Числовые выражения сложные. Элементы алгебры в начальной школе

На этом уроке вы рассмотрите тему «Числовые выражения. Сравнение числовых выражений». Данное занятие познакомит вас с определением числовых выражений. Вы узнаете, что числовые выражения можно прочитать. Также вы научитесь находить их значение и сравнивать. Несколько практических примеров помогут закрепить вам изученный материал.

Урок: Числовые выражения. Сравнение числовых выражений

Посмотрите на данные выражения и постарайтесь найти среди них лишнее.

20 + а
с + 7
6 + 8
15 - (10 + 2)
18 > 9

Лишней является запись 18 > 9 (18 больше 9). Как вы думаете почему?

Правильный ответ: потому что только в ней использован знак сравнения. Во всех остальных использованы знаки действия.

Записанные выражения можно разделить на две группы:

Буквенные выражения Числовые выражения
20 + a 6 + 8
c + 7 15 - (10 + 2)

Буквенные выражения - это выражения, в которых используются буквы латинского алфавита.

Числовые выражения - числа, соединенные знаками действия. Числовые выражения можно прочитать.

6 + 8 …(сумма 6 и 8)

15 - (10 + 2)…(из 15 вычесть сумму 10 и 2)

Найдем значения выражений:

15 - (10 + 2) = …
Сначала выполняем действие, записанное в скобках. К 10 прибавляем 2.
10 + 2 = 12
Теперь нужно из 15 вычесть 12.
15 - 12 = 3
15 - (10 + 2) = 3

Теперь выполним задание:

Мы повторили, что значит найти значение числового выражения.

Теперь мы должны научиться сравнивать числовые выражения. Сравнить числовое выражение - найти значение каждого из выражений и их сравнить.

Давайте сравним значения двух выражений. Для этого найдем значения каждого из них.

15 - 7 < 6 + 3

Теперь сравним значения еще двух выражений:

3. Фестиваль педагогических идей «Открытый урок» ().

Сделай дома

Решите числовые выражения:

а) 20 +14 б) 56 - 22 в) 47 - 22

Сравните выражения:

а) 33 - 12 и 25 + 7 б) 45 - 5 и 19 + 21 в) 23 + 5 и 12 + 6

В пп. 8.2.1 было показано, что алгебраические понятия являются средствами обобщения, языком описания арифметических действий. Понятие математического выражения иной природы, чем понятия сложения, вычитания, умножения и деления. Отношения между эти­ми понятиями можно считать отношениями формы и содержания: математические выражения являются одной из форм знакового, пись­менного обозначения арифметических действий. Числовое выраже­ние можно считать также одной из форм числа, так как каждое чис­ловое выражение имеет единственное числовое значение - число.

Выражения появляются в обучении математике, как только в пер­вом классе появляются записи вида 2 + 3, 4 - 3 при изучении дей-


ствий сложения и вычитания. Вначале их так и называют: запись сложения, запись вычитания. Как известно, эти записи имеют и име­на собственные: «сумма», «разность», которые могут быть введены на одном уроке вместе с соответствующими действиями или через некоторое время. А понятие выражения предметом изучения следует делать только после того, как у учащихся уже будет некоторый прак­тический опыт действий с такими записями. При этом учитель может использовать термин «выражение» в своей речи, не требуя от де­тей его употребления, но вводя его в пассивную лексику учащихся. Именно так происходит, когда повседневной жизни, когда дети слы­шат новое слово, отнесенное к визуально выделенному объекту. На­пример, указывая на записи сложения и вычитания через несколько уроков после введения этих действий, учитель говорит: «Прочитайте эти записи, эти выражения: …», «Найдите в учебнике под № … вы­ражение, в котором из семи нужно вычесть три. …», «Рассмотрите эти выражения (показывает на доске). Прочитайте то, которое по­зволяет найти число, на 3 большее чем 5, в котором есть число, на 3 большее чем 5; на 3 меньшее чем 5».

При изучении числовых выражений в начальной школе рассма­тривают следующие понятия и способы действий.

Понятия: математическое выражение, числовое выражение (выражение), виды числовых выражений (в одно действие и в не­сколько действий; со скобками и без скобок; содержащие действия одной ступени и действия двух ступеней); числовое значение выра­жения; правила порядка действий; сравнение отношений.

Способы действий: чтение выражений в одно - два дей­ствия; запись выражений под диктовку в одно - два действия; определение порядка действий; вычисление значения выражений по правилам порядка действий; сравнение двух числовых выра­жений; преобразование выражений - замена одного выражения равным ему другим на основе свойств действий.

Введение понятий. Урок введения понятия выражения полезно начать с обсуждения записей. Какие бывают записи? Зачем люди пи­шут? Зачем вы учитесь писать? Какие записи мы делаем при изуче­нии математики? (Дети обращаются к своим тетрадям, к учебнику, к заранее подготовленным карточкам с примерами записей из тех, которые за период обучения делали учащиеся.) На какие группы можно разделить записи при изучении математики?

В результате такого обсуждения акцентируем внимание на двух основных группах записей: запись чисел и запись арифметических действий. Записи арифметических действий, в свою очередь, делим на две группы: без вычислений и с вычислениями, т. е. вида 2 + 3 и 2 + 3 = 5. На основании этой классификации сообщаем учащимся, что за­пись сложения и вычитания вида 2 + 3и7-5,а также любую запись составленную из таких записей, например, 2 + 3-4, 7 - 5 - 1 и подоб­ные им, принято называть (договорились называть) математическим


выражением, или просто выражением. Далее, как и при введении других понятий, необходимо выполнение заданий на распознавание, обучение универсальному учебному действию - распознаванию объ­ектов, относящихся к изучаемому понятию. В число распознаваемых объектов должны быть включены такие, которые обладают не всеми общими (существенными) свойствами понятия и потому не представ­ляют данное понятие и подпадающие под понятие, но обладающие разными вариативными (несущественными) свойствами. Например: 17 - 10, 17 - 10 =, 17 -10 = 7, 17 -; 17 - 5 + 4, 23 - 5 - 4, 23 - (5 + 4), 0 + 0, 18-2-2-2-2-2-2, 18-6= 18-3-3 = 15-3 = 12.

Так как записи, называемые выражениями, уже использовались, читались и записывались учащимися, нужно обобщить способы чтения рассматриваемых выражений. Например, выражение 17 - 10 может быть прочитано как «разность чисел 17 и 10», как задание - «из 17 вычесть 10», «уменьшить число 17 на 10» или «найти число, меньшее семнадцати на десять» и по подобным названиям научаем учащихся записывать выражения. В дальнейшем вопросы: как про­читать записанное выражение и как записать названное выражение обсуждаются с появлением новых видов выражений.

На том же уроке, где вводим понятие выражения, вводим и по­нятие значение выражения - число, получающееся в результате выполнения всех его арифметических действий.

Для подведения итога введения понятий и планирования даль­нейшей работы, полезно обсудить на этом или на следующих уроках вопросы: Сколько существует выражений? Чем одно выражение может быть похожим на другое? Чем может отличаться от другого? Чем все выражения похожи друг на друга? О чем могут сообщить нам выражения? Что можно делать с выражениями? Чему нужно (можно научиться), изучая выражения?

Отвечая на последний вопрос вместе с учащимися формулируем учебные цели предстоящей деятельности: можно научиться и бу­дем учиться читать и записывать выражения, находить значения выражений, сравнивать выражения.

Чтение и запись выражений. Так как выражения суть записи, то нужно уметь их читать. Основные способы чтения задаются при введении действий. Читать выражение можно как наименование, как перечень знаков, как задание или вопрос. После изучения отношений «меньше (больше) на», «меньше (больше) в» между числами выраже­ния читаются еще и как утверждения или вопросы об отношениях равенства и неравенства. Каждый способ чтения раскрывает опре­деленную грань смысла соответствующего действия или действий. Поэтому очень полезно поощрять разные способы чтения. Образец чтения задает учитель при введении действия или при рассмотрении соответствующего понятия, свойства или отношения.

Основу чтения любого выражения составляет чтение выражения в одно действие. Обучение чтению происходит как и обучение любо-


му чтению при выполнении заданий, требующих такого чтения. Это могут быть специальные задания: «Прочитай выражения». Чтение необходимо при проверке значений выражения (читают выражение в составе равенства), при сообщении о результатах сравнения. Важ­но и обратное действие: запись выражения по его названию или за­даваемому им заданию, отношению. Такого рода действия учащиеся выполняют при проведении математических диктантов, специально предназначенных для формирования умения записывать выражения или в составе заданий на вычисление, сравнение и др. Чтение мате­матических выражений, обучение чтению выражений скорее не цель, а средство обучения - средство развития речи, средство углубления понимания смысла действий.

Покажем на примерах способы чтения основных ви­дов простых выражений:

1) 2 + 3 к двум прибавить три; сложить числа два и три; сум­
ма чисел два и три; два плюс три; найти сумму чисел два и три;

Найти сумму слагаемых два и три; найти число, на три большее,
чем число два; два увеличить на три; первое слагаемое 2, второе
слагаемое 3, найти сумму;

2) 5 - 3 из пяти вычесть (ни в коем случае не «отнять 1 «!) три;

Разность чисел пять и три; пять минус три; найти разность
чисел пять и три; уменьшаемое пять, вычитаемое три, найти раз­
ность; найти число, на три меньшее, чем пять; пять уменьшить
на три;

3) 2 ·3 два взять слагаемым три раза; по два взять три раза;

Два умножить на три; произведение чисел два и три; первый
множитель два, второй - три, найти произведение; найти произ­
ведение чисел два и три; дважды три, трижды два; два увеличить
в три раза; найти число в три раза большее чем два; первый мно­
житель два, второй три, найти произведение;

4) 12:4 двенадцать разделить на четыре; частное чисел двенад­
цать и четыре частное двенадцати и четырех); частное от деления
двенадцати на четыре; делимое двенадцать, делитель четыре, найти
частное (для 13:4 - найти частное и остаток); уменьшить 12 в че­
тыре раза; найти число, в четыре раза меньшее, чем двенадцать.

Чтение выражений, содержащих более двух действий, вызывает у младших школьников определенные трудности. В планируемые предметные результаты поэтому умение читать такие выражения мо-

1 «ОТНЯТЬ, … 1. кого (что). Взять у кого-н. силой, лишить кого-чего-н. О. деньги. О. сына. О. надежду. О. свое время у кого-н. (перен.: заставить потра­тить время на кого-что-н.). О. жизнь у кого-н. (убить). 2. что. Поглотить, вызвать расход чего-н. Работа отняла много сил у кого-н. 3. что. Отвести в сторону, от­делить от чего-н. О. лестницу от стены. …». [Ожегов С. И. Толковый словарь / С. И. Ожегов, Н.Ю.Шведова. - М., 1949 -1994.]


жет быть помещено в повышенный или высокий уровень владения математической речью. Называются выражения с двумя и более дей­ствиями по последнему действию, компонентами которого считают­ся выражения. Однако некоторые виды выражений входят в тексты правил. Знание словесных формулировок правил означает и знание способов (способа) чтения. Например, распределительное свойство умножения относительно сложения или правило умножения суммы на число в самом названии правила дает название выражения вида (А + ) · й . А в формулировке свойства называются два вида вы­ражений: «Произведение суммы на число равно сумме произведе­ний каждого слагаемого на это число». Способы чтения выражений в два и более действий могут быть заданы предписаниями алгорит­мического вида. В подразделе 4.2 приведен пример такого алгорит­ма. Овладение способами чтения таких выражений происходит при выполнении тех же видов заданий, что и при обучении чтению вы­ражений в одно действие.

Нахождение значения выражений. Правила порядка дей­ствий. С начала изучения арифметических действий и появления выражений негласно принимается правило: действия нужно выпол­нять слева направо в порядке их записи. Проблема порядка действий обнаруживается тогда, когда возникают трудности обозначения выра­жением некоторых предметных ситуаций. Например, требуется взять 7 синих кубиков, на 2 меньше белых и узнать, сколько всего кубиков взято. Выполняем практически все действия, обозначая число ку­биков цифрами, а действия - знаками арифметических действий. Отсчитаем 7 синих кубиков. Чтобы взять на 2 меньше белых, ото­двинем на время два синих кубика и путем составления пар возь­мем столько белых кубиков, сколько синих без двух. Белые и синие кубики объединим. Наши действия с кубиками в записи арифмети­ческими действиями: 7 + 7-2. Но в такой записи действия нужно выполнять в порядке записи, а это не те действия, по которым мы составляли запись! Имеет место противоречие. Нам нужно, чтобы вначале 2 вычиталось из 7 (узнаем требуемое число белых кубиков), а потом к 7 - числу синих кубиков прибавлялся результат вычита­ния 7 и 2. Как быть?

Выход из этой и подобных ситуаций может быть таким: нужно каким-либо образом в записи выражения выделить то действие или действия, которые нужно выполнять не в порядке записи слева - направо. И такой способ выделения есть. Это скобки, которые как раз и придуманы для ситуаций, когда действия в выражении нужно выполнять не в порядке следования слева направо. Со скобками ма­тематическая запись наших практических действий с кубиками будет выглядеть так: 7 + (7 - 2). Действия, записанные в скобках, принято выполнять в первую очередь. Чтобы освоить и присвоить это свой­ство скобок, составляем с учащимися разные выражения, ставим в них по-разному скобки, вычисляем, сравниваем результаты. Заме-


чаем: иногда изменение порядка действий не меняет значения выра­жения, а иногда - меняет. Например, 12 - 6 + 2 = 8, (12 - 6) + 2 = 8, 12 - (6 + 2) = 4.

При введении скобок общепринятые правила порядка действий явно еще не изучаются, хотя два правила уже практически приме­няются: а) если в выражении без скобок только сложение и вычита­ние, то действия выполняются в порядке их записи слева направо; б) действия в скобках выполняются первыми.

Вновь остро проблема порядка действий возникает после появ­ления выражений, содержащих действия умножения и (или) деле­ния и действия сложения и (или) вычитания. В этот период потреб­ность в правилах порядка действий может быть осознана учащимися и именно в этот период учащиеся уже могут обсуждать эту проблему, формулировать и понимать общепринятые формулировки правил порядка действий.

Обеспечить понимание необходимости таких правил можно соз­дать с помощью экспериментирования с выражением в несколько действий. Например, вычислим значение выражения 7 - 3 · 2 + 15: 5, выполняя действия в трех разных последовательностях: 1) - · + (в порядке записи); 2) - + ·: (вначале сложение и вычитание, потом умножение и деление); 3) ·: - + (вначале умножение и деление, за­тем сложение и вычитание). В результате получим три разных зна­чения: 1) 4 (ост. 3); 2) 13 (ост. 3); 3) 6. Обсуждая с учащимися воз­никшую ситуацию, делаем вывод: нужно договориться и принять только одну последовательность в качестве общепринятого правила действий. А так как значения выражений вычисляли еще и до нас, да еще и не одну сотню лет, то, вероятно, такие договоренности уже есть. Находим их в учебнике.

Далее обсуждаем с учащимися необходимость знания этих пра­вил и умения их применять. Обосновав для самих себя такую не­обходимость, учащиеся вполне могут попытаться сами определить для себя виды учебной работы, выполняя которую, они смогут за­помнить правила и научиться их безошибочно выполнять. Такое определение видов учебной работы может быть намечено в группо­вой работе и на том же уроке некоторые виды такой работы могут быть выполнены. В процессе работы группы учащиеся знакомятся с содержанием соответствующих страниц учебника и тетради для самостоятельной работы к учебнику, могут сами дополнить учеб­ные задания, выполнить некоторые из них, проверить себя и затем сделать отчет работы в группе по тому, что уже освоили в результате работы в группе. Например: «В нашей группе все научились в выра­жениях без скобок в три-четыре действия определять порядок дей­ствий, обращаясь к тексту правила в учебнике, и обозначать этот порядок номерами действий над знаками действий в выражении». Затем ставится цель научиться находить значения таких «больших» выражений - в три-четыре и более действий на многих уроках уча-


щиеся выполняют учебные действия для ее достижения. Способ на­хождения значений составного выражения может быть представлен в алгоритмическом виде.

Алгоритм нахождения значения числового выражения (задан сло­весным предписанием в виде перечня шагов).

1. Если в выражении есть скобки, то выполнить действия в скоб­ках как в выражении без скобок. 2. Если в выражении нет скобок, то: а) если в выражении только сложение и (или) вычитание или только умножение и (или) деление, то выполнить эти действия по порядку слева-направо; б) если в выражении есть действия из группы сложе­ние - вычитание и из группы умножение - деление, то выполнить вначале умножение и деление по порядку слева-направо, затем вы­полнить сложение и вычитание по порядку слева-направо. 3. Результат последнего действия назвать значением выражения.

Особую роль в обучении играют способы нахождения значений выражений на основе свойств действий. Такие способы заключаются в том, что вначале выражения преобразуются на основе свойств дей­ствий, и лишь потом применяются правила порядка действий. На­пример, нужно найти значение выражения: 23 + 78 + 77. По правилам порядка действий нужно вначале к 23 прибавить 78, а к результату прибавить 17. Однако переместительное и сочетательное свойства или правило «Складывать числа можно в любом порядке» позволяет нам это выражение заменить равным ему с другим порядком действий 23 + 77 + 78. Выполнив действия в соответствии с правилами поряд­ка действий, легко получим результат 100 + 78 = 178.

Собственно математическая деятельность, математическое раз­витие учащихся происходит именно тогда, когда они ищут рацио­нальные или оригинальные способы преобразования выражений с последующими удобными вычислениями. Поэтому необходимо вырабатывать у учащихся привычку в любых не калькуляторных вы­числениях, искать способы упрощения вычислений, преобразования выражений с тем, чтобы вместо громоздких, некрасивых вычисле­ний искомое значение выражения находилось с помощью простых и красивых случаев вычисления. Задания формулируются для этого так «Вычисли удобным (или рациональным) способом …».

Нахождение значений буквенных выражений - важное умение, которое формирует представления о переменной и является основой понимания в дальнейшем функциональной зависимости. Очень удоб­ной формой заданий на нахождение значений буквенных выражений и для наблюдения зависимости значения выражения от значений вхо­дящих в него букв является табличная. Например, по табл. 8.1 уча­щиеся могут установить ряд зависимостей: если значения а являются последовательными числами, то значения есть последовательные четные числа, а значения 3а - каждые третьи числа, начиная со зна­чения при наименьшем значении а и др.


Таблица 8.1

Сравнение выражений. На выражения переносятся отношения, связывающие значения выражений. Основной способ сравнения - нахождение значений сравниваемых выражений и сравнение значе­ний выражения. Алгоритм сравнения :

1. Найти значения сравниваемых выражений. 2. Сравнить получен­ные числа. 3. Результат сравнения чисел перенести на выражения. Если требуется, поставить между выражениями соответствующий знак. Конец.

Также как и при нахождении значений выражений ценятся спосо­бы сравнения, основанные на свойствах арифметических действий, свойствах числовых равенств и неравенств, так как такое сравнение требует дедуктивных рассуждений и потому обеспечивает развитие логического мышления.

Например, нужно сравнить 73 + 48 и 73 + 50. Известно свойство: «Если одно слагаемое увеличить или уменьшить на несколько единиц, то и сумма увеличится или уменьшится на столько же единиц». Следо­вательно, значение первого выражения меньше, чем значение второго, а значит первое выражение меньше второго, а второе - больше перво­го. Мы сравнили выражения без нахождения значений выражений, без выполнения каких-либо арифметических действий путем применения известного свойства сложения. Для таких случаев полезно сравнение выражений, записанных с использованием обобщающей символики. Сравните выражения. © + Ф и © + (Ф + 4), © + Ф и © + (Ф - 4).

Интересны способы сравнения, основанные на преобразовании срав­ниваемых выражений - заменой их равными. Например: 18 · 4 и 18 + 18 + 18 + 18; 25 · (117 - 19) и 25 · 117 - 19; 25 · (117 -119) и 25 · 117 - - 19 · 117 и т.п. Преобразуя выражение в одной части на основании свойств действий мы получаем выражения, сравнивать которые уже можно через сравне­ние чисел - компонентов одного и того же действия.

Пример. 126 + 487 и 428 + 150. Для сравнения применим переме-стительное свойство. Получим: 487 + 126 и 428 и 150. Преобразуем первое выражение: 487 + 132 = (483 + 4) + (130 - 4) = 483 + 4 + 130 -4 = 483 + 130 = (483 - 20) + (130 + 20) = 463 + 150. Теперь сравнивать нужно выражения 463 + 150 и 428 + 150.

2. Математическое выражение и его значение.

3. Решение задач на основе составления уравнения.

Алгебра заменяет численные значения количественных характеристик множеств или величин буквенной символикой. В общем виде алгебра также заменяет знаки конкретных действий (сложения, умножения и т. п.) обобщенными символами алгебраических операций и рассматривает не конкретные результаты этих опера­ции (ответы), а их свойства.

Методически считается, что основная роль элементов алгебры в курсе начальных классов состоит математики в том, чтобы способствовать формированию обобщенных представлений детей о понятии «количество» и смысле арифметических действий.

На сегодня наблюдаются две кардинально противоположные тенденции в определении объема содержания алгебраического материала в курсе математики начальной школы. Одна тенденция связана с ранней алгебраизацией курса математики начальных классов, с насыщением его алгебраическим материалом уже с первого класса; другая тенденция связана с введением алгебраического материала в курс математики для начальной школы на его завершающем этапе, в конце 4 класса. Представителями первой тенденции можно считать авторов альтернативных учебников системы Л.В. Занкова (И.И. Аргинская), системы В.В. Давыдова (Э.Н. Александрова, Г.Г. Микулина и др.), системы «Школа 2100» (Л.Г. Петерсон), системы «Школа XXI века» (В.Н. Рудницкая). Представителем второй тенденции мож­но считать автора альтернативного учебника системы «Гармония» Н.Б. Истомину.

Учебник традиционной школы можно считать представителем «серединных» взглядов - он содержит достаточно много алгеб­раического материала, поскольку ориентирован на использование учебника математики Н.Я. Виленкина в 5-6 классах средней школы, но знакомит детей с алгебраическими понятиями начиная со 2 класса, распределяя материал на три года, и за последние 20 лет практически не расширяет список алгебраических понятий.

Обязательный минимум содержания образования по математике для начальных классов (последняя редакция 2001 г.) не содержит алгебраического материала. Не упоминают умений выпускников начальной школы работать с алгебраическими понятиями и требования к уровню их подготовки по завершении обучения в начальных классах.

  1. Математическое выражение и его значение

Последовательность букв и чисел, соединенных знаками действий, называют математическим выражением.

Следует отличать математическое выражение от равенства и неравенства, которые используют в записи знаки равенства и неравенства.

Например:

3 + 2 - математическое выражение;

7 - 5; 5 6 - 20; 64: 8 + 2 - математические выражения;

а + b; 7 - с; 23 - а 4 - математические выражения.

Запись вида 3 + 4 = 7 не является математическим выражением, это равенство.

Запись вида 5 < 6 или 3 + а > 7 - не являются математическими выражениями, это неравенства.

Числовые выражения

Математические выражения, содержащие только числа и знаки действий называют числовыми выражениями.

В 1 классе рассматриваемый учебник не использует данные понятия. С числовым выражением в явном виде (с названием) дети знакомятся во 2 классе.

Простейшие числовые выражения содержат только знаки сложения и вычитания, например: 30 - 5 + 7; 45 + 3; 8 - 2 - 1 и т. п. Выполнив указанные действия, получим значение выражения. Например: 30 - 5 + 7 = 32, где 32 - значение выражения.

Некоторые выражения, с которыми дети знакомятся в курсе математики начальных классов, имеют собственные названия: 4 + 5 - сумма;

6 - 5 - разность;

7 6 - произведение; 63: 7 - частное.

Эти выражения имеют названия для каждого компонента: компоненты суммы - слагаемые; компоненты разности - уменьшаемое и вычитаемое; компоненты произведения - множители; компоненты деления - делимое и делитель. Названия значений этих выражений совпадают с названием выражения, например: значение суммы называют «сумма»; значение частного называют «частное» и т. п.

Следующий вид числовых выражений - выражения, содержащие действия первой ступени (сложение и вычитание) и скобки. С ними дети знакомятся в 1 классе. С этим видом выражений связано правило порядка выполнения действий в выражениях со скобками: действия в скобках выполняются первыми.

Далее следуют числовые выражения, содержащие действия двух ступеней без скобок (сложение, вычитание, умножение и деление). С этим видом выражений связано правило порядка выполнения действий в выражениях, содержащих все арифметические действия без скобок: действия умножения и деления выполняются рань­ше, чем сложение и вычитание.

Последний вид числовых выражений - выражения, содержащие действия двух ступеней со скобками. С этим видом выражений связано правило порядка выполнения действий в выражениях, содержащих все арифметические действия и скобки: действия в скобках выполняются первыми, затем выполняются действия умноже­ния и деления, затем действия сложения и вычитания.

Выражение - это самый широкий математический термин. По существу, в этой науке из них состоит все, и все операции проводятся тоже над ними. Другой вопрос, что в зависимости от конкретного вида применяются совершенно разнообразные методы и приемы. Так, работа с тригонометрией, дробями или логарифмами - это три различных действия. Выражение, не имеющее смысла, может относится к одному из двух видов: числовому или алгебраическому. А вот что означает это понятие, как выглядит его пример и прочие моменты будут рассмотрены далее.

Числовые выражения

Если выражение состоит из чисел, скобок, плюсов-минусов и остальных знаков арифметических действий, его смело можно называть числовым. Что довольно логично: стоит только еще разок взглянуть на первый названный его компонент.

Числовым выражением может быть что угодно: главное, чтобы в нем не было букв. А под "чем угодно" в данном случае понимается все: от простой, стоящей одиноко, самой по себе, цифры, до огромного их перечня и знаков арифметических действий, требующих последующего вычисления конечного результата. Дробь - это тоже числовое выражение, если в ней нет всяких a, b, c, d и т.д., ведь тогда это совершенно другой вид, о котором будет рассказано чуть позже.

Условия для выражения, которое не имеет смысла

Когда задание начинается со слова "вычислить", можно говорить о преобразовании. Штука в том, что это действие не всегда целесообразно: в нем не то чтобы сильно нуждаются, если на передний план выходит выражение, не имеющее смысла. Примеры бесконечно удивительны: иногда, чтобы понять, что оно-то нас и настигло, приходится долго и нудно раскрывать скобки и считать-считать-считать...

Главное, что нужно запомнить: не имеет смысла то выражения, чей конечный результат сводится к запретному в математике действию. Если уж совсем по-честному, то тогда бессмысленным становится само преобразование, но для того, чтобы это выяснить, приходится его для начала выполнить. Такой вот парадокс!

Самое знаменитое, но от того не менее важное запретное математическое действие - это деление на ноль.

Потому вот, например, выражение, не имеющее смысла:

(17+11):(5+4-10+1).

Если при помощи нехитрых вычислений свести вторую скобку к одной цифре, то она и будет нулем.

По такому же принципу "почетное звание" дается и этому выражению:

(5-18):(19-4-20+5).

Алгебраические выражения

Это то же самое числовое выражение, если в него добавить запретные буквы. Тогда оно и становится полноценным алгебраическим. Оно также может быть всех размеров и форм. Алгебраическое выражение - понятие более широкое, включающее в себя предыдущее. Но был смысл начинать разговор не с него, а с числового, чтобы было понятнее и разобраться было легче. Ведь имеет ли смысл выражение алгебраическое - вопрос не то чтобы очень сложный, но имеющий больше уточнений.

Почему так?

Буквенное выражение, или выражение с переменными - это синонимы. Первый термин объяснить просто: ведь оно, в конце концов, содержит в себе буквы! Второй тоже не загадка века: вместо букв можно подставлять разные числа, вследствие чего значение выражения будет меняться. Нетрудно догадаться, что буквы в данном случае и есть переменные. По аналогии, числа - это постоянные.

И тут мы возвращаемся к основной тематике: не имеющее смысла?

Примеры алгебраических выражений, не имеющих смысла

Условие для бессмысленности алгебраического выражения - аналогичное, как и для числового, с одним лишь только исключением, а если быть точнее, дополнением. При преобразовании и вычислении конечного результата приходится учитывать переменные, поэтому вопрос ставится не как "какое выражение не имеет смысла?", а "при каком значении переменной это выражение не будет иметь смысла?" и "есть ли такое значение переменной, при котором выражение потеряет смысл?"

Например, (18-3):(a+11-9).

Вышеприведенное выражение не имеет смысла при a равном -2.

А вот насчет (a+3):(12-4-8) можно смело сказать, что это выражение, не имеющее смысла при любых a.

Точно так же, какое b ни подставишь в выражение (b - 11):(12+1), оно по-прежнему будет иметь смысл.

Типовые задачи по теме "Выражение, не имеющее смысла"

7 класс изучает эту тему по математике в числе прочих, и задания по ней встречаются нередко как непосредственно после соответствующего занятия, так и в качестве вопроса "с подвохом" на модулях и экзаменах.

Вот почему стоит рассмотреть типовые задачи и методы их решения.

Пример 1.

Имеет ли смысл выражение:

(23+11):(43-17+24-11-39)?

Необходимо произвести все вычисление в скобках и привести выражение к виду:

Конечный результат содержит следовательно, выражение не имеет смысла.

Пример 2.

Какие выражения не имеют смысла?

1) (9+3)/(4+5+3-12);

2) 44/(12-19+7);

3) (6+45)/(12+55-73).

Следует вычислить конечное значение для каждого из выражений.

Ответ: 1; 2.

Пример 3.

Найти область допустимых значений для следующих выражений:

1) (11-4)/(b+17);

2) 12/ (14-b+11).

Область допустимых значений (ОДЗ) - это все те числа, при подставлении которых вместо переменных выражение будет иметь смысл.

То есть задание звучит как: найти значения, при которых не будет деления на ноль.

1) b є (-∞;-17) & (-17; + ∞), или b>-17 & b<-17, или b≠-17, что значит - выражение имеет смысл при всех b, кроме -17.

2) b є (-∞;25) & (25; + ∞), или b>25 & b<25, или b≠25, что значит - выражение имеет смысл при всех b кроме 25.

Пример 4.

При каких значениях нижеприведенное выражение не будет иметь смысла?

Вторая скобка равна нулю при игреке равном -3.

Ответ: y=-3

Пример 4.

Какие из выражений не имеют смысла только при x = -14?

1) 14:(х - 14);

2) (3+8х):(14+х);

3) (х/(14+х)):(7/8)).

2 и 3, так как в первом случае, если подставить вместо х = -14, то вторая скобка приравняется -28, а не нулю, как звучит в определении не имеющего смысла выражения.

Пример 5.

Придумайте и запишите выражение, не имеющее смысла.

18/(2-46+17-33+45+15).

Алгебраические выражения с двумя переменными

Несмотря на то что у всех выражений, которые не имеют смысла, одна суть, существуют разные уровни их сложности. Так, можно сказать, что числовые - это примеры простые, ведь они легче, чем алгебраические. Трудности для решения добавляет и количество переменных у последних. Но и они не должны своим видом: главное - помнить общий принцип решения и применять его вне зависимости от того, похож ли пример на типовую задачу или имеет какие-то неизвестные дополнения.

Например, может возникнуть вопрос, как решить такое задание.

Найти и записать пару чисел, являющихся недопустимыми для выражения:

(x 3 - x 2 y 3 + 13x - 38y)/(12x 2 - y).

Варианты ответов:

Но на самом деле оно только выглядит страшным и громоздким, потому что на деле содержит в себе то, что уже давно известно: возведение чисел в квадрат и куб, некоторые арифметические действия, такие как деление, умножение, вычитание и сложения. Для удобства, между прочим, можно привести задачу к дробному виду.

Числитель у получившейся дроби не радует: (x 3 - x 2 y 3 + 13x - 38y). Это факт. Зато есть другой повод для счастья: его-то для решения задания трогать даже не понадобится! Согласно определению, рассмотренному ранее, делить нельзя на ноль, а что именно на него будет делиться, совершенно неважно. Потому оставляем это выражение в неизменном виде и подставляем пары чисел из данных вариантов в знаменатель. Уже третий пункт идеально вписывается, превращая небольшую скобочку в ноль. Но останавливаться на этом - плохая рекомендация, ведь подойти может еще что-нибудь. И вправду: пятый пункт тоже неплохо вписывается и подходит условию.

Записываем ответ: 3 и 5.

В заключение

Как видно, эта тема очень интересная и не особо сложная. Разобраться в ней не составит труда. Но все-таки отработать пару примеров никогда не помешает!

Буквенное выражение (или выражение с переменными) — это математическое выражение, которое состоит из чисел, букв и знаков математических операций. Например, следующее выражение является буквенным:

a + b + 4

С помощью буквенных выражений можно записывать законы, формулы, уравнения и функции. Умение манипулировать буквенными выражениями — залог хорошего знания алгебры и высшей математики.

Любая серьезная задача в математике сводится к решению уравнений. А чтобы уметь решать уравнения, нужно уметь работать с буквенными выражениями.

Чтобы работать с буквенными выражениями, нужно хорошо изучить базовую арифметику: сложение, вычитание, умножение, деление, основные законы математики, дроби, действия с дробями, пропорции. И не просто изучить, а понять досконально.

Содержание урока

Переменные

Буквы, которые содержатся в буквенных выражениях называются переменными . Например, в выражении a+b+4 переменными являются буквы a и b . Если вместо этих переменных подставить любые числа, то буквенное выражение a+b+4 обратится в числовое выражение, значение которого можно будет найти.

Числа, которые подставляют вместо переменных называют значениями переменных . Например, изменим значения переменных a и b . Для изменения значений используется знак равенства

a = 2, b = 3

Мы изменили значения переменных a и b . Переменной a присвоили значение 2 , переменной b присвоили значение 3 . В результате буквенное выражение a+b+4 обращается в обычное числовое выражение 2+3+4 значение которого можно найти:

2 + 3 + 4 = 9

Когда происходит умножение переменных, то они записываются вместе. Например, запись ab означает то же самое, что и запись a×b . Если подставить вместо переменных a и b числа 2 и 3 , то мы получим 6

2 × 3 = 6

Слитно также можно записать умножение числа на выражение в скобках. Например, вместо a×(b + c) можно записать a(b + c) . Применив распределительный закон умножения, получим a(b + c)=ab+ac .

Коэффициенты

В буквенных выражениях часто можно встретить запись, в которой число и переменная записаны вместе, например 3a . На самом деле это короткая запись умножения числа 3 на переменную a и эта запись выглядит как 3 × a .

Другими словами, выражение 3a является произведением числа 3 и переменной a . Число 3 в этом произведении называют коэффициентом . Этот коэффициент показывает во сколько раз будет увеличена переменная a . Данное выражение можно прочитать как «a три раза» или «трижды а «, или «увеличить значение переменной a в три раза», но наиболее часто читается как «три a «

К примеру, если переменная a равна 5 , то значение выражения 3a будет равно 15.

3 × 5 = 15

Говоря простым языком, коэффициент это число, которое стоит перед буквой (перед переменной).

Букв может быть несколько, например 5abc . Здесь коэффициентом является число 5 . Данный коэффициент показывает, что произведение переменных abc увеличивается в пять раз. Это выражение можно прочитать как «abc пять раз» либо «увеличить значение выражения abc в пять раз», либо «пять abc «.

Если вместо вместо переменных abc подставить числа 2, 3 и 4, то значение выражения 5abc будет равно 120

5 × 2 × 3 × 4 = 120

Можно мысленно представить, как сначала перемножились числа 2, 3 и 4, и полученное значение увеличилось в пять раз:

Знак коэффициента относится только к коэффициенту, и не относится к переменным.

Рассмотрим выражение −6b . Минус, стоящий перед коэффициентом 6 , относится только к коэффициенту 6 , и не относится к переменной b . Понимание этого факта позволит не ошибаться в будущем со знаками.

Найдем значение выражения −6b при b = 3 .

−6b −6×b . Для наглядности запишем выражение −6b в развёрнутом виде и подставим значение переменной b

−6b = −6 × b = −6 × 3 = −18

Пример 2. Найти значение выражения −6b при b = −5

Запишем выражение −6b в развёрнутом виде

−6b = −6 × b = −6 × (−5) = 30

Пример 3. Найти значение выражения −5a + b при a = 3 и b = 2

−5a + b это короткая форма записи от −5 × a + b , поэтому для наглядности запишем выражение −5×a+b в развёрнутом виде и подставим значения переменных a и b

−5a + b = −5 × a + b = −5 × 3 + 2 = −15 + 2 = −13

Иногда буквы записаны без коэффициента, например a или ab . В этом случае коэффициентом является единица:

но единицу по традиции не записывают, поэтому просто пишут a или ab

Если перед буквой стоит минус, то коэффициентом является число −1 . Например, выражение −a на самом деле выглядит как −1a . Это произведение минус единицы и переменной a. Оно получилось следующим образом:

−1 × a = −1a

Здесь кроется небольшой подвох. В выражении −a минус, стоящий перед переменной a на самом деле относится к «невидимой единице», а не к переменной a . Поэтому при решении задач следует быть внимательным.

К примеру, если дано выражение −a и нас просят найти его значение при a = 2 , то в школе мы подставляли двойку вместо переменной a и получали ответ −2 , не особо зацикливаясь на том, как это получалось. На самом деле происходило умножение минус единицы на положительное число 2

−a = −1 × a

−1 × a = −1 × 2 = −2

Если дано выражение −a и требуется найти его значение при a = −2 , то мы подставляем −2 вместо переменной a

−a = −1 × a

−1 × a = −1 × (−2) = 2

Чтобы не допускать ошибок, первое время невидимые единицы можно записывать явно.

Пример 4. Найти значение выражения abc при a=2 , b=3 и c=4

Выражение abc 1×a×b×c. Для наглядности запишем выражение abc a , b и c

1 × a × b × c = 1 × 2 × 3 × 4 = 24

Пример 5. Найти значение выражения abc при a=−2 , b=−3 и c=−4

Запишем выражение abc в развёрнутом виде и подставим значения переменных a , b и c

1 × a × b × c = 1 × (−2) × (−3) × (−4) = −24

Пример 6. Найти значение выражения abc при a=3 , b=5 и c=7

Выражение abc это короткая форма записи от −1×a×b×c. Для наглядности запишем выражение abc в развёрнутом виде и подставим значения переменных a , b и c

−abc = −1 × a × b × c = −1 × 3 × 5 × 7 = −105

Пример 7. Найти значение выражения abc при a=−2 , b=−4 и c=−3

Запишем выражение abc в развёрнутом виде:

−abc = −1 × a × b × c

Подставим значение переменных a , b и c

−abc = −1 × a × b × c = −1 × (−2) × (−4) × (−3) = 24

Как определить коэффициент

Иногда требуется решить задачу, в которой требуется определить коэффициент выражения. В принципе, данная задача очень проста. Достаточно уметь правильно умножать числа.

Чтобы определить коэффициент в выражении, нужно отдельно перемножить числа, входящие в это выражение, и отдельно перемножить буквы. Получившийся числовой сомножитель и будет коэффициентом.

Пример 1. 7m×5a×(−3)×n

Выражение состоит из нескольких сомножителей. Это можно отчетливо увидеть, если записать выражение в развёрнутом виде. То есть, произведения 7m и 5a записать в виде 7×m и 5×a

7 × m × 5 × a × (−3) × n

Применим сочетательный закон умножения, который позволяет перемножать сомножители в любом порядке. А именно, отдельно перемножим числа и отдельно перемножим буквы (переменные):

−3 × 7 × 5 × m × a × n = −105man

Коэффициент равен −105 . После завершения буквенную часть желательно расположить в алфавитном порядке:

−105amn

Пример 2. Определить коэффициент в выражении: −a×(−3)×2

−a × (−3) × 2 = −3 × 2 × (−a) = −6 × (−a) = 6a

Коэффициент равен 6.

Пример 3. Определить коэффициент в выражении:

Перемножим отдельно числа и буквы:

Коэффициент равен −1. Обратите внимание, что единица не записана, поскольку коэффициент 1 принято не записывать.

Эти казалось бы простейшие задачи могут сыграть с нами очень злую шутку. Часто выясняется, что знак коэффициента поставлен неверно: либо пропущен минус либо наоборот он поставлен зря. Чтобы избежать этих досадных ошибок, должна быть изучена на хорошем уровне.

Слагаемые в буквенных выражениях

При сложении нескольких чисел получается сумма этих чисел. Числа, которые складывают называют слагаемыми. Слагаемых может быть несколько, например:

1 + 2 + 3 + 4 + 5

Когда выражение состоит из слагаемых, вычислять его намного проще, поскольку складывать легче, чем вычитать. Но в выражении может присутствовать не только сложение, но и вычитание, например:

1 + 2 − 3 + 4 − 5

В этом выражении числа 3 и 5 являются вычитаемыми, а не слагаемыми. Но нам ничего не мешает, заменить вычитание сложением. Тогда мы снова получим выражение, состоящее из слагаемых:

1 + 2 + (−3) + 4 + (−5)

Не суть, что числа −3 и −5 теперь со знаком минуса. Главное, что все числа в данном выражении соединены знаком сложения, то есть выражение является суммой.

Оба выражения 1 + 2 − 3 + 4 − 5 и 1 + 2 + (−3) + 4 + (−5) равны одному и тому значению — минус единице

1 + 2 − 3 + 4 − 5 = −1

1 + 2 + (−3) + 4 + (−5) = −1

Таким образом, значение выражения не пострадает от того, что мы где-то заменим вычитание сложением.

Заменять вычитание сложением можно и в буквенных выражениях. Например, рассмотрим следующее выражение:

7a + 6b − 3c + 2d − 4s

7a + 6b + (−3c) + 2d + (−4s)

При любых значениях переменных a, b, c, d и s выражения 7a + 6b − 3c + 2d − 4s и 7a + 6b + (−3c) + 2d + (−4s) будут равны одному и тому же значению.

Вы должны быть готовы к тому, что учитель в школе или преподаватель в институте может называть слагаемыми даже те числа (или переменные), которые ими не являются.

Например, если на доске будет записана разность a − b , то учитель не будет говорить, что a — это уменьшаемое, а b — вычитаемое. Обе переменные он назовет одним общим словом — слагаемые . А всё потому, что выражение вида a − b математик видит, как сумму a + (−b) . В таком случае выражение становится суммой, а переменные a и (−b) становятся слагаемыми.

Подобные слагаемые

Подобные слагаемые — это слагаемые, которые имеют одинаковую буквенную часть. Например, рассмотрим выражение 7a + 6b + 2a . Слагаемые 7a и 2a имеют одинаковую буквенную часть — переменную a . Значит слагаемые 7a и 2a являются подобными.

Обычно подобные слагаемые складывают, чтобы упростить выражение или решить какое-нибудь уравнение. Эту операцию называют приведением подобных слагаемых .

Чтобы привести подобные слагаемые, нужно сложить коэффициенты этих слагаемых, и полученный результат умножить на общую буквенную часть.

Например приведём подобные слагаемые в выражении 3a + 4a + 5a . В данном случае, подобными являются все слагаемые. Сложим их коэффициенты и результат умножим на общую буквенную часть — на переменную a

3a + 4a + 5a = (3 + 4 + 5)×a = 12a

Подобные слагаемые обычно приводят в уме и результат записывают сразу:

3a + 4a + 5a = 12a

Также, можно рассуждать следующим образом:

Было 3 переменные a , к ним прибавили еще 4 переменные a и ещё 5 переменных a. В итоге получили 12 переменных a

Рассмотрим несколько примеров на приведение подобных слагаемых. Учитывая, что данная тема очень важна, на первых порах будем записывать подробно каждую мелочь. Несмотря на то, что здесь всё очень просто, большинство людей допускают множество ошибок. В основном по невнимательности, а не по незнанию.

Пример 1. 3a + 2a + 6a + 8 a

Сложим коэффициенты в данном выражении и полученный результат умножим на общую буквенную часть:

3a + 2a + 6a + 8a = (3 + 2 + 6 + 8) × a = 19a

Конструкцию (3 + 2 + 6 + 8)×a можно не записывать, поэтому сразу запишем ответ

3a + 2a + 6a + 8a = 19a

Пример 2. Привести подобные слагаемые в выражении 2a + a

Второе слагаемое a записано без коэффициента, но на самом деле перед ним стоит коэффициент 1 , который мы не видим по причине того, что его не записывают. Стало быть, выражение выглядит следующим образом:

2a + 1a

Теперь приведем подобные слагаемые. То есть, сложим коэффициенты и результат умножим на общую буквенную часть:

2a + 1a = (2 + 1) × a = 3a

Запишем решение покороче:

2a + a = 3a

2a+a , можно рассуждать и по-другому:

Пример 3. Привести подобные слагаемые в выражении 2a − a

Заменим вычитание сложением:

2a + (−a)

Второе слагаемое (−a) записано без коэффициента, но на самом оно выглядит как (−1a). Коэффициент −1 опять же невидимый по причине того, что его не записывают. Стало быть, выражение выглядит следующим образом:

2a + (−1a)

Теперь приведем подобные слагаемые. Сложим коэффициенты и результат умножим на общую буквенную часть:

2a + (−1a) = (2 + (−1)) × a = 1a = a

Обычно записывают короче:

2a − a = a

Приводя подобные слагаемые в выражении 2a−a можно рассуждать и по-другому:

Было 2 переменные a , вычли одну переменную a , в итоге осталась одна единственная переменная a

Пример 4. Привести подобные слагаемые в выражении 6a − 3a + 4a − 8a

6a − 3a + 4a − 8a = 6a + (−3a) + 4a + (−8a)

Теперь приведем подобные слагаемые. Сложим коэффициенты и результат умножим на общую буквенную часть

(6 + (−3) + 4 + (−8)) × a = −1a = −a

Запишем решение покороче:

6a − 3a + 4a − 8a = −a

Встречаются выражения, которые содержат несколько различных групп подобных слагаемых. Например, 3a + 3b + 7a + 2b . Для таких выражений справедливы те же правила, что и для остальных, а именно складывание коэффициентов и умножение полученного результата на общую буквенную часть. Но чтобы не допустить ошибок, удобно разные группы слагаемых подчеркнуть разными линиями.

Например, в выражении 3a + 3b + 7a + 2b те слагаемые, которые содержат переменную a , можно подчеркнуть одной линией, а те слагаемые которые содержат переменную b , можно подчеркнуть двумя линиями:

Теперь можно привести подобные слагаемые. То есть, сложить коэффициенты и полученный результат умножить на общую буквенную часть. Сделать это нужно для обеих групп слагаемых: для слагаемых, содержащих переменную a и для слагаемых содержащих переменную b .

3a + 3b + 7a + 2b = (3+7)×a + (3 + 2)×b = 10a + 5b

Опять же повторимся, выражение несложное, и подобные слагаемые можно приводить в уме:

3a + 3b + 7a + 2b = 10a + 5b

Пример 5. Привести подобные слагаемые в выражении 5a − 6a −7b + b

Заменим вычитание сложение там, где это можно:

5a − 6a −7b + b = 5a + (−6a) + (−7b) + b

Подчеркнём подобные слагаемые разными линиями. Слагаемые, содержащие переменные a подчеркнем одной линией, а слагаемые содержание переменные b , подчеркнем двумя линиями:

Теперь можно привести подобные слагаемые. То есть, сложить коэффициенты и полученный результат умножить на общую буквенную часть:

5a + (−6a) + (−7b) + b = (5 + (−6))×a + ((−7) + 1)×b = −a + (−6b)

Если в выражении содержатся обычные числа без буквенных сомножителей, то они складываются отдельно.

Пример 6. Привести подобные слагаемые в выражении 4a + 3a − 5 + 2b + 7

Заменим вычитание сложением там, где это можно:

4a + 3a − 5 + 2b + 7 = 4a + 3a + (−5) + 2b + 7

Приведем подобные слагаемые. Числа −5 и 7 не имеют буквенных сомножителей, но они являются подобными слагаемыми — их необходимо просто сложить. А слагаемое 2b останется без изменений, поскольку оно единственное в данном выражении, имеющее буквенный сомножитель b, и его не с чем складывать:

4a + 3a + (−5) + 2b + 7 = (4 + 3)×a + 2b + (−5) + 7 = 7a + 2b + 2

Запишем решение покороче:

4a + 3a − 5 + 2b + 7 = 7a + 2b + 2

Слагаемые можно упорядочивать, чтобы те слагаемые, которые имеют одинаковую буквенную часть, располагались в одной части выражения.

Пример 7. Привести подобные слагаемые в выражении 5t+2x+3x+5t+x

Поскольку выражение является суммой из нескольких слагаемых, это позволяет нам вычислять его в любом порядке. Поэтому слагаемые, содержащие переменную t , можно записать в начале выражения, а слагаемые содержащие переменную x в конце выражения:

5t + 5t + 2x + 3x + x

Теперь можно привести подобные слагаемые:

5t + 5t + 2x + 3x + x = (5+5)×t + (2+3+1)×x = 10t + 6x

Запишем решение покороче:

5t + 2x + 3x + 5t + x = 10t + 6x

Сумма противоположных чисел равна нулю. Это правило работает и для буквенных выражений. Если в выражении встретятся одинаковые слагаемые, но с противоположными знаками, то от них можно избавиться на этапе приведения подобных слагаемых. Иными словами, просто вычеркнуть их из выражения, поскольку их сумма равна нулю.

Пример 8. Привести подобные слагаемые в выражении 3t − 4t − 3t + 2t

Заменим вычитание сложением там, где это можно:

3t − 4t − 3t + 2t = 3t + (−4t) + (−3t) + 2t

Слагаемые 3t и (−3t) являются противоположными. Сумма противоположных слагаемых равна нулю. Если убрать этот ноль из выражения, то значение выражения не изменится, поэтому мы его и уберём. А уберём мы его обычным вычеркиванием слагаемых 3t и (−3t)

В итоге у нас останется выражение (−4t) + 2t . В данном выражении можно привести подобные слагаемые и получить окончательный ответ:

(−4t) + 2t = ((−4) + 2)×t = −2t

Запишем решение покороче:

Упрощение выражений

«упростите выражение» и далее приводится выражение, которое требуется упростить. Упростить выражение значит сделать его проще и короче.

На самом деле мы уже занимались упрощением выражений, когда сокращали дроби. После сокращения дробь становилась короче и проще для восприятия.

Рассмотрим следующий пример. Упростить выражение .

Это задание буквально можно понять так: «Примените к данному выражению любые допустимые действия, но сделайте его проще» .

В данном случае можно осуществить сокращение дроби, а именно разделить числитель и знаменатель дроби на 2:

Что ещё можно сделать? Можно вычислить полученную дробь . Тогда мы получим десятичную дробь 0,5

В итоге дробь упростилась до 0,5.

Первый вопрос, который нужно себе задавать при решении подобных задач, должен быть «а что можно сделать?» . Потому что есть действия, которые можно делать, и есть действия, которые делать нельзя.

Ещё один важный момент, о котором нужно помнить, заключается в том, что значение выражение не должно измениться после упрощения выражения. Вернемся к выражению . Данное выражение представляет собой деление, которое можно выполнить. Выполнив это деление, мы получаем значение данного выражения, которое равно 0,5

Но мы упростили выражение и получили новое упрощенное выражение . Значение нового упрощенного выражения по-прежнему равно 0,5

Но выражение мы тоже попытались упростить, вычислив его. В итоге получили окончательный ответ 0,5.

Таким образом, как бы мы не упрощали выражение, значение получаемых выражений по-прежнему равно 0,5. Значит упрощение выполнялось верно на каждом этапе. Именно к этому нужно стремиться при упрощении выражений — значение выражения не должно пострадать от наших действий.

Часто требуется упрощать буквенные выражения. Для них справедливы те же правила упрощения, что и для числовых выражений. Можно выполнять любые допустимые действия, лишь бы не изменилось значение выражения.

Рассмотрим несколько примеров.

Пример 1. Упростить выражение 5,21s × t × 2,5

Чтобы упростить данное выражение, можно отдельно перемножить числа и отдельно перемножить буквы. Это задание очень похоже на то, которое мы рассматривали, когда учились определять коэффициент:

5,21s × t × 2,5 = 5,21 × 2,5 × s × t = 13,025 × st = 13,025st

Таким образом, выражение 5,21s × t × 2,5 упростилось до 13,025st .

Пример 2. Упростить выражение −0,4 × (−6,3b) × 2

Второе произведение (−6,3b) можно перевести в понятный для нас вид, а именно записать в виде (−6,3)×b , затем отдельно перемножить числа и отдельно перемножить буквы:

0,4 × (−6,3b) × 2 = 0,4 × (−6,3) × b × 2 = 5,04b

Таким образом, выражение −0,4 × (−6,3b) × 2 упростилось до 5,04b

Пример 3. Упростить выражение

Распишем данное выражение более подробно, чтобы хорошо увидеть, где числа, а где буквы:

Теперь отдельно перемножим числа и отдельно перемножим буквы:

Таким образом, выражение упростилось до −abc. Данное решение можно записать покороче:

При упрощении выражений, дроби можно сокращать в процессе решения, а не в самом конце, как мы это делали с обычными дробями. Например, если в ходе решения мы наткнёмся на выражение вида , то вовсе необязательно вычислять числитель и знаменатель и делать что-то вроде этого:

Дробь можно сократить, выбирая по множителю в числителе и в знаменателе и сокращать эти множители на их наибольший общий делитель. Другими словами, использовать , в которой мы не расписываем подробно на что был разделен числитель и знаменатель.

Например, в числителе множитель 12 и в знаменателе множитель 4 можно сократить на 4. Четвёрку храним в уме, а разделив 12 и 4 на эту четвёрку, ответы записываем рядом с этими числами, предварительно зачеркнув их

Теперь можно перемножить получившиеся маленькие множители. В данном случае их немного и можно перемножить в уме:

Со временем можно обнаружить, что решая ту или иную задачу, выражения начинают «толстеть», поэтому желательно приучиться к быстрым вычислениям. То, что можно вычислить в уме, нужно вычислять в уме. То, что можно быстро сократить, нужно быстро сокращать.

Пример 4. Упростить выражение

Таким образом, выражение упростилось до

Пример 5. Упростить выражение

Перемножим отдельно числа и отдельно буквы:

Таким образом, выражение упростилось до mn .

Пример 6. Упростить выражение

Запишем данное выражение более подробно, чтобы хорошо увидеть, где числа, а где буквы:

Теперь отдельно перемножим числа и отдельно буквы. Для удобства вычислений десятичную дробь −6,4 и смешанное число можно перевести в обыкновенные дроби:

Таким образом, выражение упростилось до

Решение для данного примера можно записать значительно короче. Выглядеть оно будет следующим образом:

Пример 7. Упростить выражение

Перемножим отдельно числа и отдельно буквы. Для удобства вычисления смешанное число и десятичные дроби 0,1 и 0,6 можно перевести в обыкновенные дроби:

Таким образом, выражение упростилось до abcd . Если пропустить подробности, то данное решение можно записать значительно короче:

Обратите внимание на то, как сократилась дробь. Новые множители, которые получаются в результате сокращения предыдущих множителей, тоже допускается сокращать.

Теперь поговорим о том, чего делать нельзя. При упрощении выражений категорически нельзя перемножать числа и буквы, если выражение является суммой, а не произведением.

Например, если требуется упростить выражение 5a + 4b , то нельзя записывать следующим образом:

Это равносильно тому, что если бы нас попросили сложить два числа, а мы бы их перемножали вместо того, чтобы складывать.

При подстановке любых значений переменных a и b выражение 5a +4b обращается в обыкновенное числовое выражение. Предположим, что переменные a и b имеют следующие значения:

a = 2 , b = 3

Тогда значение выражения будет равно 22

5a + 4b = 5 × 2 + 4 × 3 = 10 + 12 = 22

Сначала выполняется умножение, а затем полученные результаты складывают. А если бы мы попытались упростить данное выражение, перемножив числа и буквы, то получилось бы следующее:

5a + 4b = 5 × 4 × a × b = 20ab

20ab = 20 × 2 × 3 = 120

Получается совсем другое значение выражения. В первом случае получилось 22 , во втором случае 120 . Это означает, что упрощение выражения 5a + 4b было выполнено неверно.

После упрощения выражения, его значение не должно изменяться при одних и тех же значениях переменных. Если при подстановке в изначальное выражение любых значений переменных получается одно значение, то после упрощения выражения должно получаться то же самое значение, что и до упрощения.

С выражением 5a + 4b на самом деле ничего делать нельзя. Оно не упрощается.

Если в выражении содержатся подобные слагаемые, то их можно сложить, если нашей целью является упрощение выражения.

Пример 8. Упростить выражение 0,3a−0,4a+a

0,3a − 0,4a + a = 0,3a + (−0,4a) + a = (0,3 + (−0,4) + 1)×a = 0,9a

или покороче: 0,3a − 0,4a + a = 0,9a

Таким образом, выражение 0,3a−0,4a+a упростилось до 0,9a

Пример 9. Упростить выражение −7,5a − 2,5b + 4a

Чтобы упростить данное выражение можно привести подобные слагаемые:

−7,5a − 2,5b + 4a = −7,5a + (−2,5b) + 4a = ((−7,5) + 4)×a + (−2,5b) = −3,5a + (−2,5b)

или покороче −7,5a − 2,5b + 4a = −3,5a + (−2,5b)

Слагаемое (−2,5b) осталось без изменений, поскольку его не с чем было складывать.

Пример 10. Упростить выражение

Чтобы упростить данное выражение можно привести подобные слагаемые:

Коэффициент был для удобства вычисления.

Таким образом, выражение упростилось до

Пример 11. Упростить выражение

Чтобы упростить данное выражение можно привести подобные слагаемые:

Таким образом, выражение упростилось до .

В данном примере целесообразнее было бы сложить первый и последний коэффициент в первую очередь. В этом случае мы получили бы короткое решение. Выглядело оно будет следующим образом:

Пример 12. Упростить выражение

Чтобы упростить данное выражение можно привести подобные слагаемые:

Таким образом, выражение упростилось до.

Слагаемое осталось без изменения, поскольку его не с чем было складывать.

Данное решение можно записать значительно короче. Выглядеть оно будет следующим образом:

В коротком решении пропущены этапы замены вычитания сложением и подробная запись, как дроби приводились к общему знаменателю.

Ещё одно различие заключается в том, что в подробном решении ответ выглядит как , а в коротком как . На самом деле, это одно и то же выражение. Различие в том, что в первом случае вычитание заменено сложением, поскольку в начале когда мы записывали решение в подробном виде, мы везде где можно заменили вычитание сложением, и эта замена сохранилась и для ответа.

Тождества. Тождественно равные выражения

После того, как мы упростили любое выражение, оно становится проще и короче. Чтобы проверить, верно ли упрощено выражение, достаточно подставить любые значения переменных сначала в предыдущее выражение, которое требовалось упростить, а затем в новое, которое упростили. Если значение в обоих выражениях будет одинаковым, то выражение упрощено верно.

Рассмотрим простейший пример. Пусть требуется упростить выражение 2a × 7b . Чтобы упростить данное выражение, можно по отдельности перемножить числа и буквы:

2a × 7b = 2 × 7 × a × b = 14ab

Проверим верно ли мы упростили выражение. Для этого подставим любые значения переменных a и b сначала в первое выражение, которое требовалось упростить, а затем во второе, которое упростили.

Пусть значения переменных a , b будут следующими:

a = 4 , b = 5

Подставим их в первое выражение 2a × 7b

Теперь подставим те же значения переменных в выражение, которое получилось в результате упрощения 2a×7b , а именно в выражение 14ab

14ab = 14 × 4 × 5 = 280

Видим, что при a=4 и b=5 значение первого выражения 2a×7b и значение второго выражения 14ab равны

2a × 7b = 2 × 4 × 7 × 5 = 280

14ab = 14 × 4 × 5 = 280

То же самое произойдет и для любых других значений. Например, пусть a=1 и b=2

2a × 7b = 2 × 1 × 7 × 2 =28

14ab = 14 × 1 × 2 =28

Таким образом, при любых значениях переменных выражения 2a×7b и 14ab равны одному и тому же значению. Такие выражения называют тождественно равными .

Делаем вывод, что между выражениями 2a×7b и 14ab можно поставить знак равенства, поскольку они равны одному и тому же значению.

2a × 7b = 14ab

Равенством называют любое выражение, которые соединено знаком равенства (=).

А равенство вида 2a×7b = 14ab называют тождеством .

Тождеством называют равенство, которое верно при любых значениях переменных.

Другие примеры тождеств:

a + b = b + a

a(b+c) = ab + ac

a(bc) = (ab)c

Да, законы математики, которые мы изучали, являются тождествами.

Верные числовые равенства также являются тождествами. Например:

2 + 2 = 4

3 + 3 = 5 + 1

10 = 7 + 2 + 1

Решая сложную задачу, чтобы облегчить себе вычисление, сложное выражение заменяют на более простое выражение, тождественно равное предыдущему. Такую замену называют тождественным преобразованием выражения или просто преобразованием выражения .

Например, мы упростили выражение 2a × 7b , и получили более простое выражение 14ab . Это упрощение можно называть тождественным преобразованием.

Часто можно встретить задание, в котором сказано «докажите, что равенство является тождеством» и далее приводится равенство, которое требуется доказать. Обычно это равенство состоит из двух частей: левой и правой части равенства. Наша задача состоит в том, чтобы выполнить тождественные преобразования с одной из частей равенства и получить другую часть. Либо выполнить тождественные преобразования с обеими частями равенства и сделать так, чтобы в обеих частях равенства оказались одинаковые выражения.

Например, докажем, что равенство 0,5a × 5b = 2,5ab является тождеством.

Упростим левую часть этого равенства. Для этого перемножим числа и буквы по отдельности:

0,5 × 5 × a × b = 2,5ab

2,5ab = 2,5ab

В результате небольшого тождественного преобразования, левая часть равенства стала равна правой части равенства. Значит мы доказали, что равенство 0,5a × 5b = 2,5ab является тождеством.

Из тождественных преобразований мы научились складывать, вычитать, умножать и делить числа, сокращать дроби, приводить подобные слагаемые, а также упрощать некоторые выражения.

Но это далеко не все тождественные преобразования, которые существуют в математике. Тождественных преобразований намного больше. В будущем мы ещё не раз в этом убедимся.

Задания для самостоятельного решения:

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках