Механические волны.

Присоединим свободный конец шнурак вибратору, совершающему гармонические колебания.Тогда колебания смещения точки шнура, присоединенной к вибратору, описываютсяформулой:

Найдем смещение произвольнойточки К, находящейся на расстоянииу от начала шнура. Так как скорость распростра­нения колебаний конечна, то колебанияпридут в точку К с запозданием на время

где - скорость распространения колебаний вдоль шнура.

Поэтому колебания смещения произвольной точки К, отстоящей от начала шнура на расстоянииy будут описы­ваться формулой:

Или уравнение волны, определяющее положение точки на расстоянии от источника в любой момент времени.

4 Волна и луч. Длина волны.

Когда волны распространяются не по поверхности среды, а внутри нее, то совокупность точек, колеблющихся в одинаковой фазе, составляет поверхность той или иной формы. Если среда изотропна, т.е. скорость распространения фазы в ней по всем направлениям одинакова, то эта поверхность имеет форму сферы. Такие волны называют сферическими.

Непрерывное геометрическое место точек волны, колеблющихся в одинаковых фазах, называют волновой поверхностью (например, светлые окружности на рисунке 15). Переднюю волновую поверхность, т.е. наиболее удаленную от источника, создающего волны, называют фронтом волны.

Линию, вдоль которой происходит распространения фронта волны, называют лучом. В изотропной среде луч всегда нормален (перпендикулярен) к волновой поверхности. В изотропной среде все лучи представляют собой прямые линии. Каждая прямая, соединяющая точку, в которой находится источник волны, с любой точки фронта волны, в этом случае является лучом.

Перемещение фронта волны в такой среде происходит с постоянной скоростью, поэтому за один период колебаний источника, создающего волны, фронт волны перемещается на строго определенное расстояние λ. Поскольку каждая точка в волне совершает вынужденные колебания, частота этих колебаний равна частоте колебаний источника волны.

Величину λ, характеризующую перемещение волновой поверхности за один период в зависимости от рода среды и частоты колебаний, называют длиной волны. Длину волны измеряют расстоянием, на которое перемещается волновая поверхность за один период колебаний источника волн. Другими словами длиной волны является расстояние между двумя ближайшими точками бегущей волны на одном луче, которые колеблются в одной фазе. (Отметим, что на расстоянии между двумя любыми точками бегущей волны, которые находятся на одном луче и колеблются в одинаковой фазе, всегда укладывается целое число длин волн или четное число полуволн. Если же на луче взять две точки, колеблющиеся в противоположных фазах, то на расстоянии между ними всегда будет укладываться нечетное число полуволн.)

Для поперечных волн (рис. 14) длиной волны является кратчайшее расстояние между двумя ближайшими выпуклостями или впадинами. Для продольных волн длиной волны служит кратчайшее расстояние между центрами двух соседних сгущений или разрежений.

5 Скорость распространения волн и её связь с длиной волны и периодом (частотой) колебаний.

Вспомним, что при распространении колебаний в среде происходит

перемещение фазы (пункт 1). Скорость распространения колебаний в упругой среде называют фазовой скоростью волны. Так как фазовая скорость в изотропной среде постоянна, то её можно найти, разделив перемещение фазы волны на время, за которое оно произошло. Поскольку за время Т фаза волны перемещается на расстояние , то .

Так как , то имеем . (2)

Установлено, что фазовая скорость определяется только физическими свойствами среды и её состоянием, Поэтому механические волны с разной частотой колебаний в заданной среде распространяются с одинаковой скоростью (заметим, что это верно только при не очень большом различии в частоте колебаний).

До сих пор мы занимались геометрической оптикой и изучали распространение световых лучей. При этом понятие луча мы считали интуитивно ясным и не давали ему определения. Основные законы геометрической оптики были сформулированы нами как постулаты.
Теперь мы займёмся волновой оптикой, в которой свет рассматривается как электромагнитные волны. В рамках волновой оптики понятие луча уже можно строго определить. Базовым постулатом волновой теории является принцип Гюйгенса; законы геометрической оптики оказываются его следствиями.

Волновые поверхности и лучи.

Представьте себе маленькую лампочку, которая даёт частые периодические вспышки. Каждая вспышка порождает расходящуюся световую волну в виде расширяющейся сферы (с центром в лампочке). Остановим время - и увидим в пространстве остановившиеся световые сферы, образованные вспышками в различные предшествующие моменты времени.

Эти сферы - так называемые волновые поверхности. Заметьте, что лучи, идущие от лампочки, перпендикулярны волновым поверхностям.

Чтобы дать строгое определение волновой поверхности, давайте вспомним сначала, что такое фаза колебаний. Пусть величина совершает гармонические колебания по закону:

Так вот, фаза - это величина , которая является аргументом косинуса. Фаза, как видим, линейно возрастает со временем. Значение фазы при равно и называется
начальной фазой.

Вспомним также, что волна представляет собой распространение колебаний в пространстве.В случае механических волн это будут колебания частиц упругой среды, в случае электромагнитных волн - колебания векторов напряжённости электрического поля и индукции магнитного поля.

Вне зависимости от того, какие волны рассматриваются, мы можем сказать, что в каждой точке пространства, захваченной волновым процессом, происходят колебания некоторой величины; такой величиной является набор координат колеблющейся частицы в случае механической волны или набор координат векторов, описывающих электрическое и магнитное поля в электромагнитной волне.

Фазы колебаний в двух различных точках пространства, вообще говоря, имеют разное значение. Интерес представляют множества точек, в которых фаза одна и та же. Оказывается, совокупность точек, в которых фаза колебаний в данный момент времени имеет фиксированное значение, образует двумерную поверхность в пространстве.

Определение. Волновая поверхность - это множество всех точек пространства, в которых фаза колебаний в данный момент времени имеет одно и то же значение.

Коротко говоря, волновая поверхность есть поверхность постоянной фазы. Каждому значению фазы отвечает своя волновая поверхность. Набору различных значений фазы соответствует семейство волновых поверхностей.

С течением времени фаза в каждой точке меняется, и волновая поверхность, отвечающая фиксированному значению фазы, перемещается в пространстве. Следовательно, распространение волн можно рассматривать как движение волновых поверхностей! Тем самым в нашем распоряжении оказываются удобные геометрические образы для описания физических волновых процессов.

Например, если точечный источник света находится в прозрачной однородной среде, то волновые поверхности являются концентрическими сферами с общим центром в источнике. Распространение света выглядит как расширение этих сфер. Мы это уже видели выше в ситуации с лампочкой.

Через каждую точку пространства в данный момент времени может проходить только одна волновая поверхность. В самом деле, если предположить, что через точку проходят две волновых поверхности, отвечающие различным значениям фазы и , то немедленно получим противоречие: фаза колебаний в точке окажется одновременно равна этим двум различным числам.

Коль скоро через точку проходит единственная волновая поверхность, то однозначно определено и направление перпендикуляра к волновой поверхности в данной точке.

Определение. Луч - это линия в пространстве, которая в каждой своей точке перпендикулярна волновой поверхности, проходящей через эту точку.

Иными словами, луч есть общий перпендикуляр к семейству волновых поверхностей. Направление луча - это направление распространения волны. Вдоль лучей осуществляется перенос энергии волны от одних точек пространства к другим.

По мере распространения волны происходит перемещение границы, которая разделяет область пространства, захваченную волновым процессом, и невозмущённую пока область. Эта граница называется волновым фронтом. Таким образом, волновой фронт - это множество всех точек пространства, которых достиг колебательный процесс в данный момент времени. Волновой фронт есть частный случай волновой поверхности; это, если можно так выразиться, "самая первая" волновая поверхность.

К наиболее простым видам геометрических поверхностей относятся сфера и плоскость. Соответственно, имеем два важных случая волновых процессов с волновыми поверхностями такой формы - это сферические и плоские волны.

Сферическая волна.

Волна называется сферической , если её волновые поверхности - сферы (рис. 1 ).

Волновые поверхности показаны синим пунктиром, а зелёные радиальные стрелки - это лучи, перпендикулярные волновым поверхностям.

Рассмотрим прозрачную однородную среду, физические свойства которой одинаковы вдоль всех направлений. Точечный источник света, помещённый в такую среду, излучает сферические волны. Это понятно -
ведь свет пойдёт в каждом направлении с одинаковой скоростью, так что любая волновая поверхность будет сферой.

Ну а световые лучи, как мы заметили, оказываются в этом случае обычными прямолинейными геометрическими лучами с началом в источнике. Помните закон прямолинейного распространения света: в прозрачной однородной среде световые лучи являются прямыми линиями ? В геометрической оптике мы сформулировали его как постулат. Теперь мы видим (для случая точечного источника), как этот закон следует из представлений о волновой природе света.

В теме "Электромагнитные волны" мы ввели понятие плотности потока излучения:

Здесь - энергия, которая переносится за время через поверхность площади , расположенную перпендикулярно лучам. Таким образом, плотность потока излучения - это энергия, переносимая волной вдоль лучей через единицу площади в единицу времени.

В нашем случае энергия равномерно распределяется по поверхности сферы, радиус которой увеличивается в процессе распространения волны. Площадь поверхности сферы равна: , поэтому для плотности потока излучения получим:

Как видим, плотность потока излучения в сферической волне обратно пропорциональна квадрату расстояния до источника.

Поскольку энергия пропорциональна квадрату амплитуды колебаний электромагнитного поля, мы приходим к выводу, что амплитуда колебаний в сферической волне обратно пропорциональна расстоянию до источника .

Плоская волна.

Волна называется плоской , если её волновые поверхности - плоскости (рис. 2 ).

Синим пунктиром показаны параллельные плоскости, являющиеся волновыми поверхностями. Лучи - зелёные стрелки - снова оказываются прямыми линиями.

Плоская волна - одна из важнейших идеализаций волновой теории; математически она описывается наиболее просто. Этой идеализацией можно пользоваться, например, когда мы находимся на достаточно большом расстоянии от источника. Тогда в окрестности точки наблюдения можно пренебречь искривлением сферической волновой поверхности и считать волну приблизительно плоской.

В дальнейшем, выводя законы отражения и преломления из принципа Гюйгенса, мы будем использовать именно плоские волны. Но сначала разберёмся с самим принципом Гюйгенса.

Принцип Гюйгенса.

Мы говорили выше, что распространение волн удобно представлять себе как движение волновых поверхностей. Но согласно каким правилам перемещаются волновые поверхности? Иными словами - как, зная положение волновой поверхности в данный момент времени, определить её положение в следующий момент?

Ответ на этот вопрос даёт принцип Гюйгенса - основной постулат волновой теории. Принцип Гюйгенса равным образом справедлив как для механических, так и для электромагнитных волн.

Чтобы лучше понять идею Гюйгенса, давайте рассмотрим такой пример. Бросим в воду горсть камней. От каждого камня пойдёт круговая волна с центром в точке падения камня. Эти круговые волны, накладываясь друг на друга, создадут общую волновую картину на поверхности воды. Важно то, что все круговые волны и порождённая ими волновая картина будут существовать и после того, как камни пустятся на дно. Стало быть, непосредственной причиной исходных круговых волн служат не сами камни, а локальные возмущения поверхности воды в тех местах, куда камни упали. Именно локальные возмущения сами по себе являются источниками расходящихся круговых волн и формирующейся волновой картины, и уже не столь важно, что конкретно послужило причиной каждого из этих возмущений - камень ли, поплавок или какой-то иной объект. Для описания последующего волнового процесса важно только то, что в определённых точках поверхности воды возникли круговые волны.

Ключевая идея Гюйгенса состояла в том, что локальные возмущения могут порождаться не только посторонними объектами типа камня или поплавка, но также и распространяющейся в пространстве волной!

Принцип Гюйгенса. Каждая точка пространства, вовлечённая в волновой процесс, сама становится источником сферических волн.

Эти сферические волны, распространяющиеся во все стороны от каждой точки волнового возмущения, называются вторичными волнами. Последующая эволюция волнового процесса состоит в наложении вторичных волн, испущенных всеми точками, до которых волновой процесс уже успел добраться.

Принцип Гюйгенса даёт рецепт построения волновой поверхности в момент времени по известному её положению в момент времени (рис. 3 ).

Именно, каждую точку исходной волновой поверхности мы рассматриваем как источник вторичных волн. За время вторичные волны пройдут расстояние , где - скорость волны. Из каждой точки старой волновой поверхности строим сферы радиуса ; новая волновая поверхность будет касательной ко всем этим сферам. Говорят ещё, что волновая поверхность в любой момент времени служит огибающей семейства вторичных волн.

Но, конечно, для построения волновой поверхности мы не обязаны брать вторичные волны, испущенные точками, лежащими непременно на одной из предыдущих волновых поверхностей.Искомая волновая поверхность будет огибающей семейства вторичных волн, излучённых точками вообще всякой поверхности, вовлечённой в колебательный процесс.

На базе принципа Гюйгенса можно вывести законы отражения и преломления света, которые раньше мы рассматривали лишь как обобщение экспериментальных фактов.

Вывод закона отражения.

Предположим, что на поверхность раздела двух сред падает плоская волна (рис. 4 ). Фиксируем две точки этой поверхности.

В эти точки приходят два падающих луча и ; плоскость , перпендикулярная этим лучам, есть волновая поверхность падающей волны.

В точке проведена нормаль к отражающей поверхности. Угол есть, как вы помните, угол падения.

Из точек И выходят отражённые лучи и . Перпендикулярная этим лучам плоскость есть волновая поверхность отражённой волны. Угол отражения обозначим пока ; мы хотим доказать, что .

Все точки отрезка служат источниками вторичных волн. Раньше всего волновая поверхность приходит в точку . Затем, по мере движения падающей волны, в колебательный процесс вовлекаются другие точки данного отрезка, и в самую последнюю очередь - точка .

Соответственно, раньше всего начинается излучение вторичных волн в точке ; сферическая волна с центром в имеет на рис. 4 наибольший радиус. По мере приближения к точке радиусы сферических вторичных волн, испущенных промежуточными точками, уменьшаются до нуля - ведь вторичная волна будет излучена тем позже, чем ближе её источник находится к точке .

Волновая поверхность отражённой волны есть плоскость, касательная ко всем этим сферам. На нашем планиметрическом чертеже есть отрезок касательной, проведённой из точки к самой большой окружности с центром в и радиусом .

Теперь заметим, что радиус - это расстояние, пройденное вторичной волной с центром в за то время, пока волновая поверхность двигается к точке . Скажем это чуть по-другому: время движения вторичной волны от точки до точки равно времени движения падающей волны от точки до точки . Но скорости движения падающей и вторичной волн совпадают - ведь дело происходит в одной и той же среде! Поэтому, раз совпадают скорости и времена, то равны и расстояния: .

Получается, что прямоугольные треугольники и равны по гипотенузе и катету. Стало быть, равны и соответствующие острые углы: . Остаётся заметить, что (так как оба они равны ) и (оба они равны ).
Таким образом, - угол отражения равен углу падения, что и требовалось.

Кроме того, из построения на рис. 4 нетрудно видеть, что выполнено и второе утверждение закона преломления: падающий луч , отражённый луч и нормаль к отражающей поверхности лежат в одной плоскости.

Вывод закона преломления.

Теперь покажем, как из принципа Гюйгенса следует закон преломления. Будем для определённости считать, что плоская электромагнитная волна распространяется в воздухе и падает на границу с некоторой прозрачной средой (рис. 5 ). Как обычно, угол падения есть угол между падающим лучом и нормалью к поверхности, угол преломления - это угол между преломлённым лучом и нормалью.

Точка является первой точкой отрезка , которой достигает волновая поверхность падающей волны; в точке излучение вторичных волн начинается раньше всего. Пусть - время, которое с этого момента требуется падающей волне, чтобы достичь точки , то есть пройти отрезок .

Скорость света в воздухе обозначим , скорость света в среде пусть будет . Пока падающая волна проходит расстояние и достигает точки , вторичная волна из точки распространится на расстояние .

Поскольку , то . Вследствие этого волновая поверхность не параллельна волновой поверхности - происходит преломление света! В рамках геометрической оптики не давалось никакого объяснения того, почему вообще наблюдается явление преломления. Причина преломления кроется в волновой природе света и становится понятной с точки зрения
принципа Гюйгенса: всё дело в том, что скорость вторичных волн в среде меньше скорости света в воздухе, и это приводит к повороту волновой поверхности относительно исходного положения .

Из прямоугольных треугольников и легко видеть, что и (для краткости обозначено ). Имеем, таким образом:

Поделив эти уравнения друг на друга, получим:

Отношение синуса угла падения к синусу угла преломления оказалось равно постоянной величине , не зависящей от угла падения. Эта величина называется показателем преломления среды:

Получился хорошо известный нам закон преломления:

Обратите внимание: физический смысл показателя преломления (как отношения скоростей света в вакууме и в среде) прояснился опять-таки благодаря принципу Гюйгенса.

Из рис. 5 очевидно и второе утверждение закона преломления: падающий луч , преломлённый луч и нормаль к границе раздела лежат в одной плоскости.

Ширина блока px

Скопируйте этот код и вставьте себе на сайт

Место работы: МОКУ «Покровская средняя общеобразовательная школа Октябрьского

Должность: учитель физики

Дополнительные сведения: тест разработан по содержанию общеобразовательной программы

для 11 класса средней школы

Вариант №1

1.Процесс обнаружения объектов при помощи радиоволн, называется…

2.

3.

Б. надо увеличить емкость конденсатора иуменьшить индуктивность колебательного контура;

4.

называется…

5.

6.

7.Процесс выделения низкочастотного сигнала называется…

А. модуляцияБ. радиолокацияВ. ДетектированиеГ. Сканирование

8.

9.Прямая, перпендикулярная совокупности точек равной фазы называется…

10.

Б. для обнаружения объектов;

11.

А. лучомБ. фронтом волныВ. Волновой поверхностью

А. последняя волновая поверхностьБ. первая волновая поверхность

В. Любая волновая поверхность

13.

А. лучомБ. фронтом волныВ. Волновой поверхностью

14.

15.По какой формуле определяется расстояние до объекта при радиолокации?

А. R=2ct Б. R= υt/2В. R=ct/2 Г. R=2υt

16.

А. с любойБ. 3*10

мм/с В. 3*10

км/с Г. 3*10

Тест №3 «Электромагнитные волны. Радио»

Вариант №2

1.Для чего нужен процесс детектирования?

А. для передачи сигнала на большие расстояния;

Б. для обнаружения объектов;

В. Для выделения низкочастотного сигнала;

Г. Для преобразования низкочастотного сигнала.

2.Как увеличить частоту колебательного контура?

А. надо уменьшить емкость конденсатора и увеличить индуктивность колебательного контура;

В. Надо уменьшить и емкость конденсатора, и индуктивность колебательного контура;

Г. Надо увеличить и емкость конденсатора, и индуктивность колебательного контура.

3.Процесс изменения высокочастотных колебаний с помощью колебаний низкой частоты,

называется…

А. модуляцияБ. радиолокацияВ. ДетектированиеГ. Сканирование

4.Электромагнитные волны являются…

А. поперечнымиБ. продольнымиВ. И поперечными и продольными одновременно

5.

А. модуляцияБ. радиолокацияВ. ДетектированиеГ. Сканирование

6.

7.Передача звукового сигнала на большие расстояния осуществляется…

А. непосредственной передачей звукового сигнала без каких- либо преобразований;

Б. с помощью детектированного сигнала;

В. С помощью моделированного сигнала.

8.

А. лучомБ. фронтом волныВ. Волновой поверхностью

9.

А. сканированиеБ. радиолокацияВ. ТелевещаниеГ. МодуляцияД. детектирование

10.С помощью какого устройства можно получить электромагнитные волны?

А. радиоприемникБ. телевизорВ. Колебательный контур

Г. Открытый колебательный контур

11.Совокупность точек одинаковой фазы называется…

13.Совокупность точек, до которых дошло возмущение к моменту времени t , называется…

А. лучомБ. фронтом волныВ. Волновой поверхностью

14.Несет ли модулированный сигнал информацию?

А. да, но мы ее не воспринимаем;

Б. да, и мы можем ее воспринимать непосредственно органами слуха;

15.Как работает передающая часть радиолокатора?

А. работает постоянноБ. отключается самопроизвольно в любое время

В. Отключается сразу после передачи сигнала

16.Электромагнитные волны распространяются со скоростью, равной…

А. с любойБ. 3*10

мм/с В. 3*10

км/с Г. 3*10

Тест №3 «Электромагнитные волны. Радио»

Вариант №3

1.

называется…

А. модуляцияБ. радиолокацияВ. ДетектированиеГ. Сканирование

2.Для чего нужен процесс детектирования?

А. для передачи сигнала на большие расстояния;

Б. для обнаружения объектов;

В. Для выделения низкочастотного сигнала;

Г. Для преобразования низкочастотного сигнала.

3.Несет ли модулированный сигнал информацию?

А. да, но мы ее не воспринимаем;

Б. да, и мы можем ее воспринимать непосредственно органами слуха;

4.Электромагнитные волны являются…

А. поперечнымиБ. продольнымиВ. И поперечными и продольными одновременно

5.Процесс выделения сигнала низкой частоты называется….

А. модуляцияБ. радиолокацияВ. ДетектированиеГ. Сканирование

6.По какой формуле определяется расстояние до объектов?

А. R=2ct Б. R=υt/2В. R=ct/2 Г. R=2υt

7.Передача звукового сигнала на большие расстояния осуществляется…

А. непосредственной передачей звукового сигнала без каких- либо преобразований;

Б. с помощью детектированного сигнала;

В. С помощью моделированного сигнала.

8. Как уменьшить частоту колебательного контура?

А. надо уменьшить емкость конденсатора и увеличить индуктивность колебательного контура;

Б. надо увеличить емкость конденсатора и уменьшить индуктивность колебательного контура;

В. Надо уменьшить и емкость конденсатора, и индуктивность колебательного контура;

Г. Надо увеличить и емкость конденсатора, и индуктивность колебательного контура.

9.Процесс обнаружения объектов с помощью радиоволн, называется…

А. сканированиеБ. радиолокацияВ. ТелевещаниеГ. МодуляцияД. детектирование

10.С помощью какого устройства можно получить электромагнитные волны?

А. радиоприемникБ. телевизорВ. Колебательный контур

Г. Открытый колебательный контур

11.Совокупность точек одинаковой фазы называется…

А. лучомБ. волновой поверхностьюВ. Фронтом волны

12.Прямая, перпендикулярная совокупности точек равной фазы, называется…

А. лучомБ. фронтом волныВ. Волновой поверхностью

13.Электромагнитные волны распространяются со скоростью, равной…

А. с любойБ. 3*10

мм/с В. 3*10

км/с Г. 3*10

А. последняя волновая поверхностьБ. любая волновая поверхность

В. Первая волновая поверхность

15.Совокупность точек, до которых дошло возмущение к моменту времени t , называется…

А. лучомБ. фронтом волныВ. Волновой поверхностью

16.Как работает принимающая часть радиолокатора?

А. работает постоянноБ. отключается самопроизвольно в любое время

В. включается сразу после передачи сигнала

Тест №3 «Электромагнитные волны. Радио»

Вариант №4

1.Процесс обнаружения объектов с помощью радиоволн называется…

А. сканированиеБ. радиолокацияВ. ТелевещаниеГ. МодуляцияД. детектирование

2.Совокупность точек одинаковой фазы называется…

А. лучомБ. волновой поверхностьюВ. Фронтом волны

3.С помощью какого устройства можно получить электромагнитные волны?

А. радиоприемникБ. телевизорВ. Колебательный контур

Г. Открытый колебательный контур

4.Процесс изменения высокочастотных колебаний с помощью колебаний низкой частоты

называется…

А. модуляцияБ. радиолокацияВ. ДетектированиеГ. Сканирование

5.Как работает передающая часть радиолокатора?

А. работает постоянноБ. отключается самопроизвольно в любое время

В. Отключается сразу после передачи сигнала

6.По какой формуле определяется расстояние до объектов?

А. R=2ct Б. R=υt/2В. R=ct/2 Г. R=2υt

7.Процесс выделения сигнала низкой частоты называется….

А. модуляцияБ. радиолокацияВ. ДетектированиеГ. Сканирование

8.Несет ли детектированный сигнал информацию?

А. да, но мы ее не воспринимаем;

Б. да, и мы можем ее воспринимать непосредственно органами слуха;

9.Передача звукового сигнала на большие расстояния осуществляется…

А. непосредственной передачей звукового сигнала без каких- либо преобразований;

Б. с помощью детектированного сигнала;