От чего зависит точность приближенного значения. Приближенные вычисления с помощью дифференциала

Общие сведения

Часто точное число представляют ограниченным количеством цифр, отбрасывая «лишние» цифры, либо округляя его до определенного разряда. Такое число называют приближенным.

Истинная погрешность приближенного числа, т.е. разность между точным и приближенным числами, при отбрасывании цифр не превышает единицы разряда последней сохраненной цифры, а при отбрасывании с округлением, выполненному по установленным стандартом правилам, половины единицы цифры сохраняемого разряда.

Приближенное число характеризуют числом значащих цифр, к которым относят все цифры, кроме нулей слева.

Цифры в записи приближенного числа называются верными, если погрешность не превышает половины единицы последнего разряда.

К приближенным числам относятся также результаты измерения А, которыми оценивают действительные значения А д измеряемой величины. Так как истинная погрешность полученного результата неизвестна, то ее заменяют понятием предельной абсолютной погрешности Δ пр = | A - A д | или предельной относительной погрешности δ пр = Δ пр / А (чаще указывается в процентах δ пр = 100 Δ пр / А)

Предельная относительная погрешность приближенного числа может быть оценена по формуле:

где δ – число верных значащих цифр;

n 1 – первая слева значащая цифра.

Для определения необходимого числа верных знаков обеспечивающих заданную предельную относительную погрешность следует руководствоваться правилами:

    если первая значащая цифра не превышает трех, то число верных цифр должно быть на единицу больше, чем модуль показателя |-q| при 10 в заданной относительной погрешности δ пр = 10 -q

    если первая значащая цифра 4 и больше, то модуль показателя q равен числу верных цифр.

(Если δ пр = 10 - q , то S можно определить по формуле
)

Правила вычислений с приближенными числами

    Результат суммирования (вычитания) приближенных чисел будет иметь столько верных знаков, сколько их имеет слагаемое с наименьшим числом верных знаков.

    При умножении (делении) в полученном результате будет столько значащих верных цифр, сколько их в исходном числе с наименьшим количеством верных знаков.

    При возведении в степень (извлечении корня) любой степени результат имеет столько же верных знаков, сколько их в основании.

    Число и мантисса его логарифма содержит одинаковое количество верных знаков.

    Правило запасной цифры. Чтобы по возможности уменьшить ошибки округления, рекомендуется в тех исходных данных, которые это позволяют, а также и в результате, если он будет участвовать в дальнейших вычислениях, сохранить по одной лишней цифре сверх того, что определено правилами 1-4.

3. Класс точности и его использование для оценки инструментальной погрешности приборов

Класс точности – обобщенная характеристика, используемая для оценки предельных значений основной и дополнительной погрешностей.

Основной называют погрешность прибора, присущую ему в нормальных условиях эксплуатации.

Условия эксплуатации определяются значениями влияющих на показания приборов величин, не являющихся для данного прибора информативными. К влияющим величинам относят температуру среды, в которой выполняются измерения, положение шкалы прибора, частоту измеряемой величины (не для частотомеров), напряженность внешнего магнитного (или электрического) поля, напряжение питания электронных и цифровых приборов и др.

В технической документации прибора указывают нормальный и рабочий диапазоны значений влияющих величин. Использование прибора при значении влияющей величины вне пределов рабочего диапазона не допускается.

Класс точности прибора устанавливают по форме:

    предела абсолютной погрешности Δ пр = ± а или Δ пр = ± (а + b A);

    предела относительной погрешности δ пр = ± p или δ пр = ± ;

    предела приведенной погрешности γ пр = ± k

Числа a, b, p, c, d, k выбирают из ряда 1; 1,5; 2; 2,5; 4; 5; 6 10 n , где n = 1, 0, -1, -2 и т.д.

А – показания прибора;

А max – верхний предел используемого диапазона измерений прибора.

Приведенная погрешность

,

где А н – нормирующее значение, условно принятое для данного прибора, зависящее от формы шкалы.

Определение А н для наиболее часто встречающихся шкал приведены ниже:

а) односторонняя шкала б) шкала с нулем внутри

А н = А max A н = |A 1 | + A 2

в) шкала без нуля г) существенно неравномерная шкала (для омметров, фазометров)

А н = А 2 – А 1 А н = L

Правила и примеры обозначения классов точности приведены в таблице 3.1.

Таблица 3.1

Формула для предельной основной погрешности

Обозначение класса точности на приборе

общий вид

Δ = ± (а + b A)

± а, ед. величины А

± (а + b A), ед. величины А

Римскими или латинскими буквами

Если известно, что а < А, то а называют приближенным значением величины А с недостатком. Если а > А, то а называют приближенным значением величины А с избытком.

Разность точного и приближенного значений величины называется погрешностью приближения и обозначается D, т.е.

D = А – а (1)

Погрешность D приближения может быть как числом положительным, так и отрицательным.

Для того чтобы охарактеризовать отличие приближенного значения величины от точного, часто бывает достаточно указать абсолютную величину разности точного и приближенного значений.

Абсолютная величина разности между приближенным а и точным А значениями числа называется абсолютной погрешностью (ошибкой) приближения и обозначается D а :

D а = ½а А ½ (2)

Пример 1. При измерении отрезка l использовали линейку, цена деления шкалы которой равна 0,5 см. Получили приближенное значение длины отрезка а = 204 см.

Понятно, что при измерении могли ошибиться не более, чем на 0,5 см, т.е. абсолютная погрешность измерения не превышает 0,5 см.

Обычно абсолютная ошибка неизвестна, поскольку неизвестно точное значение числа А. Поэтому в качестве ошибки принимают какую-либо оценку абсолютной ошибки:

D а <= D а пред . (3)

где D а пред . – предельная ошибка (число, большее нуля), задаваемая с учетом того, с какой достоверностью известно число а.

Предельная абсолютная погрешность называется также границей погрешности . Так, в приведенном примере,
D а пред . = 0,5 см.

Из (3) получаем:

D а = ½а А ½<= D а пред . .

а – D а пред . ≤ А а + D а пред . . (4)

а – D а пред . будет приближенным значением А с недостатком,

а + D а пред приближенным значением А с избытком. Пользуются также краткой записью:

А = а ± D а пред (5)

Из определения предельной абсолютной погрешности следует, что чисел D а пред , удовлетворяющих неравенству (3), будет бесконечное множество. На практике стараются выбрать возможно меньшее из чисел D а пред , удовлетворяющих неравенству D а <= D а пред .

Пример 2. Определим предельную абсолютную погрешность числа а=3,14 , взятого в качестве приближенного значения числа π.

Известно, что 3,14<π<3,15. Отсюда следует, что

|а π |< 0,01.

За предельную абсолютную погрешность можно принять число D а = 0,01.

Если же учесть, что 3,14<π<3,142 , то получим лучшую оценку: D а = 0,002, тогда π ≈3,14 ±0,002.

4. Относительная погрешность (ошибка). Знания только абсолютной погрешности недостаточно для характеристики качества измерения.



Пусть, например, при взвешивании двух тел получены следующие результаты:

Р 1 = 240,3 ±0,1 г.

Р 2 = 3,8 ±0,1 г.

Хотя абсолютные погрешности измерения обоих результатов одинаковы, качество измерения в первом случае будет лучшим, чем во втором. Оно характеризуется относительной погрешностью.

Относительной погрешностью (ошибкой) приближения числа А называется отношение абсолютной ошибки D а приближения к абсолютной величине числа А:

Так, как точное значение величины обычно неизвестно, то его заменяют приближенным значением и тогда:

(7)

Предельной относительной погрешностью или границей относительной погрешности приближения, называется число d а пред. >0, такое, что:

d а <= d а пред. (8)

За предельную относительную погрешность можно, очевидно, принять отношение предельной абсолютной погрешности к абсолютной величине приближенного значения:

(9)

Из (9) легко получается следующее важное соотношение:

а пред. = |a | d а пред. (10)

Предельную относительную погрешность принято выражать в процентах:

Пример. Основание натуральных логарифмов для расчета принято равным е =2,72. В качестве точного значения взяли е т = 2,7183. Найти абсолютную и относительную ошибки приближенного числа.

D е = ½е е т ½=0,0017;

.

Величина относительной ошибки остается неизменной при пропорциональном изменении самого приближенного числа и его абсолютной ошибки. Так, у числа 634,7, рассчитанного с абсолютной ошибкой D = 1,3 и у числа 6347 с ошибкой D = 13 относительные ошибки одинаковы: d = 0,2.

О величине относительной ошибки можно примерно судить по количеству верных значащих цифр числа.

Введение

Абсолютная погрешность - является оценкой абсолютной ошибки измерения. Вычисляется разными способами. Способ вычисления определяется распределением случайной величины. Соответственно, величина абсолютной погрешности в зависимости от распределения случайной величины может быть различной. Если - измеренное значение, а - истинное значение, то неравенство должно выполняться с некоторой вероятностью, близкой к 1. Если случайная величина распределена по нормальному закону, то обычно за абсолютную погрешность принимают её среднеквадратичное отклонение. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина.

Существует несколько способов записи величины вместе с её абсолютной погрешностью.

· Обычно используется запись со знаком ±. Например, рекорд в беге на 100 метров, установленный в 1983 году, равен 9,930±0,005 с .

· Для записи величин, измеренных с очень высокой точностью, используется другая запись: цифры, соответствующие погрешности последних цифр мантиссы, дописываются в скобках. Например, измеренное значение постоянной Больцмана равно 1,380 6488 (13)?10 ?23 Дж/К , что также можно записать значительно длиннее как 1,380 6488?10 ?23 ±0,000 0013?10 ?23 Дж/К .

Относительная погрешность - погрешность измерения, выраженная отношением абсолютной погрешности измерения к действительному или среднему значению измеряемой величины (РМГ 29-99):.

Относительная погрешность является безразмерной величиной, либо измеряется в процентах.

Приближённое значение

С избыточным и недостаточным? В процессе вычислений весьма часто приходится иметь дело с приближенными числами. Пусть А - точное значение некоторой величины, называемое в дальнейшем точным числом А. Под приближенным значением величины А, или приближенным числам, называется число а , заменяющее точное значение величины А. Если а < А, то а называется приближенным значением числа А по недостатку. Если а > А, - то по избытку. Например, 3,14 является приближенным значением числа р по недостатку, а 3,15 - по избытку. Для характеристики степени точности данного приближения пользуются понятием погрешности или ошибки.

Погрешностью Да приближенного числа а называется разность вида

Да = А - а,

где А - соответствующее точное число.

Из рисунка видно, что длина отрезка АВ заключена между 6 см и 7 см.

Значит, 6 - приближенное значение длины отрезка АВ (в сантиметрах) > с недостатком, а 7 - с избытком.

Обозначив длину отрезка буквой у, получим: 6 < у < 1. Если a < х < b, то а называют приближенным значением числа х с недостатком, a b - приближенным значением х с избытком. Длина отрезка АВ (см. рис. 149) ближе к 6 см, чем к 7 см. Она приближенно равна 6 см. Говорят, что число 6 получилось при округлении длины отрезка до целых.

Сахалинской области

«Профессиональное училище № 13»

Методические указания к самостоятельной работе обучающихся

Александровск-Сахалинский

Приближенные значения величин и погрешности приближений: Метод указ. / Сост.

ГБОУ НПО «Профессиональное училище №13», - Александровск-Сахалинский, 2012

Методические указания предназначены для обучающихся всех профессий, изучающих курс математики

Председатель МК

Приближенное значение величины и погрешности приближений.

На практике мы почти никогда не знаем точных значений величин. Никакие весы, как бы точны они ни были, не показывают вес абсолютно точно; любой термометр показывает температуру с той или иной ошибкой; никакой амперметр не может дать точных показаний тока и т. д. К тому же наш глаз не в состоянии абсолютно правильно прочитать показания измерительных приборов. Поэтому, вместо того чтобы иметь дело с истинными значениями величин, мы вынуждены оперировать с их приближенными значениями.

Тот факт, что а" есть приближенное значение числа а , записывается следующим образом:

а ≈ а" .

Если а" есть приближенное значение величины а , то разность Δ = а - а" называется погрешностью приближения *.

* Δ - греческая буква; читается: дельта. Далее встречается еще одна греческая буква ε (читается: эпсилон).

Например, если число 3,756 заменить его приближенным значением 3,7, то погрешность будет равна: Δ = 3,756 - 3,7 = 0,056. Если в качестве приближенного значения взять 3,8, то погрешность будет равна: Δ = 3,756 - 3,8 = -0,044.

На практике чаще всего пользуются не погрешностью приближения Δ , а абсолютной величиной этой погрешности |Δ |. В дальнейшем эту абсолютную величину погрешности мы будем называть просто абсолютной погрешностью . Считают, что одно приближение лучше другого, если абсолютная погрешность первого приближения меньше абсолютной погрешности второго приближения. Например, приближение 3,8 для числа 3,756 лучше, чем приближение 3,7, поскольку для первого приближения
|Δ | = | - 0,044| =0,044, а для второго |Δ | = |0,056| = 0,056.

Число а" а с точностью до ε , если абсолютная погрешность этого приближения меньше чем ε :

|а - а" | < ε .

Например, 3,6 есть приближенное значение числа 3,671 с точностью до 0,1, поскольку |3,671 - 3,6| = | 0,071| = 0,071< 0,1.

Аналогично, - 3/2 можно рассматривать как приближенное значение числа - 8/5 с точностью до 1/5 , поскольку

< а , то а" называется приближенным значением числа а с недостатком .

Если же а" > а , то а" называется приближенным значением числа а с избытком.

Например, 3,6 есть приближенное значение числа 3,671 с недостатком, поскольку 3,6 < 3,671, а - 3/2 есть приближенное значение числа - 8/5 c избытком, так как - 3/2 > - 8/5 .

Если мы вместо чисел а и b сложим их приближенные значения а" и b" , то результат а" + b" будет приближенным значением суммы а + b . Возникает вопрос: как оценить точность этого результата, если известна точность приближения каждого слагаемого? Решение этой и подобных ей задач основано на следующем свойстве абсолютной величины:

|а + b | < |a | + |b |.

Абсолютная величина суммы любых двух чисел не превышает суммы их абсолютных величин.

Погрешности

Разница между точным числом x и его приближенным значением a называется погрешностью данного приближенного числа. Если известно, что | x - a | < a, то величина a называется предельной абсолютной погрешностью приближенной величины a.

Отношение абсолютной погрешности к модулю приближенного значения называется относительной погрешностью приближенного значения. Относительную погрешность обычно выражают в процентах.

Пример. | 1 - 20 | < | 1 | + | -20|.

Действительно,

|1 - 20| = |-19| = 19,

|1| + | - 20| = 1 + 20 = 21,

Упражнения для самостоятельной работы.

1. С какой точностью можно измерять длины с помощью обыкновенной линейки?

2. С какой точностью показывают время часы?

3. Знаете ли вы, с какой точностью можно измерять веc тела на современных электрических весах?

4. а) В каких пределах заключено число а , если его приближенное значение с точностью до 0,01 равно 0,99?

б) В каких пределах заключено число а , если его приближенное значение с недостатком с точностью до 0,01 равно 0,99?

в) В каких пределах заключено число а , если его приближенное значение с избытком с точностью до 0,01 равно 0,99?

5 . Какое приближение числа π ≈ 3,1415 лучше: 3,1 или 3,2?

6. Можно ли приближенное значение некоторого числа с точностью до 0,01 считать приближенным значением того же числа с точностью до 0,1? А наоборот?

7 . На числовой прямой задано положение точки, соответствующей числу а . Указать на этой прямой:

а) положение всех точек, которые соответствуют приближенным значениям числа а с недостатком с точностью до 0,1;

б) положение всех точек, которые соответствуют приближенным значениям числа а с избытком с точностью до 0,1;

в) положение всех точек, которые соответствуют приближенным значениям числа а с точностью до 0,1.

8. В каком случае абсолютная величина суммы двух чисел:

а) меньше суммы абсолютных величин этих чисел;

б) равна сумме абсолютных величин этих чисел?

9. Доказать неравенства:

a) |a - b | < |a | + |b |; б)* |а - b | > ||а | - | b ||.

Когда в этих формулах имеет место знак равенства?

Литература:

1. Башмаков (базовый уровень) 10-11 кл. – М.,2012

2. Башмаков, 10 кл. Сборник задач. - М: Издательский центр «Академия», 2008

3. , Мордкович:Справочные материалы: Книга для учашихся.-2-е изд.-М.: Просвещение, 1990

4. Энциклопедический словарь юного математика/Сост. .-М.: Педагогика,1989


В большинстве случаев числовые данные в задачах приближенные. В условиях задач могут встретиться и точные значения, например результаты счета небольшого числа предметов, некоторые константы и др.

Для обозначения приближенного значения числа употребляют знак приближенного равенства ; читают так: «приближенно равно» (не следует читать: «приблизительно равно»).

Выяснение характера числовых данных – важный подготовительный этап при решении любой задачи.

Приводимые ниже указания могут помочь в распознании точных и приближенных значений чисел:

Точные значения Приближенные значения
1.Значения ряда переводных множителей перехода от одних единиц измерения к другим (1м = 1000 мм; 1ч = 3600 с) Многие переводные множители измерены и вычислены со столь высокой (метрологической) точностью, что практически их считают сейчас точными. 1. Большинство значений математических величин, заданных в таблицах (корни, логарифмы, значения тригонометрических функций, а также применяемые на практике значение числа и основания натуральных логарифмов (число е))
2.Масштабные множители. Если, например, известно, что масштаб равен 1:10000, то числа 1 и 10000 считают точными. Если указано, что в 1см – 4 м, то 1 и 4 – точные значения длины 2. Результаты измерений. (Некоторые основные константы: скорость света в вакууме, гравитационная постоянная, заряд и масса электрона и др.) Табличные значения физических величин (плотность вещества, температуры плавления и кипения и др.)
3.Тарифы и цены. (стоимость 1 кВт∙ч электроэнергии – точное значение цены) 3. Проектные данные также являются приближенными, т.к. их задают с некоторыми отклонениями, которые нормируются ГОСТами. (Например, по стандарту размеры кирпича: длина 250 6 мм, ширина 120 4 мм, толщина 65 3 мм) К этой же группе приближенных значений чисел относятся размеры, взятые с чертежа
4.Условные значения величин (Примеры: абсолютный нуль температуры -273,15 С, нормальное атмосферное давление 101325 Па)
5.Коэффициенты и показатели степени, встречающиеся в физических и математических формулах ( ; %; и т.д.).
6. Результаты счета предметов (количество аккумуляторов в батарее; число пакетов молока, выпущенных заводом и подсчитанных фотоэлектрическим счетчиком)
7. Заданные значения величин (Например, в задаче, «Найти периоды колебаний маятников длиной 1 и 4 м» числа 1 и 4 можно считать точными значениями длины маятника)


Выполните следующие задания, ответ оформите в виде таблицы:

1. Укажите, какие из приведенных значений точные, какие – приближенные:

1) Плотность воды (4 С)………..………………………..……………1000кг/м 3

2) Скорость звука (0 С)………………………………………………….332 м/с

3) Удельная теплоемкость воздуха….……………………………1,0 кДж/(кг∙К)

4) Температура кипения воды…………….……………………………….100 С

5) Постоянная Авогадро….…………………………………..…..6,02∙10 23 моль -1

6) Относительная атомная масса кислорода…………………………………..16

2. Найдите точные и приближенные значения в условиях следующих задач:

1) У паровой машины бронзовый золотник, длина и ширина которого соответственно 200 и 120 мм, испытывает давление 12 МПа. Найдите силу, необходимую для перемещения золотника по чугунной поверхности цилиндра. Коэффициент трения равен 0,10.

2) Определите сопротивление нити накала электрической лампы по следующим маркировочным данным: «220В, 60 Вт».

3. Какие ответы – точные или приближенные – получим при решении следующих задач?

1) Какова скорость свободно падающего тела в конце 15-й секунды, считая промежуток времени указанным точно?

2) Какова скорость шкива, если его диаметр 300 мм, частота вращения 10 об/с? Данные считайте точными.

3) Определите модуль силы . Масштаб 1 см – 50Н.

4) Определите коэффициент трения покоя для тела, находящегося на наклонной плоскости, если тело начинает равномерно скользить по наклону при = 0,675, где - угол наклона плоскости.