Строение и значение клеточной мембраны. Клеточная мембрана

Имеет толщину 8-12 нм, поэтому рассмотреть ее в световой микроскоп невозможно. Строение мембраны изучают при помощи электронного микроскопа.

Плазматическая мембрана образована двумя слоями липидов – билипидным слоем, или бислоем. Каждая молекула состоит из гидрофильной головки и гидрофобного хвоста, причем в биологических мембранах липиды расположены головками наружу, хвостами внутрь.

В билипидный слой погружены многочисленные молекулы белков. Одни из них находятся на поверхности мембраны (внешней или внутренней), другие пронизывают мембрану .

Функции плазматической мембраны

Мембрана защищает содержимое клетки от повреждений, поддерживает форму клетки, избирательно пропускает необходимые вещества внутрь клетки и выводит продукты обмена, а также обеспечивает связь клеток между собой.

Барьерную, отграничительную функцию мембраны обеспечивает двойной слой липидов. Он не дает содержимому клетки растекаться, смешиваться с окружающей средой или межклеточной жидкостью, и препятствует проникновению в клетку опасных веществ.

Ряд важнейших функций цитоплазматической мембраны осуществляется за счет погруженных в нее белков. При помощи белков-рецепторов может воспринимать различные раздражения на свою поверхность. Транспортные белки образуют тончайшие каналы, по которым внутрь клетки и из нее проходят ионы калия, кальция, и другие ионы малого диаметра. Белки- обеспечивают процессы жизнедеятельности в самой .

Крупные пищевые частицы, не способные пройти через тонкие мембранные каналы, попадают внутрь клетки путем фагоцитоза или пиноцитоза. Общее название этим процессам – эндоцитоз.

Как происходит эндоцитоз – проникновение крупных пищевых частиц в клетку

Пищевая частица соприкасается с наружной мембраной клетки, и в этом месте образуется впячивание. Затем частица, окруженная мембраной, попадает внутрь клетки, образуется пищеварительная , и внутрь образовавшегося пузырька проникают пищеварительные ферменты.

Лейкоциты крови, способные захватывать и переваривать чужеродные бактерии, называются фагоцитами.

В случае пиноцитоза впячиванием мембраны захватываются не твердые частицы, а капельки жидкости с растворенными в ней веществами. Этот механизм является одним из основных путей проникновения веществ в клетку.

Клетки растений, покрытые поверх мембраны твердым слоем клеточной стенки, не способны к фагоцитозу.

Процесс, обратный эндоцитозу, – экзоцитоз. Синтезированные вещества (к примеру, гормоны) упаковываются в мембранные пузырьки, подходят к , встраиваются в нее, и содержимое пузырька выбрасывается из клетки. Таким образом клетка может избавляться и от ненужных продуктов обмена.

Среди основных функций клеточной мембраны можно выделить барьерную, транспортную, ферментативную и рецепторную . Клеточная (биологическая) мембрана (она же плазмалемма, плазматическая или цитоплазматическая мембрана) ограждает содержимое клетки или ее органоидов от окружающей среды, обеспечивает избирательную проницаемость для веществ, на ней располагаются ферменты, а также молекулы, способные «улавливать» различные химические и физические сигналы.

Такая функциональность обеспечивается особым строением клеточной мембраны .

В эволюции жизни на Земле клетка вообще могла образоваться лишь после появления мембраны, которая отделила и стабилизировала внутреннее содержимое, не дало ему распасться.

В плане поддержания гомеостаза (саморегуляции относительного постоянства внутренней среды) барьерная функция клеточной мембраны тесно связана с транспортной .

Малые молекулы способны проходить сквозь плазмалемму без всяких «помощников», по градиенту концентрации, т. е. из области с высокой концентрацией данного вещества в область с низкой концентрацией. Так, например, обстоит дело для газов, участвующих в дыхании. Кислород и углекислый газ диффундируют через клеточную мембрану в том направлении, где их концентрация в данный момент меньше.

Поскольку мембрана в основной своей части гидрофобна (из-за двойного липидного слоя), то полярные (гидрофильные) молекулы, даже малых размеров, зачастую не могут сквозь нее проникнуть. Поэтому ряд мембранных белков выполняет функцию переносчиков таких молекул, связываясь с ними и перенося через плазмалемму.

Интегральные (пронизывающие мембрану насквозь) белки часто работают по принципу открывающихся и закрывающихся каналов. Когда какая-либо молекула подходит к такому белку, то он соединяется с ней, и канал открывается. Это вещество или другое проходит через белковый канал, после чего его конформация меняется, и канал закрывается для этого вещества, но может открыться для пропускания другого. По такому принципу работает натрий-калиевый насос, закачивающий в клетку ионы калия и выкачивающий из нее ионы натрия.

Ферментативная функция клеточной мембраны в большей степени реализована на мембранах органоидов клетки. Большинство синтезируемых в клетке белков выполняют ферментативную функцию. «Усаживаясь» на мембрану в определенном порядке, они организуют конвейер, когда продукт реакции, катализируемый одним белком-ферментом, переходит к следующему. Такой «конвейер» стабилизируют поверхностные белки плазмалеммы.

Несмотря на универсальность строения всех биологических мембран (построены по единому принципу, почти одинаковы у всех организмов и у разных мембранных клеточных структур), их химический состав все же может отличаться. Бывают более жидкие и более твердые, на одних больше определенных белков, на других меньше. Кроме того, отличаются и разные стороны (внутренняя и наружная) одной и той же мембраны.

У мембраны, которая окружает клетку (цитоплазматической) на внешней стороне располагается множество углеводных цепей, прикрепленных к липидам или белкам (в результате образуются гликолипиды и гликопротеины). Многие из таких углеводов выполняют рецепторную функцию , будучи восприимчивыми к определенным гормонам, улавливая изменения физических и химических показателей в окружающей среде.

Если, например, гормон соединяется со своим клеточным рецептором, то углеводная часть молекулы-рецептора изменяет свое строение, вслед за ней изменяет строение и связанная с ней белковая часть, пронизывающая мембрану. На следующем этапе в клетке запускаются или приостанавливаются различные биохимические реакции, т. е. меняется ее метаболизм, начинается клеточный ответ на «раздражитель».

Кроме перечисленных четырех функций клеточной мембраны выделяют и другие: матричную, энергетическую, маркировачную, формирование межклеточных контактов и др. Однако их можно рассмотреть как «подфункции» уже рассмотренных.

В этой статье будут описаны особенности строения и функционирования клеточной мембраны. Так же называют: плазмолемма, плазмалемма, биомембрана, мембрана клетки, наружная клеточная оболочка, клеточная оболочка. Все изложенные начальные данные понадобятся для четкого понимания течения процессов нервного возбуждения и торможения, принципов работы синапсов и рецепторов.

Плазмолемма представляет собой трехслойную липопротеиновую оболочку, отделяющую клетку от внешней среды. Она также осуществляет управляемый обмен между клеткой и внешней средой.

Биологическая мембрана являет собой ультратонкую бимолекулярную пленку, состоящую из фосфолипидов, белков и полисахаридов. Основные ее функции – барьерная, механическая и матричная.

Основные свойства мембраны клетки:

- Проницаемость мембраны

- Полупроницаемость мембраны

- Избирательная проницаемость мембраны

- Активная проницаемость мембраны

- Управляемая проницаемость

- Фагоцитоз и пиноцитоз мембраны

- Экзоцитоз на мембране клетки

- Наличие электрических и химических потенциалов на мембране клетки

- Изменения электрического потенциала мембраны

- Раздражимость мембраны. Обусловлена она наличием на мембране специфических рецепторов, которые контактируют с сигнальными веществами. В результате этого, зачастую, меняется состояние, как самой мембраны, так и всей клетки. После соединения с лагандами (управляющими веществами), молекулярные рецепторы, расположенные на мембране, запускают биохимические процессы.

- Каталитическая ферментативная активность мембраны клетки. Ферменты действуют как снаружи мембраны клетки, так и изнутри клетки.

Основные функции клеточной мембраны

Основное в работе клеточной мембраны – осуществлять и контролировать обмен между клеткой и межклеточным веществом. Это возможно благодаря проницаемости мембраны. Регулировка же пропускной способности мембраны осуществляется благодаря регулируемой проницаемости клеточной мембраны.

Строение мембраны клетки

Клеточная мембрана трехслойна. Центральный слой – жировой служит, непосредственно, для изоляции клетки. Водорастворимые вещества он не пропускает, только жирорастворимые.

Остальные же слои – нижний и верхний представляют собой белковые образования, разбросанные в виде островков на жировом слое.Между этими островками скрываются транспортёры и ионные канальцы, которые служат именно для транспорта водорастворимых веществ как в саму клетку, так и за ее пределы.

Более подробно, жировая прослойка мембраны состоит из фосфолипидов и сфинголипидов.

Важность ионных канальцев мембраны

Так как через липидную пленку проникают только жирорастворимые вещества: газы, жиры и спирты, а клетке необходимо постоянно вводить и выводить водорастворимые вещества, к которым относятся ионы. Именно для этих целей служат транспортные белковые структуры, образованные двумя другими слоями мембраны.

Подобные белковые структуры состоят из 2 типов белков – каналоформеров, которые формируют отверстия в мембране и белков - транспортеров, которые с помощью ферментов цепляют к себе ипроводят сквозь нужные вещества.

Будьте здоровыми и эффективными для себя!

Клеточная мембрана

Изображение клеточной мембраны. Маленькие голубые и белые шарики соответствуют гидрофобным «головкам» фосфолипидов, а присоединённые к ним линии - гидрофильным «хвостам». На рисунке показаны только интегральные мембранные белки (красные глобулы и желтые спирали). Желтые овальные точки внутри мембраны - молекулы холестерола Жёлто-зеленые цепочки бусинок на наружной стороне мембраны - цепочки олигосахаридов , формирующие гликокаликс

Биологическая мембрана включает и различные белки : интегральные (пронизывающие мембрану насквозь), полуинтегральные (погруженные одним концом во внешний или внутренний липидный слой), поверхностные (расположенные на внешней или прилегающие к внутренней сторонам мембраны). Некоторые белки являются точками контакта клеточной мембраны с цитоскелетом внутри клетки, и клеточной стенкой (если она есть) снаружи. Некоторые из интегральных белков выполняют функцию ионных каналов, различных транспортеров и рецепторов .

Функции

  • барьерная - обеспечивает регулируемый, избирательный, пассивный и активный обмен веществ с окружающей средой. Например, мембрана пероксисом защищает цитоплазму от опасных для клетки пероксидов . Избирательная проницаемость означает, что проницаемость мембраны для различных атомов или молекул зависит от их размеров, электрического заряда и химических свойств. Избирательная проницаемость обеспечивает отделение клетки и клеточных компартментов от окружающей среды и снабжение их необходимыми веществами.
  • транспортная - через мембрану происходит транспорт веществ в клетку и из клетки. Транспорт через мембраны обеспечивает: доставку питательных веществ, удаление конечных продуктов обмена, секрецию различных веществ, создание ионных градиентов, поддержание в клетке оптимального и концентрации ионов, которые нужны для работы клеточных ферментов.
    Частицы, по какой-либо причине неспособные пересечь фосфолипидный бислой (например, из-за гидрофильных свойств, так как мембрана внутри гидрофобна и не пропускает гидрофильные вещества, или из-за крупных размеров), но необходимые для клетки, могут проникнуть сквозь мембрану через специальные белки-переносчики (транспортеры) и белки-каналы или путем эндоцитоза .
    При пассивном транспорте вещества пересекают липидный бислой без затрат энергии по градиенту концентрации путем диффузии. Вариантом этого механизма является облегчённая диффузия , при которой веществу помогает пройти через мембрану какая-либо специфическая молекула. У этой молекулы может быть канал, пропускающий вещества только одного типа.
    Активный транспорт требует затрат энергии, так как происходит против градиента концентрации. На мембране существуют специальные белки-насосы, в том числе АТФаза , которая активно вкачивает в клетку ионы калия (K+) и выкачивают из неё ионы натрия (Na+).
  • матричная - обеспечивает определенное взаиморасположение и ориентацию мембранных белков, их оптимальное взаимодействие.
  • механическая - обеспечивает автономность клетки, ее внутриклеточных структур, также соединение с другими клетками (в тканях). Большую роль в обеспечение механической функции имеют клеточные стенки , а у животных - межклеточное вещество .
  • энергетическая - при фотосинтезе в хлоропластах и клеточном дыхании в митохондриях в их мембранах действуют системы переноса энергии, в которых также участвуют белки;
  • рецепторная - некоторые белки, находящиеся в мембране, являются рецепторами (молекулами, при помощи которых клетка воспринимает те или иные сигналы).
    Например, гормоны , циркулирующие в крови, действуют только на такие клетки-мишени, у которых есть соответствующие этим гормонам рецепторы. Нейромедиаторы (химические вещества, обеспечивающие проведение нервных импульсов) тоже связываются с особыми рецепторными белками клеток-мишеней.
  • ферментативная - мембранные белки нередко являются ферментами . Например, плазматические мембраны эпителиальных клеток кишечника содержат пищеварительные ферменты.
  • осуществление генерации и проведения биопотенциалов .
    С помощью мембраны в клетке поддерживается постоянная концентрация ионов: концентрация иона К+ внутри клетки значительно выше, чем снаружи, а концентрация Na+ значительно ниже, что очень важно, так как это обеспечивает поддержание разности потенциалов на мембране и генерацию нервного импульса .
  • маркировка клетки - на мембране есть антигены , действующие как маркеры - «ярлыки», позволяющие опознать клетку. Это гликопротеины (то есть белки с присоединенными к ним разветвленными олигосахаридными боковыми цепями), играющие роль «антенн». Из-за бесчисленного множества конфигурации боковых цепей возможно сделать для каждого типа клеток свой особый маркер. С помощью маркеров клетки могут распознавать другие клетки и действовать согласованно с ними, например, при формировании органов и тканей. Это же позволяет иммунной системе распознавать чужеродные антигены.

Структура и состав биомембран

Мембраны состоят из липидов трёх классов: фосфолипиды , гликолипиды и холестерол . Фосфолипиды и гликолипиды (липиды с присоединёнными к ним углеводами) состоят из двух длинных гидрофобных углеводородных «хвостов», которые связаны с заряженной гидрофильной «головой». Холестерол придаёт мембране жёсткость, занимая свободное пространство между гидрофобными хвостами липидов и не позволяя им изгибаться. Поэтому мембраны с малым содержанием холестерола более гибкие, а с большим - более жёсткие и хрупкие. Также холестерол служит «стопором», препятствующим перемещению полярных молекул из клетки и в клетку. Важную часть мембраны составляют белки, пронизывающие её и отвечающие за разнообразные свойства мембран. Их состав и ориентация в разных мембранах различаются.

Клеточные мембраны часто асимметричны, то есть слои отличаются по составу липидов, переход отдельной молекулы из одного слоя в другой (так называемый флип-флоп ) затруднён.

Мембранные органеллы

Это замкнутые одиночные или связанные друг с другом участки цитоплазмы , отделённые от гиалоплазмы мембранами. К одномембранным органеллам относятся эндоплазматическая сеть , аппарат Гольджи , лизосомы , вакуоли , пероксисомы ; к двумембранным - ядро , митохондрии , пластиды . Строение мембран различных органелл отличается по составу липидов и мембранных белков.

Избирательная проницаемость

Клеточные мембраны обладают избирательной проницаемостью: через них медленно диффундируют глюкоза , аминокислоты , жирные кислоты , глицерол и ионы , причем сами мембраны в известной мере активно регулируют этот процесс - одни вещества пропускают, а другие нет. Существует четыре основных механизма для поступления веществ в клетку или вывода их из клетки наружу: диффузия , осмос , активный транспорт и экзо- или эндоцитоз . Два первых процесса носят пассивный характер, то есть не требуют затрат энергии; два последних - активные процессы, связанные с потреблением энергии.

Избирательная проницаемость мембраны при пассивном транспорте обусловлена специальными каналами - интегральными белками. Они пронизывают мембрану насквозь, образовывая своего рода проход. Для элементов K, Na и Cl есть свои каналы. Относительно градиента концентрации молекулы этих элементов движутся в клетку и из неё. При раздражении каналы натриевых ионов раскрываются, и происходит резкое поступление в клетку ионов натрия. При этом происходит дисбаланс мембранного потенциала. После чего мембранный потенциал восстанавливается. Каналы калия всегда открыты, через них в клетку медленно попадают ионы калия .

См. также

Литература

  • Антонов В. Ф., Смирнова Е. Н., Шевченко Е. В. Липидные мембраны при фазовых переходах. - М .: Наука, 1994.
  • Геннис Р. Биомембраны. Молекулярная структура и функции: перевод с англ. = Biomembranes. Molecular structure and function (by Robert B. Gennis). - 1-е издание. - М .: Мир, 1997. - ISBN 5-03-002419-0
  • Иванов В. Г., Берестовский Т. Н. Липидный бислой биологических мембран. - М .: Наука, 1982.
  • Рубин А. Б. Биофизика, учебник в 2 тт . - 3-е издание, исправленное и дополненное. - М .: издательство Московского университета, 2004. -


Мембраны биологические.

Термин "мембрана"(лат. membrana - кожица, пленка) начали использовать более 100 лет назад для обозначения клеточной границы, служащей, с одной стороны, барьером между содержимым клетки и внешней средой, а с другой - полупроницаемой перегородкой, через которую могут проходить вода и некоторые вещества. Однако этим функции мембраны не исчерпываются, поскольку биологические мембраны составляют основу структурной организации клетки.
Строение мембраны. Со гласно этой модели основной мембраны является липидный бислой, в котором гидрофобные хвосты молекул обращены внутрь, а гидрофильные головки-наружу. Липиды представлены фосфолипидпми - производными глицерина или сфингозина. С липидным слоем связаны белки. Интегральные(транмембраные) белки пронизывают мембрану насквозь и прочно с ней связаны; переферические не пронизывают и связаны с мембраной менее прочно. Функции мембраных белков: поддержание структуры мембран, получение и преобразование сигналов из окр. среды, транспорт некоторых веществ, катализ реакций, происходящих на мембранах. толщина мембраны составляет от 6 до 10 нм.

Свойства мембраны:
1. Текучесть. Мембрана не представляет собой жесткую структуру- большая часть входящих в ее состав белков и липидов может перемещаться в плоскости мембран.
2. Асимметрия. Состав наружного и внутреннего слоев как белков, так и липидов различен. Кроме того, плазматические мембраны животных клеток снаружи имеют слой гликопротеинов (гликокаликс, выполняющий сигнальную и рецепторные функции, а также имеющий значение для объединения клеток в ткани)
3. Полярность. Внешняя сторона мембраны несет положительный заряд, а внутренняя-отрицательный.
4. Избирательная проницаемость. Мембраны живых клеток пропускают, помимо воды, лишь определенные молекулы и ионы растворенных веществ.(Использование по отношению к мембранам клеток термина "полупроницаемость" не совсем корректно, тк это понятие подразумевает то, что мембрана пропускает только молекулы растворителя, задерживая при этом все молекулы и ионы растворенных веществ.)

Наружная клеточная мембрана (плазмалемма) - ультрамикроскопическая пленка толщиной 7.5нм, состоящая из белков, фосфолипидов и воды. Эластичная пленка, хорошо смачвающася водой и быстро восстанавливающийся целостность после повреждения. Имеет универсальное строение, те типичное для всех биологических мембран. Пограничное положение этой мембраны, ее участие в процессах избирательной проницаемости, пиноцитозе, фагоцитозе, выведение продуктов выделения и синтез, во взаимосвязи с соседними клетками и защите клетки от повреждений делает ее роль исключительно важной. Животные клетки снаружи от мембраны иногда бывают покрыты тонким слоем,состоящим из полисахаридов и белков, - гликокаликсом. У растительных клеток снаружи от клеточной мембраны находится прочная, создающая внешнюю опору и поддерживающая форму клетки клеточная стенка. Она состоит из клетчатки (целлюлозы)-нерастворимого в воде полисахарида.