Распределение больцмана по потенциальным энергиям. Распределение Больцмана в поле сил тяжести

Бо́льцмана распределение - распределение по энергиям частиц (атомов, молекул) идеального газа в условиях термодинамического равновесия, которое было открыто в 1868-1871 гг. австрийским физиком Л. Больцманом . Согласно ему, число частиц n i с полной энергией e i равно:

ni = Aω i exp (-e i /kT)

где ω i - статистический вес (число возможных состояний частицы с энергией e i). Постоянная А находится из условия, что сумма n i по всем возможным значениям i равна заданному полному числу частиц N в системе (условие нормировки): ∑n i = N. В случае, когда движение частиц подчиняется классической механике, энергию e i можно считать состоящей из кинетической энергии e i, кин частицы (молекулы или атома), ее внутренней энергии e i, вн (например, энергии возбуждения электронов) и потенциальной энергии e i, пот во внешнем поле, зависящей от положения частицы в пространстве:

e i = e i, кин + e i, вн + e i, пот

Распределение частиц по скоростям (распределение Максвелла) является частным случаем распределения Больцмана. Оно имеет место, когда можно пренебречь внутренней энергией возбуждения и влиянием внешних полей. В соответствии с ним формулу распределения Больцмана можно представить в виде произведения трех экспонент, каждая из которых дает распределение частиц по одному виду энергии.

В постоянном поле тяжести, создающем ускорение g, для частиц атмосферных газов вблизи поверхности Земли (или других планет) потенциальная энергия пропорциональна их массе m и высоте H над поверхностью, т.е. e i, пот = mgH. После подстановки этого значения в распределение Больцмана и суммирования по всевозможным значениям кинетической и внутренней энергий частиц получается барометрическая формула , выражающая закон уменьшения плотности атмосферы с высотой.

В астрофизике, особенно в теории звездных спектров, распределение Больцмана часто используется для определения относительной заселенности электронами различных уровней энергии атомов.

Распределение Больцмана было получено в рамках классической статистики. В 1924-1926 гг. была создана квантовая статистика. Она привела к открытию распределений Бозе-Эйнштейна (для частиц с целым спином) и Ферми-Дирака (для частиц с полуцелым спином). Оба эти распределения переходят в распределение Больцмана, когда среднее число доступных для системы квантовых состояний значительно превышает число частиц в системе, то есть когда на одну частицу приходится много квантовых состояний или, другими словами, когда степень заполнения квантовых состояний мала. Условие применимости распределения Больцмана можно записать в виде неравенства:

N/V .

где N - число частиц, V - объем системы. Это неравенство выполняется при высокой температуре и малом числе частиц в единице объема (N/V). Из него следует, что чем больше масса частиц, тем для более широкого интервала изменений Т и N/V справедливо распределение Больцмана. Например, внутри белых карликов приведенное выше неравенство нарушается для электронного газа, и поэтому его свойства следует описывать с помощью распределения Ферми-Дирака. Однако оно, а вместе с ним и распределение Больцмана, остаются справедливыми для ионной составляющей вещества. В случае газа, состоящего из частиц с нулевой массой покоя (например, газа фотонов), неравенство не выполняется ни при каких значениях Т и N/V. Поэтому равновесное излучение описывается законом излучения Планка , который является частным случаем распределения Бозе-Эйнштейна.

Рассмотрим систему, состоящую из одинаковых частиц и находящуюся в термодинамическом равновесии. Вследствие теплового движения и межмолекулярных взаимодействий энергия каждой из частиц (при неизменной общей энергии системы) с течением времени меняется, отдельные же акты изменения энергии молекул - случайные события. Для описания свойств системы предполагается, что энергия каждой из частиц через случайные взаимодействия может изменяться от до

Для описания распределения частиц по энергиям рассмотрим ось координат, на которой будем откладывать значения энергии частиц, и разобьем ее на интервалы (рис. 3.7). Точки этой оси соответствуют различным возможным значениям энергии молекул. В пределах каждого интервала энергия меняется от до Мысленно зафиксируем для данного момента времени распределение всех частиц по энергиям. Фиксированное состояние системы будет характеризоваться определенным расположением точек на оси энергий. Пусть эти точки чем-либо выделяются, например свечением. Тогда совокупностью темных точек, а их будет большинство, на оси энергии определятся только возможные, но не реализовавшиеся энергетические состояния молекул. Вслед за фиксированным моментом времени энергия молекул из-за случайных взаимодействий будет меняться: число изображающих точек останется то же, но их положения на оси изменятся. В таком мысленном эксперименте изображающие точки скачками и очень часто будут менять свое

место на оси энергии. Фиксируя их через определенные промежутки времени, наблюдатель пришел бы к следующему заключению: при термодинамическом равновесии число изображающих точек на каждом из выделенных участков энергии остается с достаточной точностью одинаковым. Числа же заполнений энергетических интервалов зависят от их положения на выбранной оси.

Пусть все выделенные энергетические интервалы пронумерованы. Тогда на интервал с энергией от до придется среднее число частиц Число частиц системы и их общая (внутренняя) энергия определяются суммированием по всем энергетическим интервалам:

Отношение есть вероятностная характеристика интервала энергии. Естественно предположить, что при данной температуре вероятность есть функция энергии молекул (зависит от положения интервала на оси энергии). В общем случае указанная вероятность зависит также от температуры. Отыскание зависимости является одной из основных задач статистической физики.

Функция называется функцией распределения частиц по энергиям. Методами статистической физики с введением определенных предположений найдено:

где А - постоянная величина, постоянная Больцмана универсальная газовая постоянная, число Авогадро),

Согласно (29.2) для любой системы, находящейся в равновесии и подчиняющейся законам классической статистики, число молекул, обладающих энергией пропорционально экспоненциальному множителю

Просуммировав правую и левую части равенства (29.2) по всем энергетическим интервалам, найдем: что позволяет переписать выражение (29.2) в ином виде:

Величина называется статистической суммой. Как (29.2), так и (29.3) имеют фундаментальное значение для решения ряда физических задач методами статистической физики. Если выражением (29.2) определяются заполнения молекулами энергетических интервалов в условиях термодинамического равновесия системы при данной температуре, то (29.3) дает нам сведения о вероятности таких заполнений. Оба соотношения носят название формул Больцмана.

Разделим (29.3) на

Если есть выбранный интервал энергии, то - интервал энергии в единицах т. е. безразмерный интервал энергии. Как указывалось выше, есть вероятность, величину же следует трактовать как плотность вероятности - вероятность попадания молекул в единичный безразмерный энергетический интервал Перейдя к пределу (при Т = const), получим:

Интеграл, входящий в последнее выражение, равен единице, поэтому

где обозначение плотности вероятности

В общем случае энергия частицы может иметь ряд слагаемых, при слагаемых Соответственно (29.5) принимает вид

Таким образом, вероятность распределения частиц по их полной энергии определяется произведением величин каждое из которых согласно закону умножения вероятностей следует трактовать как вероятность распределения по одной из слагаемых энергии Вывод можно сформулировать так: при термодинамическом равновесии распределения частиц по слагаемым энергии являются статистически независимыми и выражаются формулами Больцмана.

На основе сделанного вывода можно расчленить сложную картину движения и взаимодействия молекул и рассматривать ее по частям, выделяя отдельные составляющие энергии. Так, при наличии гравитационного поля можно рассматривать распределение частиц в этом поле независимо от их распределения по кинетической энергии. Точно так же можно независимо исследовать вращательное движение сложных молекул и колебательное движение их атомов.

Формула Больцмана (29.2) является основой так называемой классической статистической физики, в которой считается, что энергия частиц может принимать непрерывный ряд значений. Оказывается, что поступательное движение молекул газов и жидкостей, за исключением молекул жидкого гелия, достаточно точно описывается классической статистикой вплоть до температур, близких к 1 К. Некоторые свойства твердых тел при достаточно высоких температурах также поддаются анализу с помощью формул Больцмана. Классические распределения являются частными случаями более общих квантовых статистических закономерностей. Применимость формул Больцмана в такой же мере ограничена квантовыми явлениями, как и применимость классической механики к явлениям микромира.

В основе больцмановской статистики лежит предположение о том, что изменение энергии молекулы является случайным событием и что попадание молекулы в тот или иной энергетический интервал не зависит от заполнения интервала другими частицами. Соответственно формулы Больцмана можно применять только к решению таких задач, для которых выполняется указанное условие.

В заключение используем выражение (29.5) для определения числа молекул, которые могут обладать энергией, равной или большей Для этого необходимо определить интеграл:

Интегрирование приводит к соотношению

Таким образом, по плотности вероятности можно определить число молекул с энергиями что важно для ряда приложений.

Барометрическая формула - зависимость давления или плотности газа от высоты в поле силы тяжести.

Для идеального газа, имеющего постоянную температуру и находящегося в однородном поле тяжести (во всех точках его объёма ускорение свободного падения одинаково), барометрическая формула имеет следующий вид:

где - давление газа в слое, расположенном на высоте , - давление на нулевом уровне (), - молярная масса газа, - универсальная газовая постоянная, - абсолютная температура. Из барометрической формулы следует, что концентрация молекул (или плотность газа) убывает с высотой по тому же закону:

где - масса молекулы газа, - постоянная Больцмана.

Барометрическая формула может быть получена из закона распределения молекул идеального газа по скоростям и координатам в потенциальном силовом поле (см. Статистика Максвелла - Больцмана). При этом должны выполняться два условия: постоянство температуры газа и однородность силового поля. Аналогичные условия могут выполняться и для мельчайших твёрдых частичек, взвешенных в жидкости или газе. Основываясь на этом, французский физик Ж. Перрен в 1908 году применил барометрическую формулу к распределению по высоте частичек эмульсии, что позволило ему непосредственно определить значение постоянной Больцмана.

Барометрическая формула показывает, что плотность газа уменьшается с высотой по экспоненциальному закону. Величина , определяющая быстроту спада плотности, представляет собой отношение потенциальной энергии частиц к их средней кинетической энергии, пропорциональной . Чем выше температура , тем медленнее убывает плотность с высотой. С другой стороны, возрастание силы тяжести (при неизменной температуре) приводит к значительно большему уплотнению нижних слоев и увеличению перепада (градиента) плотности. Действующая на частицы сила тяжести может изменяться за счёт двух величин: ускорения и массы частиц .

Следовательно, в смеси газов, находящейся в поле тяжести, молекулы различной массы по-разному распределяются по высоте.

Реальное распределение давления и плотности воздуха в земной атмосфере не следует барометрической формуле, так как в пределах атмосферы температура и ускорение свободного падения меняются с высотой и географической широтой. Кроме того, атмосферное давление увеличивается с концентрацией в атмосфере паров воды.

Барометрическая формула лежит в основе барометрического нивелирования - метода определения разности высот между двумя точками по измеряемому в этих точках давлению ( и ). Поскольку атмосферное давление зависит от погоды, интервал времени между измерениями должен быть возможно меньшим, а пункты измерения располагаться не слишком далеко друг от друга. Барометрическая формула записывается в этом случае в виде: (в м), где - средняя температура слоя воздуха между точками измерения, - температурный коэффициент объёмного расширения воздуха. Погрешность при расчётах по этой формуле не превышает 0,1-0,5 % от измеряемой высоты. Более точна формула Лапласа, учитывающая влияние влажности воздуха и изменение ускорения свободного падения.

Предположим, что газ находится во внешнем потенциальном поле. В таком случае молекула газа массы $m_0\ ,$ движущаяся со скоростью $\overrightarrow{v}\ $имеет энергию ${\varepsilon }_p$, которая выражается формулой:

Вероятность ($dw$) нахождения этой частицы в фазовом объеме $dxdydzdp_xdp_ydp_z$ равно:

Плотности вероятности координат частицы и ее импульсов независимы, следовательно:

Формула (5) дает распределение Максвелла для скоростей молекул. Рассмотрим внимательнее выражение (4), которое приводит к распределению Больцмана. $dw_1\left(x,y,z\right)$ -- плотность вероятности нахождения частицы в объеме $dxdydz$ вблизи точки с координатами $\left(x,y,z\right)$. Будем считать, что молекулы газа независимы и в выделенном объеме газа n частиц. Тогда по формуле сложения вероятностей получим:

Коэффициент $A_1$ находится из условия нормировки, которое в имеющемся у нас случае значит, что в выделенном объеме n частиц:

Что такое распределение Больцмана

Распределением Больцмана называют выражение:

Выражение (8) задает пространственное распределение концентрации частиц в зависимости от их потенциальной энергии. Коэффициент $A_1$ не вычисляют, если необходимо знать только распределение концентрации частиц, а не их количество. Допустим, что в точке ($x_0,y_{0,}z_0$) задана концентрация $n_0$=$n_0$ $(x_0,y_{0,}z_0)=\frac{dn}{{dx}_0dy_0{dz}_0}$, потенциальная энергия в той же точке $U_0=U_0\left(x_0,y_{0,}z_0\right).$ Обозначим концентрацию частиц в точке (x,y,z) $n_0\ \left(x,y,z\right).\ $Подставим данные в формулу (8), получим для одной точки:

для второй точки:

Выразим $A_1$ из (9), подставим в (10):

Чаще всего распределение Больцмана используют именно в виде (11). Особенно удобно подобрать нормировку, при которой $U_0\left(x,y,z\right)=0$.

Распределение Больцмана в поле сил тяжести

Распределение Больцмана в поле сил тяжести имеет можно записать в следующем виде:

\\ }dxdydz\ \left(12\right),\]

где $U\left(x,y,z\right)=m_0gz$ -- потенциальная энергия молекулы массы $m_0$ в поле тяжести Земли, $g$ -- ускорение свободного падения, $z$ -- высота. Или для плотности газа распределение (12) запишется как:

\[\rho ={\rho }_0{exp \left[-\frac{m_0gz}{kT}\right]\ }\ \left(13\right).\]

Выражение (13) называют барометрической формулой.

При выводе распределения Больцмана никаких ограничений для массы частицы не применялось. Следовательно, оно применимо и для тяжелых частиц. Если масса частицы велика, то показатель экспоненты быстро изменяется с высотой. Таким образом, сама экспонента быстро стремится к нулю. Для того, чтобы тяжелые частицы "не осели на дно", необходимо, чтобы их потенциальная энергия была малой. Это достигается в том случае, если частицы помещают, например, в плотную жидкость. Потенциальная энергия частицы U(h) на высоте h взвешенная в жидкости:

где $V_0$- объем частиц, $\rho $- плотность частиц, ${\rho }_0$ -- плотность жидкости, h -- расстояние (высота) от дна сосуда. Следовательно, распределение концентрации частиц взвешенных в жидкости:

\\ }\ \left(15\right).\]

Для того, чтобы эффект был заметен, частицы должны быть малы. Визуально этот эффект наблюдают с помощью микроскопа.

Пример 1

Задание: В поле силы тяжести находятся два вертикальных сосуда с разными газами (водород при $T_1=200K\ $ и гелий при $T_2=400K)$. Сравнить плотности этих газов на высоте h, если на уровне h=0 плотности газов были одинаковы.

В качестве основы для решения задачи используем барометрическую формулу:

\[\rho ={\rho }_0{exp \left[-\frac{m_0gz}{kT}\right]\ }\left(1.1\right)\]

Запишем (1.1) для водорода:

\[{\rho }_1={\rho }_0{exp \left[-\frac{m_{H_2}gh}{kT_1}\right]\ }\left(1.2\right),\]

где $m_{H_2}=\frac{{\mu }_{H_2}}{N_A}$ , ${\mu }_{H_2}\ $- молярная масса водорода, $N_A$ -- постоянная Авогадро.

Запишем (1.1) для гелия:

\[{\rho }_2={\rho }_0{exp \left[-\frac{m_{He}gh}{kT_2}\right]\ }\left(1.3\right),\]

где $m_{H_2}=\frac{{\mu }_{He}}{N_A}$ , ${\mu }_{He}\ $- молярная масса гелия.

Найдем отношение плотностей:

\[\frac{{\rho }_1}{{\rho }_2}=\frac{{exp \left[-\frac{\frac{{\mu }_{H_2}}{N_A}\ gh}{kT_1}\right]\ }}{{exp \left[-\frac{\frac{{\mu }_{He}}{N_A}gh}{kT_2}\right]\ }}=exp\frac{gh}{kN_A}\left[-\frac{{\mu }_{H_2}}{T_1}+\frac{{\mu }_{He}}{T_2}\right]=exp\frac{gh\left({\mu }_{He}T_1-{\mu }_{H_2}T_2\right)}{kN_AT_1T_2}\ \left(1.4\right).\]

Подставим имеющиеся данные, вычислим отношения плотностей:

\[\frac{{\rho }_1}{{\rho }_2}=exp\frac{gh\left(4\cdot 200-2\cdot 400\right)}{kN_A200\cdot 400}=1\]

Ответ: Плотности газов одинаковы.

Пример 2

Задание: Эксперименты с распределением взвешенных частиц в жидкости проводил, начиная с 1906 г., Ж.Б. Перрен. Он использовал распределение частиц гуммигута в воде для измерения постоянной Авогадро. При этом плотность частиц гуммигута составляла $\rho =1,2\cdot {10}^3\frac{кг}{м^3}$, их объем $V_0=1,03\cdot {10}^{-19}м^3.$ Температура, при которой проводился эксперимент, T=277K. Найдите высоту h, на которой плотность распределения гуммигута уменьшилась в два раза.

Используем распределение концентрации частиц, взвешенных в жидкости:

\\ }\left(2.1\right).\]

Зная плотность воды ${\rho }_0=1000\frac{кг}{м^3},$ имеем: $V_0\left(\rho -{\rho }_0\right)=1,03 {10}^{-19}\left(1,2-1\right){\cdot 10}^3=0,22 {10}^{-16}\ (кг)$. Подставим полученный результат в (2.1):

\\ }\] \\ }\]

\[\frac{n_0\left(h_1\right)}{n_0\left(h_2\right)}=exp{- \left[\frac{V_0\left(\rho -{\rho }_0\right)g}{kT}\right]\ }\cdot \left=2\ (2.2)\]

Прологарифмируем правую и левую части (2.2):

\[{ln \left(2\right)\ }={- \left[\frac{V_0\left(\rho -{\rho }_0\right)g}{kT}\right]\ }\cdot \triangle h\to \triangle h=\frac{{ln \left(2\right)\ }kT}{V_0\left(\rho -{\rho }_0\right)g}=\frac{{ln \left(2\right)\ }\cdot 1,38\cdot {10}^{-23}\cdot 277}{0,22\cdot {10}^{-16}\cdot 9,8}=\] \[=1,23\ \cdot {10}^{-5}\left(м\right).\]

Ответ: Плотность распределения гуммигута уменьшится в два раза при изменении высоты на $1,23\ \cdot {10}^{-5}м$.

Распределение Больцмана

В барометрической формуле в отношении M/R разделим и числитель и знаменатель на число Авогадро .

Масса одной молекулы,

Постоянная Больцмана.

Вместо Р и подставим соответственно. (см. лекцию №7), где плотность молекул на высоте h , плотность молекул на высоте .

Из барометрической формулы в результате подстановок и сокращений получим распределение концентрации молекул по высоте в поле силы тяжести Земли.

Из этой формулы следует, что с понижением температуры число частиц на высотах, отличных от нуля, убывает (рис. 8.10), обращаясь в 0 при Т=0 (при абсолютном нуле все молекулы расположились бы на поверхности Земли). При высоких температурах n слабо убывает с высотой, так

Следовательно, распределение молекул по высоте является и распределением их по значениям потенциальной энергии .

(*)

где плотность молекул в том месте пространства, где потенциальная энергия молекулы имеет значение ; плотность молекул в том месте, где потенциальная энергия равна 0.

Больцман доказал, что распределение (*) справедливо не только в случае потенциального поля сил земного тяготения, но и в любом потенциальном поле сил для совокупности любых одинаковых частиц, находящихся в состоянии хаотического теплового движения .

Таким образом, закон Больцмана (*) даёт распределение частиц, находящихся в состоянии хаотического теплового движения, по значениям потенциальной энергии . (рис. 8.11)


Рис. 8.11

4. Распределение Больцмана при дискретных уровнях энергии .

Полученное Больцманом распределение относится к случаям, когда молекулы находятся во внешнем поле и их потенциальная энергия может применяться непрерывно. Больцман обобщил полученный им закон на случай распределения, зависящего от внутренней энергии молекулы.

Известно, что величина внутренней энергии молекулы (или атома) Е может принимать лишь дискретный ряд дозволенных значений . В этом случае распределение Больцмана имеет вид:

,

где число частиц в состоянии с энергией ;

Коэффициент пропорциональности, который удовлетворяет условию

,

где N полное число частиц в рассматриваемой системе.

Тогда и в результате для случая дискретных значений энергии распределение Больцмана

Но состояние системы в этом случае термодинамически неравновесное.

5. Статистика Максвелла-Больцмана

Распределение Максвелла и Больцмана можно объединить в один закон Максвелла-Больцмана, согласно которому число молекул, компоненты скорости которых лежат в пределах от до , а координаты в пределах от x, y, z до x+dx, y+dy, z+dz , равно

где , плотность молекул в том месте пространства, где ; ; ; полная механическая энергия частицы.

Распределение Максвелла-Больцмана устанавливает распределение молекул газа по координатам и скоростям при наличии произвольного потенциального силового поля .

Примечание : распределение Максвелла и Больцмана являются составными частями единого распределения, называемого распределением Гиббса (этот вопрос подробно рассматривается в спецкурсах по статической физике, и мы ограничимся только упоминанием этого факта).

Вопросы для самоконтроля.

1. Дайте определение вероятности.

2. Каков смысл функции распределения?

3. Каков смысл условия нормировки?

4. Запишите формулу для определения среднего значения результатов измерения величины x с помощью функции распределения.

5. Что представляет собой распределение Максвелла?

6. Что такое функция распределения Максвелла? Каков ее физический смысл?

7. Постройте график функции распределения Максвелла и укажите характерные особенности этой функции.

8. Укажите на графике наиболее вероятную скорость . Получите выражение для . Как изменяется график при повышении температуры?

9. Получите барометрическую формулу. Что она определяет?

10. Получите зависимость концентрации молекул газа в поле силы тяжести от высоты.

11. Запишите закон распределения Больцмана а) для молекул идеального газа в поле силы тяжести; б) для частиц массой m, находящихся в роторе центрифуги, вращающейся с угловой скоростью .

12. Объясните физический смысл распределения Максвелла-Больцмана.

Лекция №9

Реальные газы

1. Силы межмолекулярного взаимодействия в газах. Уравнение Ван-дер-Ваальса. Изотермы реальных газов.

2. Метастабильные состояния. Критическое состояние.

3. Внутренняя энергия реального газа.

4. Эффект Джоуля – Томсона. Сжижение газов и получение низких температур.

1. Силы межмолекулярного взаимодействия в газах

Многие реальные газы подчиняются законам идеальных газов при нормальных условиях . Воздух можно считать идеальным до давлений ~ 10 атм . При повышении давления отклонения от идеальности (отклонение от состояния, описываемого уравнением Менделеева - Клайперона) возрастают и при p=1000 атм достигают более 100%.

и притяжения , а F – их результирующая . Силы отталкивания считаются положительными , а силы взаимного притяжения – отрицательными . Соответствующая качественная кривая зависимости энергии взаимодействия молекул от расстояния r между центрами молекул приведена на

рис. 9.1б). На малых расстояниях молекулы отталкиваются, на больших притягиваются. Быстро возрастающие на малых расстояниях силы отталкивания означают грубо говоря, что молекулы как бы занимают некоторый определённый объём, дальше которого газ не может быть сжат .