Значение миелинизации нервных волокон состоит. Развитие условно-рефлекторной деятельности

Рис. 7. Миелиновые нервные волокна из седалищного нерва лягушки, обработанного тетраоксидом осмия: 1 - слой миелина; 2 - соединительная ткань; 3 - нейролеммоцит; 4 - насечки миелина; 5 - перехват узла

Рис. 8. Межмышечное нервное сплетение кишечника кошки: 1 - безмиелиновые нервные волокна; 2 - ядра нейролеммоцитов

Отростки нервных клеток обычно одеты глиальными оболочками и вместе с ними называются нервными волокнами. Так как в различных отделах нервной системы оболочки нервных волокон значительно отличаются друг от друга по своему строению, то в соответствии с особенностями их строения все нервные волокна делятся на две основные группы - миелиноеые (рис.7) и безмиелиновые волокна (рис.8). Те и другие состоят из отростка нервной клетки (аксона или дендрита), который лежите в центре волокна и поэтому называется осевым цилиндром, и оболочки, образованной клетками олигодендроглии, которые здесь называются леммоцитами (шванновскими клетками).

Безмиелиновые нервные волокна

Находятся они преимущественно в составе вегетативной нервной системы. Клетки олигодендроглии оболочек безмиелиновых нервных волокон, располагаясь плотно, образуют тяжи цитоплазмы, в которых на определенном расстоянии друг от друга лежат овальные ядра. В безмиелиновых нервных волокнах внутренних органов часто в одной такой клетке располагается не один, а несколько (10-20) осевых цилиндров, принадлежащих различным нейронам. Они могут, покидая одно волокно, переходить в смежное. Такие волокна, содержащие несколько осевых цилиндров, называются волокнами кабельного типа. При электронной микроскопии безмиелиновых нервных волокон видно, что по мере погружения осевых цилиндров в тяж леммоцитов последние одевают их как муфта.

Оболочка леммоцитов при этом прогибается, плотно охватывает осевые цилиндры и, смыкаясь над ними, образует глубокие складки, на дне которых и располагаются отдельные осевые цилиндры. Сближенные в области складки участки оболочки леммоцита образуют двойную мембрану - мезаксон, на которой как бы подвешен осевой цилиндр (рис.9).

Так как оболочка леммоцитов очень тонка, то ни мезаксона, ни границ этих клеток под световым микроскопом нельзя рассмотреть, и оболочка безмиелиновых нервных волокон в этих условиях выявляется как однородный тяж цитоплазмы, одевающий осевые цилиндры. С поверхности каждое нервное волокно покрыто базальной мембраной.

Рис. 9. Схема продольного(А) и поперечного (Б) сечения безмиелиновых нервных волокон: 1 - ядро леммоцита; 2 - осевой цилиндр; 3 - митохондрии; 4 - граница леммоцитов; 5 - мезаксон.

Миелиновые нервные волокна

Миелиновые нервные волокна значительно толще безмиелиновых. Диаметр поперечного сечения их колеблется от 1 до 20 мк. Они также состоят из осевого цилиндра, одетого оболочкой из леммоцитов, но диаметр осевых цилиндров этого типа волокон значительно больше, а оболочка сложнее. В сформированном миелиновом волокне принято различать два слоя оболочки: внутренний, более толстый, - миелиновый слой (рис.10), и наружный, тонкий, состоящий из цитоплазмы леммоцитов и их ядер.

Миелиновый слой содержит в своем составе липоиды, а поэтому при обработке волокна осмиевой кислотой он интенсивно закрашивается в темно-коричневый цвет. Все волокно в этом случае представляется однородным цилиндром, в котором на определенном расстоянии друг от друга располагаются косо ориентированные светлые линии - насечки миелина (incision myelini), ил и насечки Шмидта-Лантермана. Через некоторые интервалы (от нескольких сотен микронов до нескольких миллиметров) волокно резко истончается, образуя сужения - узловые перехваты, или перехваты Ранвье. Перехваты соответствуют границе смежных леммоцитов. Отрезок волокна, заключенный между смежными перехватами, называется межузловым сегментом, а его оболочка представлена одной глиальной клеткой.

В процессе развития миелинового волокна осевой цилиндр, погружаясь в леммоцит, прогибает его оболочку, образуя глубокую складку.

Рис. 10. Схема нейрона. 1 - тело нервной клетки; 2 - осевой цилиндр; 3 - глиальная оболочка; 4 - ядро леммоцита; 5 - миелиновый слой; 6 - насечка; 7 - перехват Ранвье; 8 - нервное волокно, лишенное миелинового слоя: 9 - двигательное окончание; 10 - миелиновые нервные волокна, обработанные осмиевой кислотой.

По мере погружения осевого цилиндра оболочка леммоцита в области щели сближается и ее два листка соединяются друг с другом своей внешней поверхностью, образуя двойную мембрану - мезаксон (рис.11).

При дальнейшем развитии миелинового волокна мезаксон удлиняется и концентрически наслаивается на осевой цилиндр, вытесняя цитоплазму леммоцита и образуя вокруг осевого цилиндра плотную слоистую зону - миелиновый слой (рис.12). Так как оболочка леммоцита состоит из липидов и белков, а мезаксон представляет собой ее двойной листок, то естественно, что миелиновая оболочка, образованная его завитками, интенсивно окрашивается осмиевой кислотой. В соответствии с этим под электронным микроскопом каждый завиток мезаксона виден как слоистая структура, построенная из белков и липидов, расположение которых типично для мембранных структур клеток. Светлый слой имеет ширину около 80-120 ? и соответствует липоидным слоям двух листков мезаксона. Посредине и по поверхности его видны тонкие темные линии, образованные молекулами белка.

Рис. 11.

Шванновской оболочкой называется периферическая зона волокна, содержащая оттесненную сюда цитоплазму леммоцитов (шванновских клеток) и их ядра. Эта зона при обработке волокна осмиевой кислотой остается светлой. В области насечек между завитками мезаксона имеются значительные прослойки цитоплазмы, благодаря чему клеточные мембраны располагаются на некотором расстоянии друг от друга. Больше того, как видно на рис.188, листки мезаксона в этой области также лежат неплотно. В связи с этим при осмировании волокна эти участки не окрашиваются.

Рис. 12. Схема субмикроскопического строения миелинового нервного волокна: 1 - аксон; 2 - мезаксон; 3 - насечка миелина; 4 - узел нервного волокна; 5 - цитоплазма нейролеммоцита; 6 - ядро нейролеммоцита; 7 - нейролемма; 8 - эндоневрий

На продольном сечении вблизи перехвата видна область, в которой завитки мезаксона последовательно контактируют с осевым цилиндром. Место прикрепления самых глубоких завитков его наиболее удалено от перехвата, а все последующие завитки закономерно расположены ближе к нем у (см. рис.12). Это легко понять, если представить себе, что закручивание мезаксона идет в процессе роста осевого цилиндра и одевающих его леммоцитов. Естественно, что первые завитки мезаксона оказываются короче, чем последние. Края двух смежных леммоцитов в области перехвата образуют пальцеобразные отростки, диаметр которых равен 500 ?. Длина отростков различна. Переплетаясь между собой, они образуют вокруг осевого цилиндра своеобразный воротничок и попадают на срезах то в поперечном, то в продольном направлении. В толстых волокнах, у которых область перехвата относительно коротка, толщина воротничка из отростков шванновских клеток больше, чем в тонких волокнах. Очевидно, аксон тонких волокон в перехвате более доступен для внешних воздействий. Снаружи миелиновое нервное волокно покрыто базальной мембраной, связанной с плотными тяжами коллагеновых фибрилл, ориентированных продольно и не прерывающихся в перехвате - невралеммой.

Функциональное значение оболочек миелинового нервного волокна в проведении нервного импульса в настоящее время недостаточно изучено.

Осевой цилиндр нервных волокон состоит из нейроплазмы - бесструктурной цитоплазмы нервной клетки, содержащей продольно ориентированные нейрофиламенты и нейротубулы. В нейроплазме осевого цилиндра лежат митохондрии, которых больше в непосредственной близости к перехватам и особенно много в концевых аппаратах волокна.

С поверхности осевой цилиндр покрыт мембраной - аксолеммой, обеспечивающей проведение нервного импульса. Сущность этого процесса сводится к быстрому перемещению локальной деполяризации мембраны осевого цилиндра по длине волокна. Последнее определяется проникновением в осевой цилиндр ионов натрия (Nа +), что меняет знак заряда внутренней поверхности мембраны на положительный. Это, в свою очередь, повышает проходимость ионов натрия в смежном участке и выход ионов калия (К +) на внешнюю поверхность мембраны в деполяризованном участке, в котором восстанавливается при этом исходный уровень разности потенциалов. Скорость движения волны деполяризации поверхностной мембраны осевого цилиндра определяет быстроту передачи нервного импульса. Известно, что волокна с толстым осевым цилиндром проводят раздражение быстрее тонких волокон. Скорость передачи импульса миелиновыми волокнами больше, чем безмиелиновыми. Тонкие волокна, бедные миелином, и безмиелиновые волокна проводят нервный импульс со скоростью 1-2 м/сек, тогда как толстые миелиновые - 5-120 м/сек.

Нервная система выполняет важнейшие функции в организме. Она отвечает за все действия и мысли человека, формирует его личность. Но вся эта сложная работы была бы невозможна без одной составляющей — миелина.

Миелин – это вещество, образующее миелиновую (мякотную) оболочку, которая отвечает за электроизоляцию нервных волокон и скорость передачи электрического импульса.

Анатомия миелина в строении нерва

Главная клетка нервной системы – нейрон. Тело нейрона называется сома. Внутри нее находится ядро. Тело нейрона окружено короткими отростками, которые называются дендриты. Они отвечают за связь с другими нейронами. От сомы отходит один длинный отросток – аксон. Он несет импульс от нейрона к другим клеткам. Чаще всего на конце он соединяется с дендритами других нервных клеток.

Всю поверхность аксона покрывает миелиновая оболочка, которая представляет собой отросток клетки Шванна, лишенный цитоплазмы. По сути, это несколько слоев клеточной мембраны, обернутые вокруг аксона.

Шванновские клетки, обволакивающие аксон, разделяются перехватами Ранвье, в которых отсутствует миелин.

Функции

Основными функциями миелиновой оболочки являются:

  • изоляция аксона;
  • ускорение проведения импульса;
  • экономия энергии за счет сохранения ионных потоков;
  • опора нервного волокна;
  • питание аксона.

Как работают импульсы

Нервные клетки изолированы благодаря своей оболочке, но все же взаимосвязаны между собой. Участки, в которых клетки соприкасаются, называются синапсы. Это место, где встречаются аксон одной клетки и сома или дендрит другой.

Электрический импульс может передаваться внутри одной клетки или от нейрона к нейрону. Это сложный электрохимический процесс, который основан на перемещении ионов через оболочку нервной клетки.

В спокойном состоянии внутрь нейрона попадают только ионы калия, а ионы натрия остаются снаружи. В момент возбуждения они начинаются меняться местами. Аксон положительно заряжается изнутри. Затем натрий перестает поступать через мембрану, а отток калия не прекращается.

Изменение напряжения из-за движения ионов калия и натрия называется «потенциал действия». Он распространяется медленно, но миелиновая оболочка, обволакивающая аксон, ускоряет это процесс, препятствуя оттоку и притоку ионов калия и натрия из тела аксона.

Проходя через перехват Ранвье, импульс перескакивает с одного участка аксона на другой, что и позволяет ему двигаться быстрее.

После того, как потенциал действия пересекает разрыв в миелине, импульс останавливается, и возвращается состояние покоя.

Такой способ передачи энергии характерен для ЦНС. Что касается вегетативной нервной системы, в ней часто встречаются аксоны, покрытые малым количеством миелина или вообще не покрытые им. Скачки между шванновскими клетками не осуществляются, и импульс проходит гораздо медленнее.

Состав

Миелиновый слой состоит из двух слоев липидов и трех слоев белка. Липидов в нем гораздо больше (70-75%):

  • фосфолипиды (до 50%);
  • холестерин (25%);
  • глактоцереброзид (20%) и др.

Белковые слои тоньше липидных. Содержание белка в миелине – 25-30%:

  • протеолипид (35-50%);
  • основной белок миелина (30%);
  • белки Вольфграма (20%).

Существуют простые и сложные белки нервной ткани.

Роль липидов в строении оболочки

Липиды играют ключевую роль в строении мякотной оболочки. Они являются структурным материалом нервной ткани и защищают аксон от потери энергии и ионных потоков. Молекулы липидов обладают способностью восстанавливать ткани мозга после повреждений. Липиды миелина отвечают за адаптацию зрелой нервной системы. Они выступают в роли рецепторов гормонов и осуществляют коммуникацию между клетками.

Роль белков

Немаловажное значение в строении миелинового слоя имеют молекулы белков. Они наряду с липидами выступают в роли строительного материала нервной ткани. Их главной задачей является транспортировка питательных веществ в аксон. Также они расшифровывают сигналы, поступающие в нервную клетку и ускоряют реакции в ней. Участие в обмене веществ – важная функция молекул белка миелиновой оболочки.

Дефекты миелинизации

Разрушение миелинового слоя нервной системы – очень серьезная патология, из-за которой происходит нарушение передачи нервного импульса. Она вызывает опасные заболевания, зачастую несовместимые с жизнью. Существуют два типа факторов, влияющие на возникновение демиелинизации:

  • генетическая предрасположенность к разрушению миелина;
  • воздействие на миелин внутренних или внешних факторов.
  • Демиелизация делится на три вида:
  • острая;
  • ремиттирующая;
  • острая монофазная.

Почему происходит разрушение

Наиболее частыми причинами разрушения мякотной оболочки являются:

  • ревматические болезни;
  • существенное преобладание белков и жиров в питании;
  • генетическая предрасположенность;
  • бактериальные инфекции;
  • отравление тяжелыми металлами;
  • опухоли и метастазы;
  • продолжительные сильные стрессы;
  • плохая экология;
  • патологии иммунной системы;
  • длительный прием нейролептиков.

Заболевания вследствие демиелинизации

Демиелинизирующие заболевания центральной нервной системы:

  1. Болезнь Канавана – генетическое заболевание, возникающее в раннем возрасте. Его характеризуют слепота, проблемы с глотанием и приемом пищи, нарушение моторики и развития. Также следствием этой болезни являются эпилепсия, макроцефалия и мышечная гипотония.
  2. Болезнь Бинсвангера. Чаще всего вызвана артериальной гипертонией. Больных ожидают расстройства мышления, слабоумие, а также нарушения ходьбы и функций тазовых органов.
  3. . Может вызвать поражения нескольких частей ЦНС. Ему сопутствуют парезы, параличи, судороги и нарушение моторики. Также в качестве симптомов рассеянного склероза выступают поведенческие расстройства, ослабление лицевых мышц и голосовых связок, нарушение чувствительности. Зрение нарушается, меняется восприятие цвета и яркости. Рассеянный склероз также характеризуется расстройствами тазовых органов и дистрофией ствола мозга, мозжечка и черепных нервов.
  4. Болезнь Девика – демиелинизация в зрительном нерве и спинном мозге. Болезнь характеризуют нарушения координации, чувствительности и функций тазовых органов. Ее отличают серьезные нарушения зрения и даже слепота. В клинической картине также наблюдаются парезы, мышечная слабость и вегетативная дисфункция.
  5. Синдром осмотической демиелинизации . Возникает из-за недостатка натрия в клетках. Симптомами выступают судороги, нарушения личности, потери сознания вплоть до комы и смерти. Следствием заболевания являются отек головного мозга, инфаркт гипоталамуса и грыжа ствола мозга.
  6. Миелопатии – различные дистрофические изменения в спинном мозге. Их характеризуют мышечные нарушения, сенсорные расстройства и дисфункция тазовых органов.
  7. Лейкоэнцефалопатия – разрушение миелиновой оболочки в подкорке головного мозга. Больных мучают постоянная головная боль и эпилептические припадки. Также наблюдаются нарушения зрения, речи, координации и ходьбы. Снижается чувствительность, наблюдаются расстройства личности и сознания, прогрессирует слабоумие.
  8. Лейкодистрофия – генетическое нарушение метаболизма, вызывающее разрушение миелина. Течение болезни сопровождают мышечные и двигательные расстройства, параличи, нарушение зрения и слуха, прогрессирующее слабоумие.

Демиелинизирующие заболевания периферической нервной системы:

  1. Синдром Гийена-Барре – острая воспалительная демиелинизация. Она характеризуется мышечными и двигательными нарушениями, дыхательной недостаточностью, частичным или полным отсутствием сухожильных рефлексов. Больные страдают заболеваниями сердца, нарушением работы пищеварительной системы и тазовых органов. Парезы и нарушения чувствительности так же являются признаками этого синдрома.
  2. Невральная амиотрофия Шарко-Мари-Тута – наследственная патология миелиновой оболочки. Ее отличают нарушения чувствительности, дистрофия конечностей, деформация позвоночника и тремор.

Это лишь часть заболеваний, возникающих из-за разрушения миелинового слоя. Симптомы в большинстве случаев схожи. Точный диагноз можно поставить лишь после проведения компьютерной или магнитно-резонансной томографии. Немаловажную роль в постановке диагноза играет уровень квалификации врача.

Принципы лечения дефектов оболочки

Заболевания, связанные с разрушением мякотной оболочки, очень сложно лечить. Терапия направлена в основном на купирование симптомов и остановку процессов разрушения. Чем раньше диагностировано заболевание, тем больше шансов остановить его течение.

Возможности восстановления миелина

Благодаря своевременному лечению можно запустить процесс восстановления миелина. Однако, новая миелиновая оболочка не будет так же хорошо выполнять свои функции. Кроме того, болезнь может перейти в хроническую стадию, а симптомы сохранятся, лишь слегка сгладятся. Но даже незначительная ремиелинизация способна остановить ход болезни и частично вернуть утраченные функции.

Современные лекарственные средства, направленные на регенерацию миелина более эффективны, но отличаются очень высокой стоимостью.

Терапия

Для лечения заболеваний, вызванных разрушением миелиновой оболочки, используются следующие препараты и процедуры:

  • бета-интерфероны (останавливают течение заболевания, снижают риск возникновения рецидивов и инвалидности);
  • иммуномодуляторы (воздействуют на активность иммунной системы);
  • миорелаксанты (способствуют восстановлению двигательных функций);

  • ноотропы (восстанавливают проводниковую активность);
  • противовоспалительные (снимают воспалительный процесс, вызвавший разрушение миелина);
  • (предупреждают повреждение нейронов мозга);
  • обезболивающие и противосудорожные препараты;
  • витамины и антидепрессанты;
  • фильтрация ликвора (процедура, направленная на очищение спинномозговой жидкости).

Прогноз по заболеваниям

В настоящее время лечение демиелинизации не дает стопроцентного результата, но учеными активно ведутся разработки лекарственных средств, направленных на восстановление мякотной оболочки. Исследования проводятся по следующим направлениям:

  1. Стимуляция олигодендроцитов . Это клетки, производящие миелин. В организме, пораженном демиелинизацией, они не работают. Искусственная стимуляция этих клеток поможет запустить процесс восстановления разрушенных участков миелиновой оболочки.
  2. Стимуляция стволовых клеток . Стволовые клетки могут превращаться в полноценную ткань. Есть вероятность, что они могут заполнять и мякотную оболочку.
  3. Регенерация гематоэнцефалического барьера . При демиелинизации этот барьер разрушается и позволяет лимфоцитам негативно влиять на миелин. Его восстановление защищает миелиновый слой от атаки иммунной системы.

Возможно, в скором времени заболевания, связанные с разрушением миелина, перестанут быть неизлечимыми.

Нервные волокна.

Отростки нервных клеток, покрытые оболочками, называются волокнами. По строению оболочек различают миелиновые и безмиелиновые нервные волокна. Отросток нервной клетки в нервном волокне называют осевым цилиндром, или аксоном.

В ЦНС оболочки отростков нейронов образуют отростки олигодендроглиоцитов, а в перефирической – нейролеммоциты.

Безмиелиновые нервные волокна располагаются преимущественно в периферической вегетативной нервной системе. Их оболочка представляет собой тяж нейролеммоцитов, в который погружены осевые цилиндры. Безмиелиновое волокно, в котором находятся несколько осевых цилиндров, называется волокном кабельного типа. Осевые цилиндры из одного волокна могут переходить в соседнее.

Процесс образования безмиелинового нервного волокна происходит следующим образом. При появлении отростка в нервной клетке рядом с ним появляется тяж нейролеммоцитов. Отросток нервной клетки (осевой цилиндр) начинает погружаться в тяж нейролеммоцитов, увлекая плазмолемму вглубь цитоплазмы. Сдвоенная плазмолемма называется мезаксоном. Таким образом, осевой цилиндр располагается на дне мезаксона (подвешен на мезаксоне). Снаружи безмиелиновое волокно покрыто базальной мембраной.

Миелиновые нервные волокна располагаются преимущественно в соматической нервной системе, имеют значительно больший диаметр по сравнению с безмиелиновыми-достигает до 20 мкм. Осевой цилиндр тоже более толстый. Миелиновые волокна окрашиваются осмием в черно-коричневый цвет. После окрашивания в оболочке волокна видны 2 слоя: внутренний миелиновый и наружный, состоящий из цитоплазмы, ядра и плазмолеммы, который называется неврилеммой. В центре волокна проходит неокрашенный (светлый) осевой цилиндр.

В миелиновом слое оболочки видны косые светлые насечки (incisio myelinata). По ходу волокна имеются сужения, через которые не переходит миелиновый слой оболочки. Эти сужения называются узловыми перехватами (nodus neurofibra). Через эти перехваты проходит только неврилемма и базальная мембрана, окружающая миелиновое волокно. Узловые перехваты являются границей между двумя смежными леммоцитами. Здесь от нейролеммоцита отходят короткие выросты диаметром около 50 нм, заходящие между концами таких же отростков смежного нейролеммоцита.

Участок миелинового волокна, расположенный между двумя узловыми перехватами, называется межузловым, или интернодальным, сегментом. В пределах этого сегмента рас-полагается всего лишь 1 нейролеммоцит.

Миелиновый слой оболочки - это мезаксон, навернутый на осевой цилиндр.

Формирование миелинового волокна. Вначале процесс образования миелинового волокна сходен с процессом образованием безмиелинового, т. е. осевой цилиндр погружается в тяж нейролеммоцитов и образуется мезаксон. После этого мезаксон удлиняется и навертывается на осевой цилиндр, оттесняя цитоплазму и ядро на периферию. Вот этот, навернутый на осевой цилиндр, мезаксон и есть миелиновый слой, а наружный слой оболочки - это оттесненные к периферии ядра и цитоплазма нейролеммоцитов.

Миелиновые волокна отличаются от безмиелиновых по строению и функции. В частности, скорость движения им¬пульса по безмиелиновому нервному волокну составляет 1-2 м в секунду, по миелиновому - 5-120 м в секунду. Объясняется это тем, что по миелиновому волокну импульс движется сальтоторно (скачкообразно). Это значит, что в пределах узлового перехвата импульс движется по неврилемме осевого цилиндра в виде волны деполяризации, т. е. медленно; в пределах межузлового сегмента импульс движется как электрический ток, т. е. быстро. В то же время импульс по безмиелиновому волокну движется только в виде волны деполяризации.

На электронограмме хорошо видно отличие миелинового волокна от безмиелинового - мезаксон послойно навернут на осевой цилиндр.

Важный показатель созревания нервных структур - миелинизация нервных волокон. Она развивается в центробежном направлении от клетки к периферии. Фило- и онтогенетически более старые системы миелинизи-руются раньше. Так, миелинизация в спинном мозге начинается на 4-м месяце внутриутробного развития, и у новорождённого она практически заканчивается. При этом вначале миелинизируются двигательные волокна, а затем - чувствительные. В разных отделах нервной системы миелинизация происходит неодновременно. Сначала миелинизируются волокна, осуществляющие жизненно важные функции (сосания, глотания, дыхания и т.д.). Черепные нервы миелинизируются более активно в течение первых 3-4 мес жизни. Их миелинизация завершается приблизительно к году жизни, за исключением блуждающего нерва. Аксоны пирамидного пути покрываются миелином в основном к 5-6 мес жизни, окончательно - к 4 годам, что приводит к постепенному увеличению объёма движений и их точности.

Развитие условно-рефлекторной деятельности

Один из основных критериев нормального развития мозга новорождённого - состояние основных безусловных рефлексов, так как на их базе формируются условные рефлексы. Кора головного мозга даже у новорождённого подготовлена для формирования условных рефлексов. Вначале они формируются медленно. На 2-3-й неделе жизни вырабатывается условный вестибулярный рефлекс на положение для кормления грудью и покачивание в люльке. Затем идёт быстрое накопление условных рефлексов, образующихся со всех анализаторов и подкрепляющихся пищевой доминантой. Условный рефлекс на звуковой раздражитель в виде защитного (мигательного) движения век образуется к концу 1-го месяца жизни, а пищевой рефлекс на звуковой раздражитель - на 2-м. В это же время формируется и условный рефлекс на свет.

В целом уже на самых ранних этапах развития созревание нервной системы осуществляется по принципу системогенеза с формированием в первую очередь отделов, обеспечивающих жизненно необходимые реакции, отвечающие за первичную адаптацию ребёнка после рождения (пищевые, дыхательные, выделительные, защитные).

При оценке развития и состояния нервной системы учитывают жалобы, результаты расспроса матери, а в старшем возрасте - и ребёнка. Обращают внимание также на крик, двигательную активность, мышечный тонус, безусловные рефлексы, патологические неврологические знаки, психомоторное развитие.

ОСМОТР

При осмотре новорождённого обращают внимание на стигмы дизэмбриогенеза (малые аномалии развития), окружность и форму головы, состояние черепных швов и родничков, наличие кефалогематом, родовой опухоли, кровоизлияний в склеры глаз. У более старших детей оценивают поведение и реакцию на окружающее (безразличие, сонливость, апатия, страх, возбуждение, эйфория), а также настроение, выражение лица, мимику, жесты и т.д.

КРИК

Начало осмотра нередко сопровождается громким криком. Длительность крика здорового ребёнка адекватна действию раздражителя (голод, тактильные или болевые воздействия, мокрые пелёнки и др.). Вскоре после устранения дискомфорта крик прекращается.

ДВИГАТЕЛЬНАЯ АКТИВНОСТЬ

У здорового новорождённого верхние и нижние конечности согнуты и приведены к туловищу, пальцы рук сжаты в кулачки, стопы находятся в умеренном тыльном сгибании по отношению к голеням под углом 90-100°.

Определённую двигательную реакцию у новорождённого вызывают температурные и болевые раздражители. Так, в ответ на воздействие холода двигательная активность уменьшается, появляется сосудистая кожная реакция в виде мраморности кожных покровов, часто возникают плач, тремор конечностей и подбородка. При перегреве нарастает беспорядочность движений. Для болевых раздражений характерна недифференцированная хаотическая общая и местная реакция с движением в противоположном от раздражителя направлении. Мелкоразмашистый тремор рук и нижней челюсти, возникающий при крике или беспокойстве ребёнка в первые 3 дня жизни, обычно не является патологией.

У детей более старшего возраста координацию движений оценивают как при осмотре (излишняя суетливость, двигательное беспокойство, добавочные движения), так и при проведении координационных проб (пяточно-коленной, пальце-носовой).

МЫШЕЧНЫЙ ТОНУС

Для новорождённых характерен физиологический гипертонус мышц-сгибателей как в проксимальных, так и дистальных отделах. Гипертонус мышц-сгибателей рук сохраняется до 2-2,5 мес, мышц-сгибателей ног - до 3-3,5 мес. Оценить мышечный тонус можно с помощью пробы на тракцию: нужно взять ребёнка за запястья и потянуть на себя. При этом руки у него слегка разгибаются в локтевых суставах, затем разгибание прекращается, и ребёнок всем телом подтягивается к рукам. О мышечном тонусе можно судить и по способности Одерживать тело в горизонтальном положении лицом вниз над поверхностью пеленальника (на руке исследующего). Руки ребёнка при этом слегка согнуты, а ноги вытянуты.

РЕФЛЕКСЫ

У детей первых месяцев жизни исследование начинают с выявления врождённых безусловных рефлексов.

БезусловныЕ рефлексЫ

При исследовании безусловных рефлексов учитывают их наличие или отсутствие, симметричность, время появления и угасания, выраженность, а также соответствие возрасту ребёнка.

Выделяют сегментарные и надсегментарные двигательные автоматизмы.

Сегментарные двигательные автоматизмы регулируются сегментами спинного мозга (спинальные автоматизмы) или стволом мозга (оральные автоматизмы).

- Ладонно-ротовой рефлекс вызывается надавливанием большим пальцем на ладонь ребёнка. Ответная реакция - открывание рта и наклон головы.

- Поисковый рефлекс: при поглаживании кожи в области угла рта (не следует прикасаться к губам) происходят опускание губы, отклонение языка и поворот головы в сторону раздражителя. Рефлекс особенно хорошо выражен перед кормлением.

- Сосательный рефлекс: если вложить в рот ребёнка соску, то он начинает совершать сосательные движения. Рефлекс исчезает к концу 1-го года жизни.

- Хватательный рефлекс: схватывание и прочное удержание пальцев, вложенных в ладонь ребёнка. При этом иногда удаётся приподнять ребёнка над опорой.

- Рефлекс Моро можно вызвать различными приёмами: приподняв ребёнка за руки таким образом, чтобы затылок соприкасался с поверхностью стола, быстро опустить его; ударить по поверхности, на которой лежит ребёнок, с двух сторон от головы на расстоянии 15-20 см. В ответ ребёнок вначале отводит руки в стороны и разжимает пальцы (первая фаза), а затем через несколько секунд возвращает руки в исходное положение (вторая фаза); при этом руки как бы охватывают туловище.

- Защитный рефлекс: если новорождённого положить на живот лицом вниз, голова его поворачивается в сторону.

Рефлексы опоры и автоматической ходьбы: ребёнка берут за подмышечные впадины со стороны спины, поддерживая большими пальцами голову. Приподнятый таким образом ребёнок сгибает ноги в тазобедренных и коленных суставах. Поставленный на опору, он опирается на неё полной стопой, «стоит» на полусогнутых ногах, выпрямив туловище. При лёгком наклоне туловища вперёд ребёнок совершает шаговые движения по поверхности, не сопровождая их движением рук

- Рефлекс ползанья: ребёнка кладут на живот таким образом, чтобы голова и туловище были расположены по одной линии. В таком положении ребёнок на несколько мгновений поднимает голову и совершает движения, имитирующие ползание. Если подставить под подошвы ребёнка ладонь, он начинает активно отталкиваться ногами от препятствия, в «ползанье» включаются руки.

- Рефлекс Галанта: при раздражении кожи спины вблизи и вдоль позвоночника ребёнок изгибает туловище дугой, открытой в сторону раздражителя

- Рефлекс Переса: если лежащему на руке исследователя ребёнку провести пальцем от копчика к шее, слегка надавливая на остистые отростки позвонков, он поднимает таз, голову, сгибает руки и ноги Этот рефлекс вызывает у новорождённого отрицательную эмоциональную реакцию.

Надсегментарные позотонические автоматизмы осуществляются центрами продолговатого и среднего мозга и регулируют состояние мышечного тонуса в зависимости от положения тела и головы.

- Лабиринтные установочные рефлексы вызываются изменением положения головы в пространстве. У ребёнка, лежащего на спине, повышен тонус разгибателей шеи, спины, ног. Если его перевернуть на живот, то увеличивается тонус сгибателей этих частей тела.

- Верхний рефлекс Ландау: если ребёнка 4-6 мес держать свободно в воздухе лицом вниз (на руках, расположенных под его животом), он поднимает голову, устанавливает её по средней линии и приподнимает верхнюю часть туловища.

- Нижний рефлекс Ландау: в положении на животе ребёнок разгибает и поднимает ноги. Этот рефлекс формируется к 5-6 мес.

Этот процесс протекает в патогенезе последовательно и упорядрченно в строгом соответствии с эмбриональными, анатомическими и функциональными особенностями систем нервных волокон.
Миелин является совокупностью липоидных и белковых веществ, входящих в состав внутреннего слоя оболочки нервного волокна. Таким образом, миелиновая оболочка представляет собой внутреннюю часть глиальной оболочки нервного волокна, которая содержит миелин. Миелиновая оболочка - белково-липидная мембрана, которая состоит из бимолекулярного липидного слоя, находящегося между двумя мономолекулярными слоями белковых субстанций.
Миелиновая оболочка многократно в несколько слоев закручивается вокруг нервного волокна. С увеличением диаметра нервного волокна количество витков миелиновой оболочки возрастает. Миелиновая оболочка является как бы изоляционным покрытием для биоэлектрических импульсов, которые возникают в нейронах при возбуждении. Она обеспечивает более быстрое проведение биоэлектрических импульсов по нервным волокнам. Этому способствуют так называемые перехваты Ранвье. Перехваты Ранвье - это небольшие просветы нервного волокна, не покрытые миелиновой оболочкой. В центральной нервной системе эти перехваты располагаются приблизительно через 1 мм.
Миелин в центральной нервной системе синтезируется олигодендроцитами. Один олигодендроцит синтезирует миелин примерно для 50 нервных волокон. При этом к каждому аксону примыкает только узкий отросток олигодендроцита.
В процессе спирального закручивания оболочки образуется ламеллярное строение миелина, при этом два гидрофильных слоя поверхностных белков миелина сливаются, между ними образуется гидрофобный слой липидов. Расстояние между пластинками миелина в среднем равняется 12 нм. В настоящее время описано более 20 видов белков миелина. Строение и биохимический состав миелина центральной нервной системы довольно подробно изучены. Миелин, помимо защитной, структурной и изоляторной функций, участвует также в питании нервного волокна. Поражение миелиновой оболочки нервных волокон - демиелинизация - происходит при различных тяжелых заболеваниях, таких как энцефаломиелиты различного генеза, СПИД, рассеянный склероз, болезнь Бехчета, синдром Шегрена и др.

{module директ4}

Миелинизация дистального отдела (у заднего полюса глаза) зрительного нерва начинается только после рождения ребенка. Она происходит в период от 3 нед до нескольких месяцев, уже в период внутриутробной жизни. Это так называемый условно «кабельный период», когда весь комплекс осевых цилиндров - аксонов ганглиозных клеток сетчатки лишен миелиновых оболочек и заключен в одну общую оболочку. При этом сохраняется функция проведения зрительных импульсов, но она очень несовершенна и имеет диффузный характер. Также «кабельные нервы» проводят зрительные импульсы путем обобщения или путем поперечной индукции. В них переход возбуждения с одного волокна без миелиновой оболочки происходит на другое такое же волокно по соприкосновению. Такое проведение импульсов делает невозможным прохождение их из определенных точек сетчатки в определенные зоны корковых анализаторов. Таким образом, в этот период жизни ребенка еще отсутствует четкая ретинотопичность представительства в зрительных центрах. Нервные волокна интракраниальной части зрительного нерва раньше покрываются миелиновой оболочкой - к VIII месяцу внутриглазного развития.
Миелинизация нервных волокон хиазмы и зрительных трактов у новорожденных уже хорошо выражена. При этом миелинизация распространяется на зрительный нерв из центра на периферию, т. е. происходит в противоположном направлении роста его нервных волокон. Миелинизация нервных волокон головного мозга начинается с 36-й недели эмбрионального периода.
К моменту рождения миелинизация зрительных проводящих путей в области первичных проекционных корковых зрительных центров (поле 17 по Бродману) заканчивается. Поля 18 и 19 по Бродману - продолжают миелинизацию еще в течение 1-1,5 мес после рождения. Позднее всего миелинизируются поля в области высших ассоциативных центров (терминальные зоны Флексига). В этих зонах миелинизация внутримозговых проводников, которые соединяют зрительные центры различных уровней между собой и с корковыми центрами других анализаторов, завершаются только на 4-м месяце жизни ребенка. Аксоны некоторых больших пирамидных клеток в 5-м слое поля 17 по Бродману начинают покрываться миелиновой оболочкой с 3-месячного возраста. В аксонах клеток 3-го слоя в этом возрасте еще нет следов миелина.
Таким образом, миелинизация нервных волокон зрительного пути начинается на 36-й неделе эмбрионального периода и в общих чертах заканчивается в корковых структурах головного мозга к 4-летнему возрасту.
На миелинизацию нервных волокон зрительного пути оказывают значительное стимулирующее влияние лучи света. Этот феномен, открытый Флексигом более 100 лет назад, получил подтверждение в дальнейшем в целом ряде научных публикаций.