Как увеличить теплопроводность воды. Большая энциклопедия нефти и газа

В России федеральные операторы практически монополизировали рынок магистральных сетей Интернет. Они прокладывают самые толстые линии связи, а потом продают местным провайдерам право пользоваться ими. Но жизнь самих федеральных игроков – тоже не малина. В 2014 г. они должны зайти в каждый город с населением от 100 тыс. человек, а к 2018 г. их присутствие обязательно в городах с населением 8 тыс. человек. А это огромные инвестиции, которые неизвестно, когда окупятся и окупятся ли вообще.

Магистральный Интернет в России

Глобальная магистральная сеть Интернет опоясывает всю планету, соединяя континенты, страны и отдельные города. По большому счету магистральная сеть – это те же волоконно-оптические линии связи, которые приносят Интернет в наши квартиры и дома, только с большей пропускной способностью (от 100 Гбит/с до 10 Тбит/с при использовании современного оборудования). Строительством и обслуживанием таких сетей занимаются либо провайдеры, предоставляющие связь напрямую абонентам, либо компании, работающие только с провайдерами и не имеющие дел с конечными потребителями. Первых, конечно же, больше.

В России строить трансграничные магистральные сети и передавать трафик за границу могут только крупные федеральные провайдеры, многие из которых не ограничиваются магистралями внутри страны. Например, оператор RetnNet имеет Интернет узлы и линии не только на западе РФ, но практически по всей Европе. А провайдер «Синтерра», который сегодня принадлежит «МегаФону», связывает Россию только с некоторыми странами восточной Европы, которые находятся недалеко от наших границ. Региональные (охватывающие некую область в РФ) и локальные (охватывающие только один или несколько населенных пунктов) провайдеры не могут строить свои магистрали за границу и вынуждены пользоваться чужими, а плата за трафик «капает» в карман федеральных игроков рынка.


Нажмите, чтобы увеличить

Но при этом если вы думаете, что быть федеральным провайдером легко и выгодно, то вы ошибаетесь. К таким операторам имеются очень высокие требования. В частности, они обязаны присутствовать по всей стране, во всех регионах РФ. В 2014 г. они должны зайти в каждый город с населением от 100 тыс. человек, а к 2018 г. их присутствие обязательно в городах с населением 8 тыс. человек. Во всяком случае, так гласит сегодня закон. Насколько это реально? Даже самым «толстым» провайдерам это крайне трудно сделать. Но зато они монополисты на рынке иностранного трафика.

В целом тенденции развития рынка магистрального Интернета в России следующие: до 2011 г. включительно провайдеры занимались расширением сетей и строительством новых линий, в 2012 г.они приостановили расширение и начали модернизировать сети, увеличивать пропускную способность, расширять каналы, в 2013 г. провайдеры опять переключились на строительство новых магистральных узлов и линий. Та же тенденция сохранится и в текущем 2014 г.

Топ-10 крупнейших магистральных провайдеров России

В России существует два сегмента магистральных сетей связи: внутрироссийские каналы и международные каналы направления «Москва – Санкт-Петербург – Хельсинки – Стокгольм».

В основном, магистральные провайдеры активнее занимаются одним из направлений, затрачивая больше средств и усилий для его развития, чем другого. Это более эффективный путь, поскольку не приходится гнаться сразу за двумя зайцами. Так, например, операторы RetnNet, «Раском», ТТК и TeliaSonera International Carrier Russia направлены на строительство магистралей за границей, а в России имеют лишь несколько линий связи. А вот такие операторы, как «Синтерра», «ВымпелКом», больше внимания уделяют внутрироссийским магистральным каналам.

Представляем вам 10 самых крупных магистральных провайдеров России:

  1. «Ростелеком» – 500 тыс. км магистралей;
  2. «МегаФон» (включая сети «Синтерра») – 118 тыс. км магистралей;
  3. МТС – 117 тыс. км магистралей;
  4. «ВымпелКом» – 137 тыс. км магистралей;
  5. «ТрансТелеКом» (ТТК) – 76 тыс. км магистралей;
  6. «Старт Телеком» – 16 тыс. км магистралей;
  7. «Раском» – 8,6 тыс. км магистралей;
  8. Orange Business Services – 8,5 тыс. км магистралей;
  9. RetnNet – 5,7 тыс. км магистралей;
  10. TeliaSonera International Carrier Russia – 2 тыс. км магистралей.

Первая пятерка лидеров – это федеральные российские провайдеры, которые вкладывают огромные средства в развитие своих сетей и являются практически монополистами во многих сегментах рынка высокоскоростного Интернета в РФ. Большинство операторов из второй пятерки не предоставляют услуги частным российским пользователям, а работают больше с другими провайдерами, предоставляя в аренду свои магистрали.

Топ-3 крупнейших магистральных провайдеров Москвы

Естественно, самые «толстые» магистральные каналы тянутся из-за границы в Москву, а уже из столицы по регионам расходятся линии зачастую с меньшей пропускной способностью. Москва – это очень важный узел, через который проходит огромная часть российского трафика, да и уровень проникновения Интернета в столице намного выше, чем в регионах. Вот почему московским провайдерам нужен более широкий канал.

Тройка крупнейших магистральных провайдеров Москвы выглядит так:

  1. «Ростелеком» – 80 тыс. км оптоволокна в Москве и Московской обл.;
  2. МГТС – 25 тыс. км оптических линий в Москве и Подмосковье;
  3. «АКАДО Телеком» – 18,5 тыс. км линий связи по Москве и Подмосковью.

Как прокладывают магистральные линии в РФ. Взгляд обывателя

Как работают магистральные каналы? Какая аппаратура выдерживает те нагрузки, которые нужны для высокоскоростной передачи огромных объемов информации? Как выглядят и где проложены кабеля магистральных сетей? Давайте попробуем во всем разобраться.

Для того чтобы высокоскоростной Интернет появился в Архангельске, Нижневартовске, Нягани или любом другом городе, нужно протянуть в этот населенный пункт кабель. Причем кабель этот должен быть достаточно толстым и надежным, чтобы выдерживать те нагрузки, которые ему придется пережить. А что уж говорить о кабелях, соединяющих континенты... Но как раз этих самых толстых кабелей никто никогда не видел. Ну, во всяком случае, рядовой обыватель не отличит Интернет-кабель от любого другого, да и не особо интересуется этим.

Как работают магистральные каналы

Магистральные каналы, в основном, прокладываются под землей, тем более, что оптоволокно – это достаточно хрупкий материал, который боится сильных ветров, обледенения и падения веток деревьев. То есть непогода крайне негативно влияет на ВОЛС. Как раз поэтому магистральные волоконно-оптические линии закапывают. В отличие от локальных линий оптоволокна, ведущих к многоэтажкам и частным домам. Последние прокладываются по воздуху, по электрическим столбам.

Оптоволоконные магистральные сети состоят из линий (кабелей) и узлов (крупные маршрутизаторы). Большинство магистральных операторов используют сегодня технологию DWDM – спектральное уплотнение канала, мультиплексирование с разделением по длине волны. Информация в одном городе направляется в аппаратуру спектрального уплотнения, где сжимается до пакетов минимальных размеров и в виде сигнала направляется в другой город, где происходит обратный процесс – распаковка и дешифровка данных. Из необходимого для такого процесса оборудования – мультиплексор, демультиплексор, транспондеры (основные производители Cisco, Huawei, Ciena). Данная технология позволяет передавать большие объемы данных практически одним «броском», значительно ускоряя передачу и расширяя канал.

Обрывы кабеля

Магистральные кабели часто страдают от нерадивых строителей и незаконных застройщиков, которые копают котлованы и траншеи, не удосужившись узнать, не проходит ли какая-нибудь линия связи или коммуникаций в этом месте. Поэтому провайдеры подстраховываются, создавая резервные каналы, чтобы пользователи не страдали в случае обрыва кабеля в одном месте.

Поскольку, как уже было сказано, обрывы кабеля – явление частое, то и ремонт обрывов является обычным делом. Бригада приезжает на примерное место поломки и ищет точку обрыва. Обычно ее видно сразу, поскольку само по себе оптоволокно не рвется, всегда есть внешний фактор – экскаватор, стройка, свежая глубокая траншея (ведь кабель закапывают на глубину порядка 2-4 метров). Но если невозможно точно увидеть, где авария, то существует специальный приборчик – рефлектометр, который подает оптический импульс и по времени возврата определяет довольно точно место обрыва. Мастера-ремонтники вырезают поврежденный кусок кабеля и делают вставку нового. При строительстве линии связи закладывается запас мощности сигнала, ведь врезка несколько ухудшает скорость передачи. Кстати, на оптике, проложенной по воздуху, можно увидеть на столбах бухты с запасом кабеля. Они как раз для ремонта обрывов. Чтобы не делать врезки, которые ухудшат качество связи.

Проблемы магистральных сетей в России

Основной проблемой магистральных провайдеров в нашей стране являются, собственно, размеры России. Дело в том, что мало проложить магистраль, нужно еще и поддерживать ее нормальную работу, регулярно модернизировать и ремонтировать. А на такой обширной территории это бывает крайне трудно и дорого. Ведь одно дело – заменить оборудование на сети, протяженностью 100 км, а совсем другое – 100 000 км.

Поэтому провайдеры часто тянут до последнего с модернизацией, пытаясь сэкономить или хоть как-то повысить окупаемость сети. И ремонтируют сеть на некоторых участках десятки раз, до тех пор, пока мощности хватает еле-еле. И только когда уже совсем падает скорость и пропускная способность, заменяют весь участок магистрали.

В России вложения провайдеров в развитие и обслуживание магистральной сети зачастую огромные. Поэтому не судите операторов строго, они стараются сделать максимум, затратив как можно меньше денег. Кроме того, на них давят не только экономические условия, но еще и законодательство, обязывающее каждый год прокладывать все больше новых магистральных линий.

Магистральная сеть компании ОАО «Ростелеком»


Нажмите, чтобы увеличить

Магистральная сеть компании «МегаФон»


Нажмите, чтобы увеличить

Магистральная сеть компании «Синтерра», принадлежащей «МегаФону»

Под теплопроводностью понимается способность различных тел проводить теплоту во все стороны от точки приложения нагретого предмета. Теплопроводность возрастает по мере увеличения плотности вещества, потому что тепловые колебания легче передаются в более плотном веществе, где отдельные частицы расположены ближе одна к другой. Этому закону подчиняются и жидкости.

Теплопроводность определяется количеством калорий, проходящих в 1 сек. через площадь в 1 см2 при падении температуры на 1° на протяжении 1 см пути. По теплопроводности вода занимает место между стеклом и эбонитом и почти в 28 раз превосходит воздух.

Теплоемкость воды . Под удельной теплоемкостью понимается то количество теплоты, которое может нагреть 1 г массы вещества на 1 °. Это количество теплоты измеряется калориями. За единицу теплоты принимается грамм-калория. Вода воспринимает при 14-15° большее количество теплоты, чем другие вещества; например, количество тепла, потребное для нагрева 1 кг воды на 1°, может нагреть на 1° 8 кг железа или 33 кг ртути.

Механическое действие воды

Наиболее сильным механическим действием отличается душ, наиболее слабым - полные ванны. Сравним механическое влияние, например, душа Шарко и полных ванн.
Дополнительное давление воды на кожу в ванне, где столб воды не превышает 0,5 м, составляет около 0,005, или 1,20 атмосферного давления, а сила удара водяной струи в душе Шарко, направленной на тело с расстояния 15-20 м, равняется 1,5- 2 атмосферам.

Независимо от температуры применяемой воды, под влиянием душа наступает энергичное, расширение кожных сосудой немедленно после падения на тело водяной струи. Одновременно проявляется возбуждающее действие душа.

Для исследования механического действия морских и речных: купаний применима формула F=mv2/2, где сила F равняется половине произведения массы т на квадрат скорости v2. Механическое действие морской и речной волн зависит не столько от массы воды, надвигающейся на тело, сколько от скорости, с которой совершается это движение.

Вода как химический растворитель . Вода обладает способностью растворять различные минеральные соли, жидкости и газы, от этою усиливается раздражающее действие воды. Большое значение придается ионному обмену, происходящему между водой и телом человека, погруженным в минерализованную ванну.

При нормальном давлении (т. е. при нулевой температуре) один объем воды поглощает 1,7 объема углекислоты; при повышении давления растворимость углекислоты в воде значительно повышается; при двух атмосферах давления при температуре в 10° растворяются три объема углекислоты вместо 1,2 объема при нормальном давлении.

Теплопроводность углекислоты в два раза меньше теплопроводности воздуха и в тридцать раз меньше теплопроводности воды. Этим свойством воды пользуются для устройства различных газовых ванн, заменяющих иногда минеральные источники.

Cтраница 1


Теплопроводность воды примерно в 5 раз выше теплопроводности масла. Она увеличивается с увеличением давления, но при давлениях, имеющих место в гидродинамических передачах, ее можно принять постоянной.  

Теплопроводность воды приблизительно в 28 раз превышает теплопроводность воздуха. В соответствии с этим увеличивается скорость теплопотери при погружении тела в воду или соприкосновении с ней, а это в значительной мере определяет теплоощущение человека на воздухе и в воде. Так, например, при - (- 33 воздух кажется нам теплым, а такая же температура воды - безразличной. Температура воздуха 23 кажется нам безразличной, а вода такой же температуры - прохладной. При - (- 12 воздух кажется прохладным, а вода - холодной.  

Теплопроводность воды и водяного пара г несомненно, изучена лучше всех других веществ.  

Динамическая вязкость (х (Па-с некоторых водных растворов.| Изменение массовой теплоемкости водных растворов некоторых солей в зависимости от концентрации раствора.| Теплопроводность некоторых растворов в зависимости от концентрации при 20 С.  

Теплопроводность воды имеет положительный температурный ход, поэтому при малых концентрациях теплопроводность водных растворов многих солей, кислот и щелочей с повышением температуры растет.  

Теплопроводность воды значительно больше, чем у других жидкостей (кроме металлов) и изменяется тоже аномально: до 150 С возрастая и лишь затем начиная уменьшаться. Электропроводность воды очень мала, но заметно возрастает при повышении и температуры, и давления. Критическая температура воды равна 374 С, критическое давление 218 атм.  


Теплопроводность воды значительно больше, чем у других жидкостей (кроме металлов), и изменяется тоже аномально: до 150 С возрастает и лишь затем начинает уменьшаться. Электропроводность воды очень мала, но заметно возрастает при повышении и температуры, и давления. Критическая температура воды равна 374 С, критическое давление 218 атм.  

Динамическая вязкость ц (Па-с некоторых водных растворов.| Изменение массовой теплоемкости водных растворов некоторых солей в зависимости от концентрации раствора.| Теплопроводность некоторых растворов в зависимости от концентрации при 20 С.  

Теплопроводность воды имеет положительный температурный ход, поэтому при малых концентрациях теплопровод-кость водных растворов многих солей, кислот и щелочей с повышением температуры растет.  

Теплопроводность воды, водных растворов солей, спиртоводных растворов и некоторых других жидкостей (например, гликолей) возрастает с повышением температуры.  

Теплопроводность воды очень незначительна по сравнению с теплопроводностью других веществ; так, теплопроводность пробки - 0 1; асбеста - 0 3 - 0 6; бетона - 2 - 3; дерева - 0 3 - 1 0; кирпича-1 5 - 2 0; льда - 5 5 кал / см сек град.  

Теплопроводность воды X при 24 равна 0 511, теплоемкость ее с 1 ккал кг С.  

Теплопроводность воды прн 25 равна 1 43 - 10 - 3 кал / см-сек.  

Поскольку теплопроводность воды (Я 0 5 ккал / м - ч - град) примерно в 25 раз больше, чем у неподвижного воздуха, вытеснение воздуха водой повышает теплопроводность пористого материала. При быстром замораживании и образовании в порах строительных материалов уже не льда, а снега (Я 0 3 - 0 4), как показали наши наблюдения, теплопроводность материала, наоборот, несколько уменьшается. Правильный учет влажности материалов имеет большое значение для теплотехнических расчетов сооружений как надземных, так и подземных, например водоканализационных.  

Теплопроводность воды – свойство, которым мы все, того не подозревая, очень часто пользуемся в быту.

Кратко про это свойство мы уже писали в нашей статье ХИМИЧЕСКИЕ И ФИЗИЧЕСКИЕ СВОЙСТВА ВОДЫ В ЖИДКОМ СОСТОЯНИИ → , в данном же материале дадим более развернутое определение.

Вначале рассмотрим значение термина теплопроводность в общем.

Теплопроводность, это …

Справочник технического переводчика

Теплопроводность — теплообмен, при котором перенос теплоты в неравномерно нагретой среде имеет атомно-молекулярный характер

[Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

Теплопроводность — способность материала пропускать тепловой поток

[СТ СЭВ 5063-85]

Справочник технического переводчика

Толковый словарь Ушакова

Теплопроводность, теплопроводности, мн. нет, жен. (физ.) — свойство тел распространять тепло от более нагретых частей к менее нагретым.

Толковый словарь Ушакова. Д.Н. Ушаков. 1935-1940

Большой Энциклопедический словарь

Теплопроводность — перенос энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия составляющих его частиц. Приводит к выравниванию температуры тела. Обычно количество переносимой энергии, определяемое как плотность теплового потока, пропорционально градиенту температуры (закон Фурье). Коэффициент пропорциональности называют коэффициентом теплопроводности.

Большой Энциклопедический словарь. 2000

Теплопроводность воды

Для более объемного понимания общей картины отметим несколько фактов:

  • Теплопроводность воздуха приблизительно в 28 раз меньше теплопроводности воды;
  • У масла теплопроводность ориентировочно в 5 раз меньше чем у воды;
  • При повышении давления теплопроводность повышается;
  • В большинстве случаях, при повышении температуры, теплопроводность слабо концентрированных растворов солей, щелочей и кислот так же растет.

В качестве примера, приведем динамику изменений значений теплопроводности воды в зависимости от температуры, при давлении 1 бар:

0°С – 0,569 Вт/(м град);
10°С – 0,588 Вт/(м град);
20°С – 0,603 Вт/(м град);
30°С – 0,617 Вт/(м град);
40°С – 0,630 Вт/(м град);
50°С – 0,643 Вт/(м град);
60°С – 0,653 Вт/(м град);
70°С – 0,662 Вт/(м град);
80°С – 0,669 Вт/(м град);
90°С – 0,675 Вт/(м град);

100°С – 0,0245 Вт/(м град);
110°С – 0,0252 Вт/(м град);
120°С – 0,026 Вт/(м град);
130°С – 0,0269 Вт/(м град);
140°С – 0,0277 Вт/(м град);
150°С – 0,0286 Вт/(м град);
160°С – 0,0295 Вт/(м град);
170°С – 0,0304 Вт/(м град);
180°С – 0,0313 Вт/(м град).

Теплопроводность, впрочем, как и все остальные, является весьма важным для всех нас свойством воды. Например мы очень часто, сами того не зная, пользуемся им в быту — используем воду для быстрого охлаждения нагретых предметов, а грелку для аккумулирования тепла и его хранения.