Теплопроводность воды при различных температурах таблица. Теплопроводность и теплоемкость воды

В сторону снижения начинают обнаруживаться при толщине водной прослойки между сферической (с радиусом кривизны около 1 м) и плоской 

В результате теплообмена между паром и жидкостью только верхний слой жидкости примет температуру насыщения , соответствующую среднему давлению слива . Температура основной массы жидкости останется ниже температуры насыщения. Нагревание жидкости протекает медленно вследствие низкого значения коэффициента температуропроводности жидкого пропана или бутана. Например, жидкого пропана на линии насыщения при температуре ts -- 20° С а = 0,00025 м-/ч, тогда как для воды, являющейся одним из наиболее инертных в тепловом отношении веществ , значение коэффициента температуропроводности при той же температуре будет а = 0,00052 м /ч. 

Теплопроводность и температуропроводность древесины зависят от ее плотности, так как в отличие от теплоемкости на эти свойства влияет наличие распределенных по объему древесины полостей клеток, заполненных воздухом . Коэффициент теплопроводности абсолютно сухой древесины возрастает с увеличением плотности, а коэффициент температуропроводности падает. При заполнении полостей клеток водой теплопроводность древесины растет, а температуропроводность снижается. Теплопроводность древесины вдоль волокон больше, чем поперек. 

ЧТО зависит от резко различающихся значений этих коэффициентов для веществ углей, воздуха и воды. Так, удельная теплоемкость воды в три раза, а коэффициент теплопроводности в 25 раз больше, чем воздуха, поэтому коэффициенты тепло - и температуропроводности возрастают с увеличением влаги в углях (рис. 13). 

Прибор, изображенный на рис. 16 слева, служит для измерения тепло - и температуропроводности сыпучих материалов. В этом случае испытуемый материал помещается в пространство, образованное внутренней поверхностью цилиндра 6 и цилиндрическим нагревателем 9, размещенным по оси прибора. Для уменьшения осевых потоков измерительный блок снабжен крышками 7, 8 из теплоизоляционного материала . В рубашке, образованной внутренним и наружным цилиндрами, циркулирует вода постоянной температуры. Как и в предыдущем случае, разность температур измеряется дифференциальной термопарой , один спай которой 1 укреплен вблизи цилиндрического нагревателя, а другой 2 - на внутренней поверхности цилиндра с испытуемым материалом. 

К аналогичной формуле придем, если рассмотрим время, необходимое для испарения отдельной капли жидкости. Температуропроводность Хв жидкостей типа воды обычно мала. В связи с этим прогревание капли происходит относительно медленно за время пр о/Хв- Это позволяет считать, что испарение жидкости происходит только с поверхности капли без значительного прогрева 

На мелководьях прогрев воды осуществляется не только сверху за счет процессов теплообмена с атмосферой, но также и снизу, со стороны дна, которое из-за малой температуропроводности и сравнительно малой теплоемкости быстро прогревается. В ночные часы дно передает накопленное за день тепло слою воды, расположенному над ним, и возникает своеобразный парниковый эффект. 

В этих выражениях Яд и Н (в кал моль) - теплоты абсорбции и реакции (положительная при экзотермичности реакции), а остальные обозначения указаны выше. Коэффициент температуропроводности для воды составляет около 1,5 10" см 1сек. Функции и 

Значительно менее изучены теплопроводность и температуропроводность буровых растворов . В тепловых расчетах коэффициент теплопроводности их, по В. Н. Дахнову и Д. И. Дьяконову, а также Б. И. Есьману и др. , принимают тот же, что и воды - 0,5 ккал/м-ч-град . По справочным данным, коэффициент теплопроводности буровых растворов равен 1,29 ккал/м-ч-град. С. М. Кулиев и др. предложили для расчета коэффициента теплопроводности уравнение 

Для приблизительных расчетов процессов испарения воды в воздух и конденсации воды из влажного воздуха можно применять соотношение Льюиса , так как отношение коэффициента температуропроводности к коэффициенту диффузии при 20°С равно 0,835, что не сильно отличается от единицы. В разделе Г5-2 процессы, происходяшие во влажном воздухе , изучались при помощи графика зависимости удельного влагосодержания от энтальпии. Поэтому полезно было бы преобразовать уравнение (16-36) таким образом , чтобы в его правой части вместо парциальных 

B уравнениях (VII.3) и (VII.4) и краевых условиях (VII.5) приняты следующие обозначения Ti и Т - соответственно температуры отвердевшего и неотвердевшего слоев - температура среды Т р - криоскопическая температура а и U2 - соответственно температуропроводности этих слоев а = kil ifi), mV А.1 - коэффициент теплопроводности для замороженного мяса, Вт/(м- К) А.2 - то же для охлажденного мяса , Вт/(м- К) q и сг - удельные теплоемкости замороженного и охлажденного мяса , Дж/(кг-К) Pi ир2 - плотность замороженного и охлажденного мяса р1 =pj = 1020 кг/м - толщина замороженного слоя, отсчитываемая от

Теории явлений переноса, основанные на статистическом методе Гиббса, ставят перед собой задачу получить кинетические уравнения, из которых можно найти конкретный вид неравновесных функций распределения. Предполагается, что неравновесная функция распределения системы имеет квазиравновесную форму, причем температура, плотность числа частиц и их средняя скорость зависят от

пространственно-временных координат. Корреляция последовательных столкновений достигается тем, что учитываются не только жесткие столкновения (обусловленные отталкиванием), но и так называемые мягкие столкновения (обусловленные притяжением), в результате чего частицы движутся по искривленным траекториям.

Наибольшей известностью пользуется метод Кирквуда, в котором мягкие соударения определяют коэффициент трения. Согласно Эйнштейну - Смолуховскому коэффициент трения

где постоянная Больцмана, Т - абсолютная температура и коэффициент самодиффузии.

Корреляция взаимодействия окружающих частиц с данной частицей по Кирквуду осуществляется на протяжении характерного времени та, по прошествии которого силы, действующие со стороны других частиц на данную, рассматриваются как некоррелированные Причем величина времени корреляции взаимодействия должна быть меньше характеристического времени релаксации макроскопических характеристик вещества.

Для коэффициента теплопроводности Кирквуд получает следующее выражение

где число частиц в единице объема, радиальная равновесная функция распределения частиц, -потенциал парных сил.

Кроме того, что для вычисления № по эгой формуле необходимо знать с большой точностью не только но и ее производные, а также (что само по себе представляет пракшчески неразрешимую в настоящий момент задачу) Недавно было показано, что кинетические коэффициенты нельзя непосредственно разлагать в ряд по степеням плотности, как целает Кирквуд, а необходимо использовать более сложное разложение. Это связано с необходимостью учитывав повторные соударения частиц, уже скоррелированные в

результат предыдущих столкновений с другими частицами. В связи с перечисленными трудностями приходится прибегать к модельным методам исследования.

Среди модельных работ представляют интерес работы, основанные на представлениях о характере теплового движения в жидкостях, при котором перенос тепла определяется посредством гиперакустических колебаний среды (фононов). Такой подход учитывает коллективный характер движения молекул в жидкости. При этом теплопроводность К определяется, например, следующим образом (формула Сакиадиса и Котеса)

где - скорость гиперзвука; теплоемкость при постоянном давлении, среднее расстояние между молекулами, плотность.

Помимо модельного подхода имеют место и полуэмпирические соотношения для теплопроводности (Филиппов,

Теплопроводность примерно в 5 раз меньше теплопроводности (табл. 43). Четыреххлористый углерод - обычная жидкость, для которой имеет место, как и для всех других жидкостей, уменьшение скорости звука с ростом температуры, уменьшение теплопроводности и рост теплоемкости. У воды при малых температурах все наоборот. Характер изменения всех этих свойств в воде напоминает характер их изменения для обычных веществ в газообразном состоянии. В самом деле, теплопроводность газа растет с ростом температуры

Средняя скорость молекул, теплоемкость и длина свободного пробега).

Для примера ниже приводится зависимость теплопроводности воздуха при атмосферном давлении для ряда температур.

Изменение теплопроводности при плавлении льда I и дальнейшее изменение Т с ростом температуры жидкой воды представлено на рис. 57, откуда видно, что теплопроводность при плавлении льда I уменьшается приблизительно в

Таблица 43 (см. скан) Температурные зависимости теплопроводностей воды и четыреххлористого углерода

4 раза. Исследование изменения теплопроводности переохлажденной воды вплоть до -40°С показывает, что переохлажденная вода не имеет никаких особенностей при 0°С (табл. 43). Для иллюстрации нормального температурного хода теплопроводности представлена зависимость теплопроводности от температуры. Теплопроводность монотонно уменьшается с ростом температуры.

Все нормальные жидкости с ростом давления изменяют знак изменения теплопроводности с температурой. Для большого класса жидкостей это изменение имеет место при давлении Теплопроводность воды не изменяет характера температурной зависимости под давлением. Относительная величина увеличения теплопроводности воды при давлении составляет -50%, в то время как для

других нормальных жидкостей это увеличение при том же давления составляет (рис. 58).

Зависимость К от давления для воды представлена на рис. 58. Такое маленькое относительное увеличение теплопроводности воды с ростом давления связано с малой сжимаемостью воды по сравнению с другими жидкостями, которая определяется характером сил межмолекулярного взаимодействия.

Рис. 57. Зависимость теплопроводности воды и от температуры

Рис. 58. Зависимость от температуры теплопроводности и силиконового масла для ряда давлений

Под теплопроводностью понимается способность различных тел проводить теплоту во все стороны от точки приложения нагретого предмета. Теплопроводность возрастает по мере увеличения плотности вещества, потому что тепловые колебания легче передаются в более плотном веществе, где отдельные частицы расположены ближе одна к другой. Этому закону подчиняются и жидкости.

Теплопроводность определяется количеством калорий, проходящих в 1 сек. через площадь в 1 см2 при падении температуры на 1° на протяжении 1 см пути. По теплопроводности вода занимает место между стеклом и эбонитом и почти в 28 раз превосходит воздух.

Теплоемкость воды . Под удельной теплоемкостью понимается то количество теплоты, которое может нагреть 1 г массы вещества на 1 °. Это количество теплоты измеряется калориями. За единицу теплоты принимается грамм-калория. Вода воспринимает при 14-15° большее количество теплоты, чем другие вещества; например, количество тепла, потребное для нагрева 1 кг воды на 1°, может нагреть на 1° 8 кг железа или 33 кг ртути.

Механическое действие воды

Наиболее сильным механическим действием отличается душ, наиболее слабым - полные ванны. Сравним механическое влияние, например, душа Шарко и полных ванн.
Дополнительное давление воды на кожу в ванне, где столб воды не превышает 0,5 м, составляет около 0,005, или 1,20 атмосферного давления, а сила удара водяной струи в душе Шарко, направленной на тело с расстояния 15-20 м, равняется 1,5- 2 атмосферам.

Независимо от температуры применяемой воды, под влиянием душа наступает энергичное, расширение кожных сосудой немедленно после падения на тело водяной струи. Одновременно проявляется возбуждающее действие душа.

Для исследования механического действия морских и речных: купаний применима формула F=mv2/2, где сила F равняется половине произведения массы т на квадрат скорости v2. Механическое действие морской и речной волн зависит не столько от массы воды, надвигающейся на тело, сколько от скорости, с которой совершается это движение.

Вода как химический растворитель . Вода обладает способностью растворять различные минеральные соли, жидкости и газы, от этою усиливается раздражающее действие воды. Большое значение придается ионному обмену, происходящему между водой и телом человека, погруженным в минерализованную ванну.

При нормальном давлении (т. е. при нулевой температуре) один объем воды поглощает 1,7 объема углекислоты; при повышении давления растворимость углекислоты в воде значительно повышается; при двух атмосферах давления при температуре в 10° растворяются три объема углекислоты вместо 1,2 объема при нормальном давлении.

Теплопроводность углекислоты в два раза меньше теплопроводности воздуха и в тридцать раз меньше теплопроводности воды. Этим свойством воды пользуются для устройства различных газовых ванн, заменяющих иногда минеральные источники.

Cтраница 1


Теплопроводность воды примерно в 5 раз выше теплопроводности масла. Она увеличивается с увеличением давления, но при давлениях, имеющих место в гидродинамических передачах, ее можно принять постоянной.  

Теплопроводность воды приблизительно в 28 раз превышает теплопроводность воздуха. В соответствии с этим увеличивается скорость теплопотери при погружении тела в воду или соприкосновении с ней, а это в значительной мере определяет теплоощущение человека на воздухе и в воде. Так, например, при - (- 33 воздух кажется нам теплым, а такая же температура воды - безразличной. Температура воздуха 23 кажется нам безразличной, а вода такой же температуры - прохладной. При - (- 12 воздух кажется прохладным, а вода - холодной.  

Теплопроводность воды и водяного пара г несомненно, изучена лучше всех других веществ.  

Динамическая вязкость (х (Па-с некоторых водных растворов.| Изменение массовой теплоемкости водных растворов некоторых солей в зависимости от концентрации раствора.| Теплопроводность некоторых растворов в зависимости от концентрации при 20 С.  

Теплопроводность воды имеет положительный температурный ход, поэтому при малых концентрациях теплопроводность водных растворов многих солей, кислот и щелочей с повышением температуры растет.  

Теплопроводность воды значительно больше, чем у других жидкостей (кроме металлов) и изменяется тоже аномально: до 150 С возрастая и лишь затем начиная уменьшаться. Электропроводность воды очень мала, но заметно возрастает при повышении и температуры, и давления. Критическая температура воды равна 374 С, критическое давление 218 атм.  


Теплопроводность воды значительно больше, чем у других жидкостей (кроме металлов), и изменяется тоже аномально: до 150 С возрастает и лишь затем начинает уменьшаться. Электропроводность воды очень мала, но заметно возрастает при повышении и температуры, и давления. Критическая температура воды равна 374 С, критическое давление 218 атм.  

Динамическая вязкость ц (Па-с некоторых водных растворов.| Изменение массовой теплоемкости водных растворов некоторых солей в зависимости от концентрации раствора.| Теплопроводность некоторых растворов в зависимости от концентрации при 20 С.  

Теплопроводность воды имеет положительный температурный ход, поэтому при малых концентрациях теплопровод-кость водных растворов многих солей, кислот и щелочей с повышением температуры растет.  

Теплопроводность воды, водных растворов солей, спиртоводных растворов и некоторых других жидкостей (например, гликолей) возрастает с повышением температуры.  

Теплопроводность воды очень незначительна по сравнению с теплопроводностью других веществ; так, теплопроводность пробки - 0 1; асбеста - 0 3 - 0 6; бетона - 2 - 3; дерева - 0 3 - 1 0; кирпича-1 5 - 2 0; льда - 5 5 кал / см сек град.  

Теплопроводность воды X при 24 равна 0 511, теплоемкость ее с 1 ккал кг С.  

Теплопроводность воды прн 25 равна 1 43 - 10 - 3 кал / см-сек.  

Поскольку теплопроводность воды (Я 0 5 ккал / м - ч - град) примерно в 25 раз больше, чем у неподвижного воздуха, вытеснение воздуха водой повышает теплопроводность пористого материала. При быстром замораживании и образовании в порах строительных материалов уже не льда, а снега (Я 0 3 - 0 4), как показали наши наблюдения, теплопроводность материала, наоборот, несколько уменьшается. Правильный учет влажности материалов имеет большое значение для теплотехнических расчетов сооружений как надземных, так и подземных, например водоканализационных.  

В разделе на вопрос что такое коэффициент теплопроводности (например воды) ?? (у воды чему равен?) заданный автором Европеоидный лучший ответ это Коэффициент теплопроводности - численная характеристика теплопроводности материала, равная количеству теплоты (в килокалориях) , проходящей через материал толщиной 1 м и площадью 1 кв. м за час при разности температур на двух противоположных поверхностях в 1 град. C. Наибольшую теплопроводность имеют металлы, наименьшую - газы.
А вот про воду.. .
"Коэффициент теплопроводности большинства жидкостей с повышением температуры убывает. Вода в этом отношении является исключением. С увеличением температуры от 0 до 127°С коэффициент теплопроводности воды увеличивается, а при дальнейшем возрастании температуры - уменьшается (рис. 3.2). При 0°С коэффициент теплопроводности воды равен 0,569 Вт/(м·°С). С увеличением минерализации воды коэффициент ее теплопроводности уменьшается, но очень незначительно"... См.
Источник: Cловарь по естественным наукам. Глоссарий. ру

Ответ от Александр Тюкин [гуру]
То, что сказал Фесс ХХ - это не коэффициент теплопроводности, а объемная теплоемкость.
Коэффициент теплопроводности какого-либо вещества - это величина, которая показывает, какое количество теплоты требуется приложить к одному концу бесконечно тонкой проволоки из этого вещества, чтобы точка этой проволоки на расстоянии 1 м от этого конца за одну секунду увеличилась на 1 градус (при условии нулевой теплоотдачи в пространство). Майк все грамотно написал.



Ответ от Майк [гуру]
Теплопрово́дность - это способность вещества переносить тепловую энергию, а также количественная оценка этой способности (также называется коэффициентом теплопроводности).
Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передается из более нагретых областей тела к менее нагретым областям
Вещество Коэффициент теплопроводности
Вт/(м*град)
Алюминий 209,3
Железо 74,4
Золото 312,8
Латунь 85,5
Медь 389,6
Ртуть 29,1
Серебро 418,7
Сталь 45,4
Чугун 62,8
воды, 2,1