Кальций входит в состав известняка. Физические свойства кальция

Природные соединения кальция (мел, мрамор, известняк, гипс) и продукты их простейшей переработки (известь) были известны людям с древних времен. В 1808 г. английский химик Хэмфри Дэви подверг электролизу влажную гашеную известь (гидроксид кальция) с ртутным катодом и получил амальгаму кальция (сплав кальция с ртутью). Из этого сплава, отогнав ртуть Дэви получил чистый кальций.
Он же предложил название нового химического элемента, от латинского "сalx" обозначавшего название известняка, мела и других мягких камней.

Нахождение в природе и получение:

Кальций - пятый по распространенности элемент в земной коре (более 3%), образует множество пород, в основе многих из которых - карбонат кальция. Некоторые из этих пород имеют органическое происхождение (ракушечник), показывающее важную роль кальция в живой природе. Природный кальций - смесь 6 изотопов с массовыми числами от 40 до 48, причем на 40 Ca приходится 97% общего количества. Ядерными реакциями получены и другие изотопы кальция, например радиоактивный 45 Ca .
Для получения простого вещества кальция используется электролиз расплавов его солей или алюмотермия:
4CaO + 2Al = Ca(AlO 2) 2 + 3Ca

Физические свойства:

Серебристо-серый металл с кубической гранецентрированной решеткой, значительно более твердый, чем щелочные металлы. Температура плавления 842°C, кипения 1484°C, плотность 1,55 г/см 3 . При высоких давлениях и температурах около 20K переходит в состояние сверхпроводника.

Химические свойства:

Кальций не столь активен как щелочные металлы, тем не менее его приходится хранить под слоем минерального масла или в плотно запаянных металлических барабанах. Уже при обычной температуре он реагирует с кислородом и азотом воздуха, а также с водяными парами. При нагревании сгорает на воздухе красно-оранжевым пламенем, образуя оксид с примесью нитридов. Подобно магнию кальций продолжает гореть в атмосфере углекислого газа. При нагревании реагирует с другими неметаллами, образую не всегда очевидные по составу соединения, например:
Ca + 6B = CaB 6 или Ca + P => Ca 3 P 2 (а также CaP или CaP 5)
Во всех своих соединениях кальций имеет степень окисления +2.

Важнейшие соединения:

Оксид кальция CaO - ("негашёная известь") вещество белого цвета, щелочной оксид, энергично реагирует с водой ("гасится") переходя в гидроксид. Получают термическим разложением карбоната кальция.

Гидроксид кальция Ca(OH) 2 - ("гашёная известь") белый порошок, мало растворим в воде (0,16г/100г), сильная щелочь. Раствор ("известковая вода") используется для обнаружения углекислого газа.

Карбонат кальция CaCO 3 - основа большинства природных минералов кальция (мел, мрамор, известняк, ракушечник, кальцит, исландский шпат). В чистом виде вещество белого цвета или бесцв. кристаллы, При нагревании (900-1000 С) разлагается, образуя оксид кальция. Не р-рим, реагирует с кислотами, способен растворяться в воде, насыщенной углекислым газом, переходя в гидрокарбонат: CaCO 3 + CO 2 + H 2 O = Ca(HCO 3) 2 . Обратный процесс приводит к появлению отложений карбоната кальция, в частности таких образований, как сталактиты и сталагмиты
Встречается в природе также в составе доломита CaCO 3 *MgCO 3

Сульфат кальция CaSO 4 - вещество белого цвета, в природе CaSO 4 *2H 2 O ("гипс", "селенит"). Последний при осторожном нагревании (180 С) переходит в CaSO 4 *0,5H 2 O ("жжёный гипс", "алебастр") - белый порошок, при замешивании с водой снова образующий CaSO 4 *2H 2 O в виде твердого, достаточно прочного материала. Мало растворим в воде, в избытке серной кислоты способен растворяться, образуя гидросульфат.

Фосфат кальция Ca 3 (PO 4) 2 - ("фосфорит"), нерастворим, под действием сильных кислот переходит в более растворимые гидро- и дигидрофосфаты кальция. Исходное сырье для получения фосфора, фосфорной кислоты, фосфорных удобрений. Фосфаты кальция входят также в состав апатитов, природных соединений с примерной формулой Са 5 3 Y, где Y = F, Cl, или ОН, соответственно фтор-, хлор-, или гидроксиапатит. Наряду с фосфоритом апатиты входят в состав костного скелета многих живых организмов, в т.ч. и человека.

Фторид кальция CaF 2 - (природн.: "флюорит", "плавиковый шпат"), нерастворимое в-во белого цвета. Природные минералы имеют разнообразные окраски, обусловленные примесями. Светится в темноте при нагревании и при УФ-облучении. Увеличивает текучесть ("плавкость") шлаков при получении металлов, чем обусловлено его применение в качестве флюса.

Хлорид кальция CaCl 2 - бесцв. крист. в-во хорошо р-римое в воде. Образует кристаллогидрат CaCl 2 *6H 2 O. Безводный ("плавленый") хлорид кальция - хороший осушитель.

Нитрат кальция Ca(NO 3) 2 - ("кальциевая селитра") бесцв. крист. в-во хорошо р-римое в воде. Составная часть пиротехнических составов, придающее пламени красно-оранжевый цвет.

Карбид кальция CaС 2 - реагирует с водой, к-тами образуя ацетилен, напр.: CaС 2 + H 2 O = С 2 H 2 + Ca(OH) 2

Применение:

Металлический кальций используется как сильный восстановитель при получении некоторых трудновосстанавлиевых металлов ("кальциетермия"): хром, РЗЭ, торий, уран и др. В металлургии меди, никеля, специальных сталей и бронз кальций и его сплавы используется для удаления вредных примесей серы, фосфора, избыточного углерода.
Кальций используется также для связывания малых количеств кислорода и азота при получении глубокого вакуума и очистке инертных газов.
Нейтрон-избыточные ионы 48 Ca используются для синтеза новых химических элементов, например элемента №114, . Другой изотоп кальция, 45 Ca , используется как радиоактивная метка при исследованиях биологической роли кальция и его миграции в окружающей среде.

Основной областью применения многочисленных соединений кальция является производство строительных материалов (цемент, строительные смеси, гипсокартон и т.д.).

Кальций один из макроэлементов в составе живых организмов, образуя соединения необходимые для построения как внутреннего скелета позвоночных животных, так и внешнего многих беспозвоночных, скорлупу яиц. Ионы кальция также участвуют в регуляции внутриклеточных процессов, обуславливают свертываемость крови. Нехватка кальция в детском возрасте приводит к рахиту, в пожилом - к остеопорозу. Источником кальция служат молочные продукты, гречка, орехи, а его усвоению способствует витамин D. При нехватке кальция используются различные препараты: кальцекс, раствор хлорида кальция, глюконат кальция и др.
Массовая доля кальция в организме человека 1,4-1,7%, суточная потребность 1-1,3 г (в зависимости от возраста). Избыточное потребление кальция может привести к гиперкальцемии - отложению его соединений во внутренних органах, образованию тромбов в кровеносных сосудах. Источники:
Кальций (элемент) // Википедия. URL: http://ru.wikipedia.org/wiki/Кальций (дата обращения: 3.01.2014).
Популярная библиотека химических элементов: Кальций. // URL: http://n-t.ru/ri/ps/pb020.htm (3.01.2014).

Кальций — химический элемент II группы с атомным номером 20 в периодической системе, обозначается символом Ca (лат. Calcium). Кальций - мягкий щелочно-земельный металл серебристо-серого цвета.

20 элемент таблицы МенделееваНазвание элемента происходит от лат. calx (в родительном падеже calcis) — «известь», «мягкий камень». Оно было предложено английским химиком Хэмфри Дэви, в 1808 г. выделившим металлический кальций.
Соединения кальция — известняк, мрамор, гипс (а также известь — продукт обжига известняка) применялись в строительном деле уже несколько тысячелетий назад.
Кальций один из наиболее распространенных на Земле элементов. Соединения кальция находятся практически во всех животных и растительных тканях. На его долю приходится 3,38 % массы земной коры (5-е место по распространенности после кислорода, кремния, алюминия и железа).

Нахождение кальция в природе

Из-за высокой химической активности кальций в свободном виде в природе не встречается.
На долю кальция приходится 3,38 % массы земной коры (5-е место по распространенности после кислорода, кремния, алюминия и железа). Содержание элемента в морской воде — 400 мг/л.

Изотопы

Кальций встречается в природе в виде смеси шести изотопов: 40Ca, 42Ca, 43Ca, 44Ca, 46Ca и 48Ca, среди которых наиболее распространённый — 40Ca — составляет 96,97 %. Ядра кальция содержат магическое число протонов: Z = 20. Изотопы
40
20
Ca20 и
48
20
Ca28 являются двумя из пяти существующих в природе ядер с дважды магическим числом.
Из шести природных изотопов кальция пять стабильны. Шестой изотоп 48Ca, самый тяжелый из шести и весьма редкий (его изотопная распространённость равна всего 0,187 %), испытывает двойной бета-распад с периодом полураспада 1,6·1017 лет.

В горных породах и минералах

Большая часть кальция содержится в составе силикатов и алюмосиликатов различных горных пород (граниты, гнейсы и т. п.), особенно в полевом шпате — анортите Ca.
В виде осадочных пород соединения кальция представлены мелом и известняками, состоящими в основном из минерала кальцита (CaCO3). Кристаллическая форма кальцита — мрамор — встречается в природе гораздо реже.
Довольно широко распространены такие минералы кальция, как кальцит CaCO3, ангидрит CaSO4, алебастр CaSO4·0.5H2O и гипс CaSO4·2H2O, флюорит CaF2, апатиты Ca5(PO4)3(F,Cl,OH), доломит MgCO3·CaCO3. Присутствием солей кальция и магния в природной воде определяется её жёсткость.
Кальций, энергично мигрирующий в земной коре и накапливающийся в различных геохимических системах, образует 385 минералов (четвёртое место по числу минералов).

Биологическая роль кальция

Кальций — распространенный макроэлемент в организме растений, животных и человека. В организме человека и других позвоночных большая его часть находится в скелете и зубах. В костях кальций содержится в виде гидроксиапатита. Из различных форм карбоната кальция (извести) состоят «скелеты» большинства групп беспозвоночных (губки, коралловые полипы, моллюски и др.). Ионы кальция участвуют в процессах свертывания крови, а также служат одним из универсальных вторичных посредников внутри клеток и регулируют самые разные внутриклеточные процессы — мышечное сокращение, экзоцитоз, в том числе секрецию гормонов и нейромедиаторов. Концентрация кальция в цитоплазме клеток человека составляет около 10−4 ммоль/л, в межклеточных жидкостях около 2,5 ммоль/л.

Потребность в кальции зависит от возраста. Для взрослых в возрасте 19-50 лет и детей 4-8 лет включительно дневная потребность (RDA) составляет 1000 мг (содержится примерно в 790 мл молока с жирностью 1 %), а для детей в возрасте от 9 до 18 лет включительно — 1300 мг в сутки (содержится примерно в 1030 мл молока жирностью 1 %). В подростковом возрасте потребление достаточного количества кальция очень важно из-за интенсивного роста скелета. Однако по данным исследований в США всего 11 % девочек и 31 % мальчиков в возрасте 12-19 лет достигают своих потребностей. В сбалансированной диете большая часть кальция (около 80 %) поступает в организм ребёнка с молочными продуктами. Оставшийся кальций приходится на зерновые (в том числе цельнозерновой хлеб и гречку), бобовые, апельсины, зелень, орехи. В «молочных» продуктах на основе молочного жира (сливочном масле, сливках, сметане, мороженом на основе сливок) кальция практически не содержится. Чем больше в молочном продукте молочного жира, тем меньше в нём кальция. Всасывание кальция в кишечнике происходит двумя способами: чрезклеточно (трансцеллюлярно) и межклеточно (парацелюллярно). Первый механизм опосредован действием активной формы витамина D (кальцитриола) и её кишечными рецепторами. Он играет большую роль при малом и умеренном потреблении кальция. При большем содержании кальция в диете основную роль начинает играть межклеточная абсорбция, которая связана с большим градиентом концентрации кальция. За счёт чрезклеточного механизма кальций всасывается в большей степени в двенадцатиперстной кишке (из-за наибольшей концентрации там рецепторов в кальцитриолу). За счёт межклеточного пассивного переноса абсорбция кальция наиболее активна во всех трёх отделах тонкого кишечника. Всасыванию кальция парацеллюлярно способствует лактоза (молочный сахар).

Усвоению кальция препятствуют некоторые животные жиры (включая жир коровьего молока и говяжий жир, но не сало) и пальмовое масло. Содержащиеся в таких жирах пальмитиновая и стеариновая жирные кислоты отщепляются при переваривании в кишечнике и в свободном виде прочно связывают кальций, образуя пальмитат кальция и стеарат кальция (нерастворимые мыла). В виде этого мыла со стулом теряется как кальций, так и жир. Этот механизм ответственен за снижение всасывания кальция, снижение минерализации костей и снижение косвенных показателей их прочности у младенцев при использовании детских смесей на основе пальмового масла (пальмового олеина). У таких детей образование кальциевых мыл в кишечнике ассоциируется с уплотнением стула, уменьшением его частоты, а также более частым срыгиванием и коликами.

Концентрация кальция в крови из-за её важности для большого числа жизненно важных процессов точно регулируется, и при правильном питании и достаточном потреблении обезжиренных молочных продуктов и витамина D дефицита не возникает. Длительный дефицит кальция и/или витамина D в диете приводит к увеличению риска остеопороза, а в младенчестве вызывает рахит.

Избыточные дозы кальция и витамина D могут вызвать гиперкальцемию. Максимальная безопасная доза для взрослых в возрасте от 19 до 50 лет включительно составляет 2500 мг в сутки (около 340 г сыра Эдам).

Теплопроводность


Кальций весьма распространен в природе в форме различных соединений. В земной коре он занимает пятое место, составляя 3,25%, и чаще всего встречается в виде известняка CaCO3, доломита CaCO3*MgCO3, гипса CaSO4*2Н2О, фосфорита Ca3(PO4)2 и плавикового шпата CaF2, не считая значительной доли кальция в составе силикатных пород. В морской воде содержится в среднем 0,04% (вес) кальция

Физические и химические свойства кальция


Кальций находится в подгруппе щелочноземельных металлов II группы периодической системы элементов; порядковый номер 20, атомный вес 40,08, валентность 2, атомный объем 25,9. Изотопы кальция: 40 (97%), 42 (0,64%), 43 (0,15%), 44 (2,06%), 46 (0 003%), 48 (0,185%). Электронная структура атома кальция: 1s2, 2s2p6, 3s2p6, 4s2. Радиус атома 1,97 А, радиус иона 1,06 А. До 300° кристаллы кальция имеют форму куба с центрированными гранями и размером стороны 5,53 А, выше 450° - гексагональную форму. Удельный вес кальция 1,542, температура плавления 851°, температура кипения 1487°, теплота плавления 2,23 ккал/молщ теплота парообразования 36,58 ккал/моль. Атомная теплоемкость твердого кальция Cр = 5,24 + 3,50*10в-3 T для 298-673° К и Cp = 6,29+1,40*10в-3T для 673-1124° К; для жидкого кальция Cp = 7,63. Энтропия твердого кальция 9.95 ± 1, газообразного при 25° 37,00 ± 0,01.
Упругость пара твердого кальция исследована Ю.А. Приселковым и А.Н. Несмеяновым, П. Дугласом и Д. Томлиным. Значения упругости насыщенного пара кальция приведены в табл. 1.

По теплопроводности кальций приближается к натрию и калию, при температурах 20-100° коэффициент линейного расширения 25*10в-6, при 20° удельное электросопротивление 3,43 мк ом/см3, от 0 до 100° температурный коэффициент электрического сопротивления 0,0036. Электрохимический эквивалент 0,74745 г/а*ч. Предел прочности кальция 4,4 кг/мм2, твердость по Бринелю 13, удлинение 53%, относительное сужение 62%.
Кальций имеет серебристо-белый цвет, в изломе блестит. На воздухе металл покрывается тонкой голубовато серой пленкой из нитрида, окиси и частично перекиси кальция. Кальций гибок и ковок; его можно обрабатывать на токарном станке, сверлить, резать, пилить, прессовать, волочить и т. д. Чем чище металл, тем больше его пластичность.
В ряду напряжений кальций расположен среди наиболее электроотрицательных металлов, чем и объясняется его большая химическая активность. При комнатной температуре кальций с сухим воздухом не реагирует, при 300° и выше интенсивно окисляется, при сильном нагреве сгорает ярким оранжево-красноватым пламенем. Во влажном воздухе кальций постепенно окисляется, превращаясь в гидроокись; с холодной водой реагирует сравнительно медленно, но из горячей воды энергично вытесняет водород, образуя гидроокись.
Азот реагирует с кальцием заметно при температуре 300° и очень интенсивно при 900° с образованием нитрида Ca3N2. С водородом при температуре 400° кальций образует гидрид CaH2. С сухими галогенами, за исключением фтора, при комнатной температуре кальций не связывается; интенсивное образование галогенидов происходит при 400° и выше.
Крепкая серная (65-60° Be) и азотная кислоты действуют на чистый кальций слабо. Из водных растворов минеральных кислот очень сильно действует соляная, сильно - азотная и слабо - серная. В концентрированных растворах NaOH и в растворах соды кальций почти не разрушается.

Применение


Кальций находит все возрастающее применение в различных отраслях производства. В последнее время он приобрел большое значение как восстановитель при получении ряда металлов. Чистый металлический уран получается восстановлением металлическим кальцием фтористого урана. Кальцием или его гидридами можно восставав пивать окислы титана, а также окислы циркония, тория, тантала, ниобия и других редких металлов. Кальций является хорошим раскислителем и дегазатором при получении меди, никеля, хромоникелевых сплавов, специальных сталей, никелевых и оловянистых бронз, он удаляет из металлов и сплавов серу, фосфор, углерод.
Кальций образует с висмутом тугоплавкие соединения, поэтому его применяют для очистки свинца от висмута.
Кальций добавляют в различные легкие сплавы. Он способствует улучшению поверхности слитков, мелкозернистости и понижению окисляемости. Большое распространение имеют содержащие кальций подшипниковые сплавы. Свинцовые сплавы (0,04% Ca) могут применяться для изготовления оболочек кабеля.
Кальций применяют для дегидратации алкоголей и растворителей для десульфуризации нефтепродуктов. Сплавы кальция с цинком или с цинком и магнием (70% Ca) идут для производства высококачественного пористого бетона. Кальций входит в состав антифрикционных сплавов (свинцовокальциевых баббитов).
Благодаря способности связывать кислород и азот кальций или сплавы кальция с натрием и другими металлами применяют для очистки благородных газов и как геттер в вакуумной радиоаппаратуре. Кальций применяется также для получения гидрида, который является источником водорода в полевых условиях. С углеродом кальций образует карбид кальция CaC2, применяемый в больших количествах для получения ацетилена C2H2.

История развития


Деви впервые получил кальций в виде амальгамы в 1808 г., применив электролиз влажной извести с ртутным катодом. Бунзен в 1852 г. электролизом солянокислого раствора хлористого кальция получил амальгаму с высоким содержанием кальция. Бунзен и Матиссен в 1855 г. электролизом CaCl2 и Муассан электролизом CaF2 получили кальций в чистом виде. В 1893 г. Борхерс существенно улучшил электролиз хлористого кальция, применив охлаждение катода; Арндт в 1902 г. получил электролизом металл, содержавший 91,3% Ca. Руфф и Плата для снижения температуры электролиза применили смесь из CaCl2 и CaF2; Борхерс и Стокем при температуре ниже точки плавления кальция получали губку.
Задачу электролитического получения кальция решили Ратенау и Зютер, предложив метод электролиза с катодом касания, который вскоре стал промышленным. Было много предложений и попыток получать кальциевые сплавы электролизом, особенно на жидком катоде. По Ф.О. Банзелю, можно получить сплавы кальция электролизом CaF2 с добавками солей или фторокисей других металлов. Пулене и Meлан получали сплав Ca-Al на жидком алюминиевом катоде; Кюгельген и Сьюард получили сплав Ca-Zn на цинковом катоде. Получение сплавов Ca-Zn исследовали в 1913 г. В. Мольденгауер и Дж. Андерсен, они же получали на свинцовом катоде сплавы Pb-Ca. Коба, Симкинс и Гире применяли электролизер со свинцовым катодом на 2000 а и получали сплав с 2% Ca при выходе по току 20%. И. Целиков и В. Вазингер добавляли в электролит NaCl, чтобы получить сплав с натрием; Р.Р. Сыромятников перемешивал сплав и добивался 40-68%-ного выхода по току. Кальциевые сплавы со свинцом, цинком и медью получают электролизом в промышленном масштабе
Значительный интерес вызвал термический способ получения кальция. Алюминотермическое восстановление окислов открыл в 1865 г. H.H. Бекетов. В 1877 г. Малет обнаружил при нагревании взаимодействие смеси окислов кальция, бария и стронция с алюминием Винклер пытался восстановить эти же окислы магнием; Бильц и Вагнер, восстанавливая в вакууме окись кальция алюминием, получили низкий выход металла Гунц в 1929 г. достиг лучших результатов. А.И. Войницкий в 1938 г. в лаборатории восстанавливал окись кальция алюминием и силикосплавами. Способ запатентовали в 1938 г В конце второй мировой войны термический способ получил промышленное применение.
В 1859 г. Кароном был предложен способ получения сплавов натрия со щелочноземельными металлами действием металлического натрия на их хлориды. По этому способу получают кальций (и барин) в сплаве со свинцом До второй мировой войны промышленное производство кальция электролизом было поставлено в Германии и Фракции. В Битерфельде (Германия) в период с 1934 г по 1939 г выпускалось по 5-10 т кальция ежегодно Потребность США в кальции покрывалась импортом, составлявшим в период 1920-1940 гг 10-25 г в год. С 1940 г., когда прекратился импорт из Франции, США начали сами в значительных количествах производить кальций методом электролиза; в конце войны стали получать кальций вакуум-термическим способом; по сообщению С. Лумиса, выпуск его достигал 4,5 т в сутки. По данным Минерале Ярбук, компания Доминиум Магнезиум в Канаде выпускала кальция в год:

Сведения о масштабах выпуска кальция за последние годы отсутствуют.
Имя:*
E-Mail:
Комментарий:

Добавить

27.03.2019

В-первую очередь надо определиться сколько вы готовы потратить на покупку. Специалисты рекомендуют начинающим инвесторам сумму от 30 тысяч рублей до 100. Стоит...

27.03.2019

Металлопрокат в наше время активно используется в самых разных ситуациях. Действительно, на многих производствах просто не обойтись без него, так как металлопрокат...

27.03.2019

Стальные прокладки овального сечения предназначены для герметизации фланцевых соединений арматуры и трубопроводов, которые транспортируют агрессивные среды....

26.03.2019

Многие из нас слышали о такой должности как системный администратор, но далеко не каждый представляет себе, что конкретно имеется в виду под этой фразой....

26.03.2019

Каждый человек, который делает ремонт в своем помещении, должен задумываться о том, какие конструкции необходимо установить в межкомнатное пространство. На рынке...

26.03.2019

26.03.2019

На сегодняшний день газоанализаторы активно применяют в нефтяной и в газовой отраслях, в коммунальной сфере, в ходе осуществления анализов в лабораторных комплексах, для...

Ка́льций —элемент главной подгруппы второй группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 20. Обозначается символом Ca (лат. Calcium). Простое вещество кальций (CAS-номер: 7440-70-2) — мягкий, химически активный щёлочноземельный металл серебристо-белого цвета.

История и происхождение названия

Название элемента происходит от лат. calx (в родительном падеже calcis) — «известь», «мягкий камень». Оно было предложено английским химиком Хэмфри Дэви, в 1808 г. выделившим металлический кальций электролитическим методом. Дэви подверг электролизу смесь влажной гашёной извести с оксидом ртути HgO на платиновой пластине, которая являлась анодом. Катодом служила платиновая проволока, погруженная в жидкую ртуть. В результате электролиза получалась амальгама кальция. Отогнав из неё ртуть, Дэви получил металл, названный кальцием. Соединения кальция — известняк, мрамор, гипс (а также известь — продукт обжига известняка) применялись в строительном деле уже несколько тысячелетий назад. Вплоть до конца XVIII века химики считали известь простым телом. В 1789 году А. Лавуазье предположил, что известь, магнезия, барит, глинозём и кремнезём — вещества сложные.

Нахождение в природе

Из-за высокой химической активности кальций в свободном виде в природе не встречается.

На долю кальция приходится 3,38 % массы земной коры (5-е место по распространенности после кислорода , кремния , алюминия и железа).

Изотопы

Кальций встречается в природе в виде смеси шести изотопов: 40 Ca, 42 Ca, 43 Ca, 44 Ca, 46 Ca и 48 Ca, среди которых наиболее распространённый — 40 Ca — составляет 96,97 %.

Из шести природных изотопов кальция пять стабильны. Шестой изотоп 48 Ca, самый тяжелый из шести и весьма редкий (его изотопная распространённость равна всего 0,187 %), как было недавно обнаружено, испытывает двойной бета-распад с периодом полураспада 5,3×10 19 лет.

В горных породах и минералах

Большая часть кальция содержится в составе силикатов и алюмосиликатов различных горных пород (граниты , гнейсы и т. п.), особенно в полевом шпате — анортите Ca.

В виде осадочных пород соединения кальция представлены мелом и известняками , состоящими в основном из минерала кальцита (CaCO 3). Кристаллическая форма кальцита — мрамор — встречается в природе гораздо реже.

Довольно широко распространены такие минералы кальция, как кальцит CaCO 3 , ангидрит CaSO 4 , алебастр CaSO 4 ·0.5H 2 O и гипс CaSO 4 ·2H 2 O, флюорит CaF 2 , апатиты Ca 5 (PO 4) 3 (F,Cl,OH), доломит MgCO 3 ·CaCO 3 . Присутствием солей кальция и магния в природной воде определяется её жёсткость.

Кальций, энергично мигрирующий в земной коре и накапливающийся в различных геохимических системах, образует 385 минералов (четвёртое место по числу минералов).

Миграция в земной коре

В естественной миграции кальция существенную роль играет «карбонатное равновесие», связанное с обратимой реакцией взаимодействия карбоната кальция с водой и углекислым газом с образованием растворимого гидрокарбоната:

СаСО 3 + H 2 O + CO 2 ↔ Са (НСО 3) 2 ↔ Ca 2+ + 2HCO 3 -

(равновесие смещается влево или вправо в зависимости от концентрации углекислого газа).

Огромную роль играет биогенная миграция.

В биосфере

Соединения кальция находятся практически во всех животных и растительных тканях (см. тж. ниже). Значительное количество кальция входит в состав живых организмов. Так, гидроксиапатит Ca 5 (PO 4) 3 OH, или, в другой записи, 3Ca 3 (PO 4) 2 ·Са(OH) 2 — основа костной ткани позвоночных, в том числе и человека; из карбоната кальция CaCO 3 состоят раковины и панцири многих беспозвоночных, яичная скорлупа и др. В живых тканях человека и животных 1,4-2 % Са (по массовой доле); в теле человека массой 70 кг содержание кальция — около 1,7 кг (в основном в составе межклеточного вещества костной ткани).

Получение

Свободный металлический кальций получают электролизом расплава, состоящего из CaCl 2 (75-80 %) и KCl или из CaCl 2 и CaF 2 , а также алюминотермическим восстановлением CaO при 1170—1200 °C:

4CaO + 2Al = CaAl 2 O 4 + 3Ca.

Свойства

Физические свойства

Металл кальций существует в двух аллотропных модификациях . До 443 °C устойчив α-Ca с кубической гранецентрированной решеткой (параметр а = 0,558 нм), выше устойчив β-Ca с кубической объемно-центрированной решеткой типа α-Fe (параметр a = 0,448 нм). Стандартная энтальпия ΔH 0 перехода α → β составляет 0,93 кДж/моль.

Химические свойства

В ряду стандартных потенциалов кальций расположен слева от водорода . Стандартный электродный потенциал пары Ca 2+ /Ca 0 −2,84 В, так что кальций активно реагирует с водой, но без воспламенения:

Ca + 2Н 2 О = Ca(ОН) 2 + Н 2 + Q.

Наличие в воде растворенного гидрокарбоната кальция во многом определяет временную жёсткость воды. Временной её называют потому, что при кипячении воды гидрокарбонат разлагается, и в осадок выпадает СаСО 3 . Это явление приводит, например, к тому, что в чайнике со временем образуется накипь .

Применение

Применение металлического кальция

Главное применение металлического кальция — это использование его как восстановителя при получении металлов, особенно никеля, меди и нержавеющей стали. Кальций и его гидрид используются также для получения трудновосстанавливаемых металлов, таких, как хром , торий и уран . Сплавы кальция со свинцом находят применение в аккумуляторных батареях и подшипниковых сплавах. Кальциевые гранулы используются также для удаления следов воздуха из электровакуумных приборов.

Металлотермия

Чистый металлический кальций широко применяется в металлотермии при получении редких металлов.

Легирование сплавов

Чистый кальций применяется для легирования свинца , идущего на изготовление аккумуляторных пластин, необслуживаемых стартерных свинцово-кислотных аккумуляторов с малым саморазрядом. Также металлический кальций идет на производство качественных кальциевых баббитов БКА.

Ядерный синтез

Изотоп 48 Ca — наиболее эффективный и употребительный материал для производства сверхтяжёлых элементов и открытия новых элементов таблицы Менделеева . Например, в случае использования ионов 48 Ca для получения сверхтяжёлых элементов на ускорителях ядра этих элементов образуются в сотни и тысячи раз эффективней, чем при использовании других «снарядов» (ионов).) применяется в виде и для восстановления металлов, а также при получении цианамида кальция (нагреванием карбида кальция в азоте при 1200 °C , реакция идет экзотермически, проводится в цианамидных печах).

Кальций, а также его сплавы с алюминием и магнием используются в резервных тепловых электрических батареях в качестве анода(например кальций-хроматный элемент). Хромат кальция используется в таких батареях в качестве катода. Особенность таких батарей — чрезвычайно долгий срок хранения (десятилетия) в пригодном состоянии, возможность эксплуатации в любых условиях (космос, высокие давления), большая удельная энергия по весу и объёму. Недостаток в недолгом сроке действия. Такие батареи используются там, где необходимо на короткий срок создать колоссальную электрическую мощность (баллистические ракеты, некоторые космические аппараты и.др.).

Кроме того, соединения кальция вводят в состав препаратов для профилактики остеопороза , в витаминные комплексы для беременных и пожилых.-

Биологическая роль кальция

Кальций — распространенный макроэлемент в организме растений, животных и человека. В организме человека и других позвоночных большая его часть содержится в скелете и зубах в виде фосфатов. Из различных форм карбоната кальция (извести) состоят скелеты большинства групп беспозвоночных (губки, коралловые полипы, моллюски и др.). Ионы кальция участвуют в процессах свертывания крови, а также в обеспечении постоянного осмотического давления крови. Ионы кальция также служат одним из универсальных вторичных посредников и регулируют самые разные внутриклеточные процессы — мышечное сокращение, экзоцитоз, в том числе секрецию гормонов и нейромедиаторов и др. Концентрация кальция в цитоплазме клеток человека составляет около 10−7 моль, в межклеточных жидкостях около 10−3 моль.

Потребность в кальции зависит от возраста. Для взрослых необходимая дневная норма составляет от 800 до 1000 миллиграммов (мг), а для детей от 600 до 900 мг, что для детей очень важно из-за интенсивного роста скелета. Большая часть кальция, поступающего в организм человека с пищей, содержится в молочных продуктах, оставшийся кальций приходится на мясо, рыбу, и некоторые растительные продукты (особенно много содержат бобовые). Всасывание происходит как в толстом, так и тонком кишечнике и облегчается кислой средой, витамином Д и витамином С, лактозой, ненасыщеными жирными кислотами. Немаловажна роль магния в кальциевом обмене, при его недостатке кальций «вымывается» из костей и осаждается в почках (почечные камни) и мышцах.

Усваиванию кальция препятствуют аспирин, щавелевая кислота, производные эстрогенов. Соединияясь с щавелевой кислотой, кальций дает нерастворимые в воде соединения, которые являются компонентами камней в почках.

Содержания кальция в крови из-за большого количества связанных с ним процессов точно регулируется, и при правильном питании дефицита не возникает. Продолжительное отсутствие в рационе может вызвать судороги, боль в суставах, сонливость, дефекты роста, а также запоры. Более глубокий дефицит приводит к постоянным мышечным судорогам и остеопорозу. Злоупотребление кофе и алкоголем могут быть причинами дефицита кальция, так как часть его выводится с мочой.

Избыточные дозы кальция и витамина Д могут вызвать гиперкальцемию, после которой следует интенсивная кальцификация костей и тканей (в основном затрагивает мочевыделительную систему). Продолжительный переизбыток нарушает функционирование мышечных и нервных тканей, увеличивает свертываемость крови и уменьшает усвояемость цинка клетками костной ткани. Максимальная дневная безопасная доза составляет для взрослого от 1500 до 1800 миллиграмм.

  • Беременные и кормящие грудью женщины — от 1500 до 2000 мг.

  • Соединения кальция.

    СаО – оксид кальция или негашеная извасть, получают его разложением известняка: СаСО 3 =СаО + СО 2 – это оксид щелочноземельного металла, поэтому он активно взаимодействует с водой: СаО + Н 2 О = Са(ОН) 2

    Са(ОН) 2 – гидроксид кальция или гашеная известь, поэтому реакция СаО + Н 2 О = Са(ОН) 2 называется гашением извести. Если раствор профильтровать, получается известковая вода – это раствор щелочи, поэтому он изменяет окраску фенолфталеина в малиновый цвет.

    Широко в строительстве применяется гашеная известь. Ее смесь с песком и водой - хороший связывающий материал. Под действием углекислого газа смесь отвердевает Са(ОН) 2 + CO 2 = СаСОз +Н 2 О.

    Одновременно часть песка и смеси превращается в силикат Ca(OH) 2 +SiO 2 = CaSiO 3 +H 2 O.

    Уравнения Са (ОН) 2 + СО 2 = СаСО 2 +Н 2 О и СаСО 3 +Н 2 О + СО 2 = Са(НСО 3) 2 играют большую роль в природе и в формировании облика нашей планеты. Углекислый газ в образе ваятеля и зодчего создает подземные дворцы в толщах карбонатных пород. Он способен под землей перемещать сотни и тысячи тонн известняка. По трещинам в горных породах вода , содержащая растворенный в ней углекислый газ, попадает в толщу известняка, образуя полости - кастровые пещеры. Гидрокарбонат кальция существует только в растворе. Грунтовые воды перемещаются в земной коре, испаряя в подходящих условиях воду : Са(НСОз) 2 = СаСОз + Н 2 О + СО 2 , так образуются сталактиты и сталагмиты, схема образования которых предложена известным геохимиком А.Е. Ферсманом. Очень много кастровых пещер в Крыму. Их изучением занимается наука спелеология .

    Применяется в строительстве карбонат кальция СаСОз - это мел, известняк, мрамор. Все вы видели наш железнодорожный вокзал: он отделан белым мрамором, привезенным из-за границы.

    опыт: дуть через трубку в раствор известковой воды, она мутнеет.

    Са(ОН) 2 + СО 2 = СаСО 3 + Н 2 О

    Приливает к образовавшемуся осадку уксусную кислоту, наблюдается вскипание, т.к. выделяется углекислый газ.

    СаСО 3 +2СН 3 СООН = Са(СН 3 СОО) 2 2 О +СО 2

    СКАЗКА О БРАТЬЯХ КАРБОНАТАХ.

    На земле живут три брата
    Из семейства Карбонатов.
    Старший брат - красавец МРАМОР,
    Славен именем Карары,
    Превосходный зодчий. Он
    Строил Рим и Парфенон.
    Всем известен ИЗВЕСТНЯК,
    Потому и назван так.
    Знаменит своим трудом,
    Возводя за домом дом.
    И способен, и умел
    Младший мягкий братец МЕЛ.
    Как рисует, посмотри,
    Этот СаСО 3 !
    Любят братья порезвиться,
    В жаркой печке прокалиться ,
    СаО да СО 2 образуются тогда.
    Это углекислый газ,
    Каждый с ним знаком из вас,
    Выдыхаем мы его.
    Ну, а это СаО -
    Жарко обожжённая ИЗВЕСТЬ НЕГАШЁНАЯ.
    Добавляем к ней воды,
    Тщательно мешая,
    Чтобы не было беды,
    Руки защищаем,
    Круто замешённая ИЗВЕСТЬ, но ГАШЁНАЯ!
    Известковым молоком
    Стены белятся легко.
    Светлый дом повеселел,
    Превратив извёстку в мел.
    Фокус-покус для народа:
    Стоит лишь подуть сквозь воду,
    Как она легко-легко
    Превратилась в молоко!
    А теперь довольно ловко
    Получаю газировку:
    Молоко плюс уксус. Ай!
    Льётся пена через край!
    Всё в заботах, всё в работе
    От зари и до зари –
    Эти братья Карбонаты,
    Эти СаСО 3 !

    Повторение: CaO – оксид кальция, негашеная известь;
    Ca(OH) 2 – гидроксид кальция (гашеная известь, известковая вода, известковое молоко в зависимости от концентрации раствора).
    Общее – одна и та же химическая формула Са(ОН) 2 . Отличие: известковая вода – прозрачный насыщенный раствор Са(ОН) 2 , а известковое молоко – это белая взвесь Са(ОН) 2 в воде.
    CaCl 2 - хлорид кальция, хлористый кальций;
    CaCO 3 – карбонат кальция, мел, мрамор ракушечник, известняк.
    Л/Р: коллекции. Далее демонстрируем коллекцию имеющихся в школьной лаборатории минералов : известняк, мел, мрамор, ракушечник.
    CaS0 4 ∙ 2H 2 0 - кристаллогидрат сульфата кальция, гипс;
    CaCO 3 - кальцит, карбонат кальция входит в состав многих минералов, которые покрывают на земле 30 млн км 2 .

    Самый важный из этих минералов – известняк . Ракушечники, известняки органического происхождения. Он идет на производство цемента, карбида кальция, соды, всех видов извести, в металлургии. Известняк – это основа строительной индустрии, из него делают многие строительные материалы.

    Мел это не только зубной порошок и школьный мел. Это и ценная добавка при производстве бумаги (мелованная – высшего качества) и резины; в строительстве и ремонте зданий – в качестве побелки.

    Мрамор – плотная кристаллическая порода. Есть цветной – белый, но чаще всего различные примеси окрашивают его в различные цвета . Чистый белый мрамор встречается редко и в основном идет на работу скульпторам (статуи Микеланджело, Родена. В строительстве цветной мрамор используют как облицовочный материал (Московское метро) или даже в качестве основного строительного материала дворцов (Тадж-Махал).

    В мире интересного «МАВЗОЛЕЙ “Тадж-Махал”»

    Шах – Джахан из династии Великих Моголов держал в страхе и повиновении едва ли не всю Азию. В 1629 году умерла Мумзат-Махал, любимая жена Шах-Джахана в 39 лет во время родов в походе (это был их 14 ребенок, причем все были мальчики). Она была необыкновенно красива, светла, умна, император во всем ее слушался. Перед смертью она просила мужа построить гробницу, заботится о детях, не жениться. Опечаленный царь посланцев своих отправил во все большие города, столицы соседних государств – в Бухару, Самарканд, Багдад, Дамаск, чтобы разыскать и пригласить лучших мастеров – в память о жене царь решил возвести лучшее в мире здание. Одновременно гонцы отправили в Агру (Индия) планы всех лучших сооружений Азии и лучшие строительные материалы. Везли даже из России и Урала малахит. Главные каменщики приехали из Дели и Кандагара; архитекторы – из Стамбула, Самарканда; декораторы – из Бухары; садоводы – из Бенгалии; художники – из Дамаска и Багдада, а руководил всем известный мастер Устад-Иса.

    Совместными усилиями за 25 лет было построено меломраморное сооружение в окружении зеленых садов, голубых фонтанов и мечети из красного песчаника . 20000 рабов возводили это чудо 75 м (с25-этажный дом). Неподалеку хотел построить второй мавзолей из черного мрамора для себя, но не успел. Его сверг с престола родной сын (2-ой, причем он же убил и всех своих братьев).

    Последние годы жизни правитель и повелитель Агры провел, смотря из узкого окошка своей темницы. 7 лет так отец любовался своим творением. Когда отец ослеп, сын сделал ему систему зеркал, чтобы отец мог любоваться мавзолеем. Похоронен он был в Тадж-Махале, рядом со своей Мумтаз.

    Входящие в мавзолей видят кенотафы - ложные гробницы. Места вечного упокоения великого хана и его жены находятся внизу, в подвале. Там все инкрустировано драгоценными камнями, которые светятся, будто живые, а ветви сказочных деревьев, переплетаясь с цветами, причудливыми узорами украшают стены гробницы. Обработанные лучшими резчиками бирюзово-голубые лазуриты, зелено-черные нефриты и красные аметисты воспевают любовь Шах-Джахала и Мумзат-Махал.

    Ежедневно в Агру спешат туристы , желающие увидеть истинное чудо света – мавзолей Тадж-Махал, будто парящий над землей.

    CaCO 3 – это строительный материал наружного скелета моллюсков, кораллов, ракушек и др., скорлупы яиц. (иллюстрации или Животные кораллового биоценоза” и показ коллекции морских кораллов, губок, ракушечника) .