DE = AN/AE

Мы видим, что среди первых трех равных отношений и среди вторых трех равных отношений имеется одно одинаковое AL/AC; также и последние три отношения связываются с предыдущими отношением AM/AD. Поэтому, пропуская отношения диагоналей, получим:

AK/AB = KL/BC = LM/CD = MN/DE = AN/AE

Все это остается, как легко видеть, справедливым и для многоугольника с большим, чем у нас, числом сторон.

Если мы многоугольник AKLMN перенесем в другое место плоскости, то найденные выше 2 соотношения этого многоугольника с ABCDE останутся в силе; такие многоугольники называются подобными. Итак, два многоугольника называются подобными, если углы одного равны попарно углам другого и если сходственные стороны их пропорциональны .

Мы, следовательно, умеем строить многоугольник, подобный данному. Мы построили AKLMN ~ ABCDE.

Мы видим еще, что в многоугольниках ABCDE и AKLMN построены диагонали из их соответственных вершин,причем получилось два ряда подобных треугольников: ∆AKL ~ ∆ABC, ∆ALM ~ ∆ACD и ∆AMN ~ ∆ADE - треугольники эти одинаково расположены в обоих многоугольниках.

Возникает вопрос, останется ли в силе последнее свойство, если мы построим многоугольник, подобный данному, каким-либо еще способом, не тем, которым мы пользовались здесь.

253. Пусть как-либо построен многоугольник A"B"C"D"E" подобный многоугольнику ABCDE (чер. 246), т. е. так, что

∠A" = ∠A, ∠B" = ∠B, ∠C" = ∠C, ∠D" = ∠D, ∠E" = ∠E (1)

A"B"/AB = B"C"/BC = C"D"/CD = D"E"/DE = E"A"/EA (2)

Вопрос конца предыдущего п. равносилен другому: можно ли привести эти два многоугольника в положение, чтобы, например, точка A" совпала с A, а остальные вершины были бы расположены попарно на прямых, идущих из этой общей точки, и чтобы сходственные стороны их или были параллельны, или сторона одного многоугольника расположилась бы на стороне другого.

Решим этот вопрос. Для этого отложим на стороне AB от точки A отрезок AK = A"B" и, пользуясь предыдущим п., построим многоугольник AKLMN ~ ABCDE.

Остается выяснить, может ли многоугольник A"B"C"D"E" совпасть при наложении с AKLMN.

Мы имеем: AK/AB = KL/BC = LM/CD = MN/DE = NA/EA.

Сравнивая эти равенства с равенствами (2) и принимая во внимание, что AK = A"B", легко получаем KL = B"C", LM = C"D" и т. д., т. е. все стороны многоугольников A"B"C"D"E" и AKLMN попарно равны. Наложим многоугольник A"B"C"D"E" на AKLMN так, чтобы A" попала в A и сторона A"B" совпала бы с AK (мы ведь строили AK = A"B"); тогда, в силу равенства углов B" и K, сторона B"C" пойдет по KL, в силу равенства сторон KL и B"C", точка C" попадет в L и т. д.

Итак, A"B"C"D"E" совпадает с AKLMN, а следовательно, если построим диагонали A"C" и A"D", получим ряд треугольников, подобных и одинаково расположенных с ∆ABC, ∆ACD и т. д.

Поэтому заключаем: Если построить в подобных многоугольниках диагонали из соответственных вершин, то получим 2 ряда подобных и одинаково расположенных треугольников.

Легко увидать справедливость и обратного заключения: если, ∆A"B"C" ~ ABC, ∆A"C"D" ~ ∆ACD и ∆A"D"E" ~ ∆ADE, то многоугольник A"B"C"D"E" ~ многоугольнику ABCDE. Тогда ∆A"B"C" = ∆AKL, ∆A"C"D" = ∆ALM и ∆A"D"E" = ∆AMN, откуда следует равенство многоугольников A"B"C"D"E" и AKLMN и, следовательно, подобие A"B"C"D"E" и ABCDE.

254. То положение (две соответственных вершины сливаются в одной точке, остальные вершины попарно лежат на прямых, проходящих чрез эту точку, а сходственные стороны параллельны), в которое нам удалось привести два подобных многоугольника, является частным случаем другого более общего положения двух подобных многоугольников.

Пусть имеем KLMN ~ ABCD (чер. 247). Возьмем какую-либо точку S и соединим ее со всеми вершинами A, B, C и D первого многоугольника. Постараемся построить многоугольник, равный многоугольнику KLMN, так, чтобы его вершины лежали на прямых SA, SB, SC и SD и стороны были бы параллельны сторонам многоугольника ABCD.

Для этого отложим на стороне AB отрезок AP = KL (полагаем, что KL и AB сходственные стороны) и построим PB" || AS (на чертеже точка P и прямая PB" не даны). Чрез точку B", где SB пересекается с PB", построим B"A" || AB. Тогда A"B" = AP = KL, затем построим B"C" || BC, чрез точку C", где B"C" пересекается с SC, проведем C"D" || CD и точку D", где C"D" пересекается с SD, соединим с A". Получим многоугольник A"B"C"D", который, как это сейчас увидим, подобен многоугольнику ABCD.

Так как A"B" || AB, то ∆SA"B" ~ ∆SAB, откуда

SA"/SA = A"B"/AB = SB"/SB (1)

Так как B"C" || BC, то ∆SB"C" ~ ∆SBC, откуда

SB"/SB = B"C"/BC = SC"/SC (2)

Так как C"D" || CD, то ∆SC"D" ~ ∆SCD, откуда

SC"/SC = C"D"/CD = SD"/SD (3)

Отсюда можно вывести, что SA"/SA = SD"/SD, а следовательно ∆SA"D" ~ ∆SAD, так как две стороны одного пропорциональны двум сторонам другого и углы между ними равны (∠S общий), - A"D" || AD и

SD"/SD = D"A"/DA = SA"/SA (4)

Из равенств отношений (1), (2), (3) и (4) легко получаем:

A"B"/AB = B"C"/BC = C"D"/CD = D"A"/DA (5)

Кроме того, ∠A" = ∠A, ∠B" = ∠B и т. д., как углы с параллельными сторонами. Следовательно, A"B"C"D" ~ ABCD.

Далее легко увидать, что KLMN = A"B"C"D". В самом деле, ∠K = ∠A, но ∠A = ∠A", следовательно, ∠K = ∠A"; также ∠L = ∠B" и т. д. - углы у наших многоугольников равны. Креме того, из подобия KLMN ~ ABCD получаем:

KL/AB = LM/BC = MN/CD = NK/DA.

Сравнивая эти равные отношения с равенствами (5) и имея в виду, что A"B" = KL, находим: B"C" = LM, C"D" = MN, D"A" = NK. Теперь легко, как это делали выше, увидать, что KLMN при наложении совместится с A"B"C"D". Следовательно, нам удалось поместить данные подобные многоугольники в такое положение, что их вершины расположены попарно на прямых, проходящих чрез точку S и их сходственные стороны параллельны, к чему мы и стремились.

Заметим еще, что соответственные вершины в наших многоугольниках следуют друг за другом в одном направлении (см. стрелки около многоугольников ABCD, KLMN и A"B"C"D") - по часовой стрелке.

Если бы вершины одного многоугольника, соответствующие последовательным вершинам другого, шли друг за другом в направлении, обратном тому, как они расположены в другом, то удалось бы поместить наши многоугольники так, чтобы соответствующие вершины располагались по разные стороны от точки S (см. чер. 248).

Точка S, где сходятся прямые, соединяющие пары соответственных вершин многоугольников, называется центром подобия ; в первом случае (чер. 247), когда обе соответственные вершины (например, A и A") расположены в одной стороне от S, центр подобия называется внешним , а во втором (чер. 248), когда соответствующие вершины расположены по разные стороны точки S, центр подобия называется внутренним . Если подобные многоугольники расположены так, что они имеют центр подобия, то говорят, что они подобно расположены .

255. Если нам дан многоугольник ABCD (чер. 247 или 248), - будем данный многоугольник называть оригиналом , - мы можем, выбрав произвольную точку S, получать его изображения, подобные ему в каком угодно масштабе , - этим именем называют отношение какого-либо отрезка изображения к соответствующему отрезку в оригинале (в данном многоугольнике). Это отношение называют еще коэффициентом подобия - обозначим его через k. Пока еще для нас коэффициентом подобия является отношение стороны изображения к стороне оригинала, т. е.

A"B/AB = B"C/BC = … = k.

В дальнейшем мы распространим это понятие на отношение всяких двух отрезков изображения и оригинала, сходственных между собою.

Из равенства (1), (2), (3) и (4) предыдущего п., имеем:

SA"/SA = SB"/SB = SC"/SC = SD"/SD = A"B"/AB = k,

т. е. отношение расстояний от центра подобия соответственных вершин изображения и оригинала = коэффициенту подобия.

Под именем фигура (плоская) мы понимаем совокупность точек и линий плоскостей. Многоугольники ABCD - есть фигура. Присоединим еще одну точку (выбранную по произволу) E - получим новую фигуру состоящую из многоугольника ABCD и точки E, - найдем изображение точки E. Для этого построим прямую SE и на ней отложим отрезок SE так, чтобы SE"/SE = k (такой отрезок легко построить, пользуясь п. 214); этот отрезок мы можем отложить по направлению SE (чер. 247); или в обратном направлении (чер. 248). Полученная точка E" и есть изображение точки E - другими словами точки E" и E суть соответственные точки в наших двух подобных и подобно расположенных фигурах.

Соединив точку E, например, с B и точку E" с B" (B и B" суть тоже соответственные точки), получим два соответствующих друг другу отрезка BE и B"E".

Легко увидать, что ∆SBE ~ ∆SB"E" (так как ∠BSE = ∠B"SE и стороны, составляющие эти углы, пропорциональны: SB"/SB = k и SE"/SE = k, - следовательно, SB"/SB = SE"/SE), отсюда вытекает:

1) B"E" || BE и 2) B"E"/BE = SB"/SB = k

т. е. соответствующие друг другу отрезки в изображении и оригинале 1) параллельны между собою и 2) их отношение равно коэффициенту подобия .

Отсюда вытекает возможность следующего построения для нахождения точки, соответствующей данной в оригинале точке, если уже имеем одну пару соответствующих точек и известен центр подобия: пусть имеем пару соответствующих точек B и B" и требуется найти точку, соответствующую точке E, - строим прямые SE и BE и чрез B" строим прямую, параллельную BE, ее точка пересечения E" с SE и даст искомую точку.

256. Построим для какой-либо фигуры, одна точка которой есть A (чер. 249), ее изображения, принимая две произвольных точки S 1 и S 2 за внешние центры подобия и числа k 1 и k 2 за коэффициенты подобия. Пусть в первом изображении точке A соответствует точка A" и во втором изображении этой же точке соответствует точка A"".

Присоединим еще к данной фигуре какую-либо точку B, лежащую на прямой S 1 S 2 ; тогда этой точке B соответствуют в первом изображении точка B" и во втором точка B"", причем точки B" и B"" должны лежать на той же прямой S 1 S 2 и прямые AB, A"B" и A""B"" должны быть параллельны и одинаково направлены.

Тогда имеем:

A"B"/AB = k 1 и A""B""/AB = k 2 .

Отсюда находим:

A"B"/A""B"" = k 1 /k 2 .

Соединим точки A" и A"", найдем точку пересечения S 3 прямых A""A" и S 2 S 1 . Тогда из подобия треугольников S 3 A"B" и S 2 A""B"" находим:

Соединив точки A" и A"", найдем точку пересечения S 3 прямых A""A" и S 2 S 1 . Тогда из подобия треугольников S 3 A"B" и S 2 A""B"" находим:

S 3 B"/S 3 B"" = A"B"/A""B"" = k 1 /k 2 ,

т. е. точка S 2 должна делить отрезок B"B"" внешним образом в отношении, равном данному числу k 1 /k 2 . Мы знаем (п. 217), что существует только одна точка, которая делит данный отрезок B"B"" в данном отношении внешним образом. Если мы возьмем какую-либо еще точку C данной фигуры и построим ее изображения C" и C"", то, соединив точки C" и C"" и взяв точку пересечения, назовем ее опять S 3 , прямой C"C"" с прямой S 1 S 2 , получим, что ∆S 3 B"C" ~ ∆S 3 B""C"" (B""C"" || BC и B"C" || BC, следовательно, B""C"" || B"C"), откуда опять найдем, что S 3 B"/S 3 B"" = k 1 /k 2 , т. е. новая точка S 3 совпадает с прежнею. Следовательно, S 3 есть центр подобия фигур (A"B"C"...) и (A""B""C""...) и притом внешний, ибо направления, в котором следуют друг за другом соответствующие точки в обеих фигурах, одинаковы. Из этого заключаем, что фигуры (A"B"C"...) и (A""B""C""...) также имеют внешний центр подобия и он расположен на одной прямой с центрами S 1 и S 2 .

Если одни из центров подобия S1 взять внешний, а другой S2 внутренний (чер. 250), то направления соответствующих отрезков таковы: A"B" одинаково с направлением AB, но A""B"" обратно направлению AB, - следовательно, направление A""B"" обратно A"B" и S3 является внутренним центром подобия фигур (A"B"...) и (A""B""...).

Если взять оба центра подобия внутренними (например, S 2 и S 3 на чер. 250), то легко увидать, что третий центр подобия окажется внешним. Итак, вообще:

Если три фигуры попарно подобно расположены, то три центра подобия расположены на одной прямой, причем или все три они внешние, или два из них внутренних, а один внешний.

257. .
Пусть имеем два подобных многоугольника ABCDEF и A"B"C"D"E"F" (чер. 251). Назовем коэффициент подобия чрез k.

A"B"/AB = k, B"C"/BC = k и т. д.,

A"B" = k · AB, B"C" = k · BC, C"D" = k · CD, …

Сложив эти равенства по частям и вынеся множитель k во второй части за скобку, получим:

A"B" + B"C" + C"D" + … = k(AB + BC + CD + …),

(A"B" + B"C" + C"D" …) / (AB + BC + CD + …) = k = A"B"/AB,

т. е. отношение периметров подобных треугольников равно отношению сходственных сторон (или равно коэффициенту подобия) .

Выберем две соответственных вершины, напр., A и A", и построим проходящие чрез них диагонали. Тогда мы знаем: 1) (из п. 253) ∆ABC ~ ∆A"B"C", ∆ACD ~ ∆A"C"D" и т. д. 2) (из п. 212). Отношение площадей подобных треугольников равно квадрату отношения их сходственных сторон, следовательно,

пл. ∆A"B"C" / пл. ∆ABC = (A"B"/AB) 2 = k 2 ; пл. ∆A"C"D" / пл. ∆ACD = (C"D"/CD) 2 = k 2 и т. д.,

пл. ∆A"B"C" = k 2 · пл. ∆ABC; пл. ∆A"C"D" = k 2 · пл. ∆ACD;
пл. ∆A"D"E" = k 2 · пл. ∆ADE ...

Сложив эти равенства по частям и вынеся общего множителя k 2 во второй части за скобку получим:

пл. ∆A"B"C" + пл. ∆A"C"D" + ∆A"D"E" + … = k 2 (пл. ∆ABC + пл. ∆ACD + пл. ∆ADE + …),

пл. A"B"C"D"E"F" / пл. ABCDEF = k 2 = (A"B"/AB) 2 ,

т. е. отношение площадей подобных многоугольников равно квадрату отношения их сходственных сторон (или равно квадрату коэффициента подобия) .

258. Два правильных одноименных многоугольника всегда подобны . В самом деле, углы у одноименных многоугольников одинаковы (п. 248), а так как все стороны каждого равны между собою, то, очевидно, отношение любой стороны одного к любой стороне другого есть число постоянное.

Если в круг впишем какой-либо правильный многоугольник (чер. 252) и чрез середины дуг, стягиваемых его сторонами, построим касательные к кругу, то получим правильный одноименный многоугольник, описанный около этого круга. Не трудно выяснить (предоставляем это желающим), что полученные два правильные многоугольника подобно расположены, и центр круга служит их внешним центром подобия, – внешним потому, что каждая пара соответствующих точек (напр., A и A") расположена в одном направлении от центра (если многоугольник имеет четное число сторон, то центр круга можно считать и внутренним центром подобия, надо лишь считать, что, например, точке A соответствует точка A"").

259. Упражнения .

1. Стороны одного пятиугольника равны соответственно 12, 14, 10, 8 и 16 дм. Найти стороны другого пятиугольника, подобного первому, если его периметр = 80 дм.

2. Сумма площадей двух подобных многоугольников равна 250 кв. дм., а отношение двух сходственных сторон = ¾. Вычислить площадь каждого из них.

3. Показать, что если в круг вписан правильный многоугольник с нечетным числом сторон и в его вершинах построены касательные к кругу, то получится описанный многоугольник, подобно расположенный с вписанным, – центр круга служит их внутренним центром подобия.

4. Дан треугольник; построить другой треугольник, подобно расположенный с первым так, чтобы центр тяжести первого служил внутренним центом подобия и чтобы коэффициент подобия = ½. Выяснить при помощи этого, как расположены точки высот, центр тяжести и центр описанного круга данного треугольника.

5. В данный треугольник вписан квадрат.

Пусть ABC данный треугольник (чер. 253) и DEFK искомый квадрат. Построим еще квадрат MNPQ, чтобы одна сторона MQ лежала на стороне AC треугольника и точка N на стороне AB. Легко видеть, что квадрат MNPQ подобно расположен с искомым квадратом DEFK и внешним их центром подобия является точка A; следовательно, точка F лежит на прямой AP. После нахождения точки F искомый квадрат легко построить.

6. Дан угол и точка внутри его. Найти на одной стороне угла точку, равноудаленную от данной точки и от другой стороны.

Задача решается тем же приемом.

7. Построить треугольник по его высотам.

Легко получить, называя стороны треугольника чрез a, b и c и соответствующие высоты чрез h a , h b и h c , следующую зависимость:

ah a = bh b = ch c , откуда a: b = h b: h a и b: c = h c: h b = h a: (h b h a)/h c

Легко построить отрезок x = (h b h a)/h c (x/h a = h b /h c - построение 4-го пропорционального), после чего построим треугольник со сторонами h b , h a и x. Этот треугольник подобен искомому, так как a: h: c = h b: h a: x; остается построить треугольник подобный только что построенному так, чтобы одна его высота была равна данной.