Преобразование фигур виды симметрии. Группы симметричных преобразований фигур и виды симметрии

С преобразованиями фигур люди имели дело всегда. Уже человек каменного века, изображая на стенах пещерных животных, реально производил преобразование пространственных тел в плоские фигуры. Глядя на тень предмета в солнечный день, мы видим результат параллельного проектирования солнечными лучами этого предмета на поверхность пола или земли. А лучи, идущие от лампы, осуществляют центральное проектирование (рис. 8.20)

Важнейшими из геометрических преобразований являются знакомые вам из планиметрии движения и подобия. Рассмотрим эти преобразования в пространстве.

§ 25. ДВИЖЕНИЯ

25.1. Преобразования фигур.

Доказывая в главе 1, что некоторая фигура F обладает центральной или зеркальной симметрией, мы сопоставляли каждой точке X фигуры F некоторую точку X этой фигуры, симметричную точке X относительно центра или плоскости, т.е. выполняли некоторое преобразование фигуры

Напомним, что вообще преобразование f (или отображение f) фигуры F состоит в том, что каждой ее точке X сопоставляется некоторая точка X (рис. 25.1). Все точки X образуют некоторую фигуру F, о которой говорят, что она получена при преобразовании (отображении) из фигуры

Говорят также, что точка X является образом точки X

при преобразовании и пишут , а о фигуре F говорят, что она является образом фигуры F при преобразовании и пишут

Если при данном преобразовании разным точкам фигуры соответствуют разные образы, то преобразование называют взаимно однозначным. Например, проектирование пространства на плоскость не является взаимно однозначным преобразованием, так как разные точки пространства могут иметь одну и ту же проекцию. А проектирование плоскости на плоскость в направлении, не параллельном этим плоскостям, является взаимно однозначным преобразованием.

Пусть фигура F получена в результате взаимно однозначного преобразования f из фигуры F. Тогда каждая точка фигуры F является образом только одной (единственной) точки X фигуры F. Действительно, в противном случае преобразование переводило бы в одну и ту же точку X две различные точки фигуры F, что невозможно, поскольку преобразование взаимно однозначное. Поэтому каждой точке X фигуры F можно поставить в соответствие ту единственную точку X фигуры F, образом которой при преобразовании f является точка X. Тем самым мы определим преобразование фигуры F в фигуру F, которое называется обратным для преобразования f и которое обозначается Если преобразование имеет обратное, то оно называется обратимым.

Из данных определений непосредственно следует, что если преобразование f обратимо, то обратное ему преобразование также обратимо и Поэтому преобразования f и называются взаимно обратными.

Пусть преобразование переводит фигуру F в фигуру G, а преобразование g переводит фигуру G в фигуру (рис. 25.2). Если при преобразовании точка X фигуры F перешла в точку фигуры G, а затем точка Y при преобразовании g перешла в точку фигуры Н, то тем самым точка X перешла в точку Z. Это записывают так:

ЗЕРКАЛЬНАЯ СИММЕТРИЯ. Классическая симметрия «левого-правого», когда одна половина формы является как бы зеркальным отражением другой. Воображаемая плоскость, которая делит такие фигуры на две зеркально равные части называется плоскостью симметрии, и обозначается латинской литерой «м».

ЦЕНТРАЛЬНО-ОСЕВАЯ СИММЕТРИЯ (осевая, симметрия вращения).

Симметрия относительно центральной (зачастую вертикальной) оси, образованной пересечением двух или более плоскостей симметрии. При полном обороте (360*) форма несколько раз совмещается сама с собой. Число таких совмещений определяет порядок оси симметрии (колличество трансформаций), которая обозначается латинской литерой «n» и числом. Квадрат имеет четверную ось («n4»), шестиугольник – шестерную, пентаграмма – пятерную.

ПЕРЕНОСНАЯ СИММЕТРИЯ (трансляционная симметрия).

Простейшее преобразование, приводящее к «бесконечным» фигурам – перенос элемента вдоль прямой на отрезок конечной длины – «а». Направляющая называется осью переносов, а интервалы – периодами трансляции. Если вдоль оси переносится несимметричный элемент, то говорят о полярной оси, это означает, что свойства линейной формы в одном направлении иные чем в обратном. Тем самым в архитектуре подчеркивается поступательное движение в одном направлении.

Кроме оси переносов в трансформации могут быть задействованы иные типы преобразований – отражение и поворот. Более сложные «рисунки» дает использование неполных интервалов (1/2, ¼, ¾, и т.д.). Подобным образом создаются линейные бесконечные орнаменты, именуемые «бордюры» (фр. Границы). Такой вид симметрических преобразований именуют – СИММЕТРИЕЙ БОРДЮРОВ, и в ней, как и в трансляционной симметрии различают полярные (направленные) формы и не полярные.

СИММЕТРИЯ СЕТЧАТЫХ ОРНАМЕНТОВ И ПЛОТНЫХ УПАКОВОК. («ПАРКЕТЫ»).

Этот вид симметрии привлекается для описания и анализа однородных, состоящих из одинаковых элементов структур, как объемных так и плоскостных.

Простейший сетчатый орнамент представляет собой сетку из параллелограммов. Плоская сетка имеет две непараллельных оси переносов, или точнее «плоская» сетка представляет собой такое разбиение плана на конечные участки, которое кроме тождественного преобразования допускает еще два неколленеарных автоморфизма сдвига. Одной и той же системе узлов отвечает бесконечное множество сеток в зависимости от способов соединения узлов. У всех систем точек кроме осей переносов содержатся и другие элементы симметрии. Например, правильная треугольная сетка, в каждой вершине которой пересекаются три направляющие, и имеет шестерные вертикальные оси в узлах.



Существует только пять параллелограммических систем точек, отличающихся друг от друга по симметрии и параметрам ячеек:

Квадратная система узлов,

Правильная треугольная система узлов,

Ромбическая система узлов,

Прямоугольная система узлов,

Косая параллелограммическая система узлов.

На осонве непрямоугольных сеток получаются достаточно выразительные системы расчленения плоскостей.

В случае трехмерного пространства можно выделить уже не пять систем точек, а 14 бесконечных фигур, именуемых решетками Бравэ.

СПИРАЛЬНАЯ СИММЕТРИЯ (винтовая).

Эта группа симметрии образована последовательным преобразованием формы, с использованием двух типов – поворот и перенос. Фигура обладает «винтовой осью» симметрии, если она приходит в совмещение сама с собой после произвенных последовательно двух операций: поворота на угол и переноса на расстояние равное 1 вдоль оси поворота. Если угол равен 360*/ n, то винтовую ось называют ось порядка n/... . Так как закручивание можно проиводить как вправо, так и влево, то различают винтовые оси правые и левые. Спираль представляет собой геометрическое место точек, которое удовлетворяют единому правилу построения, как например архимедова спираль r = a

CИММЕТРИЯ ПОДОБИЯ.

В соответствии с характером преобразований фигур различают ИЗОМЕТРИЧЕСКИЕ (ортогональные) и НЕИЗОМЕТРИЧЕСКИЕ (аффинные, проективные и т.д.) группы симметрии.

Изометрические – группы вращений, отражений, переносов, сохраняют метрические свойства исходных элементов. К ним относятся все рассмотренные выше группы симметрии. Изометрические преобразования бесконечных фигур иначе называют «ДВИЖЕНИЯМИ».

АФФИННЫЕ группы состоят из совокупностей ОДНОРОДНЫХ ДЕФОРМАЦИЙ – растяжение, сжатие, перспективные сокращения, допускаемые бесконечными фигурами.

Группы ПРЕОБРАЗОВАНИЙ ПОДОБИЯ являются частным случаем аффинных групп. Элементы последовательного ряда подобных фигур согласуются между собой пропорциональной зависимостью. Они могут быть связаны величинами арифметической, геометрической или гармонической прогрессии.

Таким образом существует СЕМЬ основных групп симметрии. Комбинирование числа осей симметрии и другие преобразования позволяют получить на базе этих групп 230 возможных типов точечных решеток, делящих пространство на однородые элементы.

Движения. Преобразования фигур

Движением в геометрии называется отображение, сохраняющее расстояние. Следует разъяснить, что подразумевается под словом "отображение".

1. Отображения, образы, композиции отображений.

Отображением множества M в множество N называется соответствие каждому элементу из M единственного элемента из N.

Мы будем рассматривать только отображение фигур в пространстве. Никакие другие отображения не рассматриваются, и потому слово "отображение" означает соответствие точкам точек.

О точке X", соответствующей при данном отображении f точке X, говорят, что она является образом точки X, и пишут X" = f(X) . Множество точек X", соответствующих точкам фигуры M, при отображении f называется образом фигуры M и обозначается M" = f(M) .

Если образом M является вся фигура N, т.е. f(M) = N, то говорят об отображении фигуры M на фигуру N.

Отображение называется взаимно однозначным, если при этом отображении образы каждых двух различных точек различны.

Пусть у нас есть взаимно однозначное отображение f множества M на N. Тогда каждая точка X" множества N является образом только одной (единственной) точки X множества M. Поэтому каждой точке X" (N можно поставить в соответствие ту единственную точку X (M, образом которой при отображении f является точка X". Тем самым мы определим отображение множества N на множество M, оно называется обратным для отображения f и обозначается f. Если отображение f имеет обратное, то оно называется обратимым.

Неподвижной точкой отображения (называется такая точка A, что ((A) = A.

Из данных определений непосредственно следует, что если отображение f обратимо, то обратное ему отображение f также обратимо и (f) = f. Поэтому отображения f и f называются также взаимно обратными.

Пусть заданы два отображения: отображение f множества M в множество N и отображение g множества N в множество P. Если при отображении f точка X (N перешла в точку X" = f(X) (N, а затем X" при отображении g перешла в точку X"" (P, то тем самым в результате X перешла в X"".

В результате получается некоторое отображение h множества M в множество P. Отображение h называется композицией отображения f с последующим отображением g.

Если данное отображение f обратимо, то, применяя его, а потом обратное ему отображение f, вернем, очевидно, все точки в исходное положение, т.е. получим тождественное отображение, такое, которое каждой точке сопоставляет эту же точку.

2. Определение движения.

Движением (или перемещением) фигуры называется такое ее отображение, при котором каждым двум ее точкам A и B соответствуют такие точки A" и B", что |A"B"| = |AB|.

Тождественное отображение является одним из частных случаев движения.

Фигура F" называется равной фигуре F, если она может быть получена из F движением.

3. Общие свойства движения.

Свойство 1 (сохранение прямолинейности) .

При движении три точки, лежащие на прямой, переходят в три точки, лежащие на прямой, причем точка, лежащая между двумя другими, переходит в точку, лежащую между образами двух других точек (сохраняется порядок их взаимного расположения) .

Доказательство. Из планиметрии известно, что три точки A, B, C лежат на прямой тогда и только тогда, когда одна из них, например точка B, лежит между двумя другими - точками A и C, т.е. когда выполняется равенство |AB| + |BC| = |AC|.

При движении расстояния сохраняются, а значит, соответствующее равенство выполняется и для точек A", B", C": |A"B"| + |B"C"| = |A"C"|.

Таким образом, точки A", B", C" лежат на одной прямой, и именно точка B" лежит между A" и C".

Из данного свойства следуют также еще несколько свойств:

Свойство 2. Образом отрезка при движении является отрезок.

Свойство 3. Образом прямой при движении является прямая, а образом луча - луч.

Свойство 4. При движении образом треугольника является равный ему треугольник, образом плоскости - плоскость, причем параллельные плоскости отображаются на параллельные плоскости, образом полуплоскости - полуплоскость.

Свойство 5. При движении образом тетраэдра является тетраэдр, образом пространства - все пространство, образом полупространства - полупространство.

Свойство 6. При движении углы сохраняются, т.е. всякий угол отображается на угол того же вида и той же величины. Аналогичное верно и для двугранных углов.

Сначала я рассмотрю все основные виды движений, а затем сведу их в единую систему.

4. Параллельный перенос.

Определение. Параллельным переносом, или, короче, переносом фигуры, называется такое ее отображение, при котором все ее точки смещаются в одном и том же направлении на равные расстояния, т.е. при переносе каждым двум точкам X и Y фигуры сопоставляются такие точки X" и Y", что XX" = YY".

Основное свойство переноса:

Параллельный перенос сохраняет расстояния и направления, т.е. X"Y" = XY.

Отсюда выходит, что параллельный перенос есть движение, сохраняющее направление и наоборот, движение, сохраняющее направление, есть параллельный перенос.

Из этих утверждений также вытекает, что композиция параллельных переносов есть параллельный перенос.

Параллельный перенос фигуры задается указанием одной пары соответствующих точек. Например, если указано, в какую точку A" переходит данная точка A, то этот перенос задан вектором AA", и это означает, что все точки смещаются на один и тот же вектор, т.е. XX" = AA" для всех точек Х.

5. Центральная симметрия.

Определение

1. Точки A и A" называются симметричными относительно точки О, если точки A, A", O лежат на одной прямой и OX = OX". Точка О считается симметричной сама себе (относительно О) .

Две фигуры называются симметричными относительно точки О, если для каждой точки одной фигуры есть симметричная ей относительно точки О точка в другой фигуре и обратно.

Как частный случай, фигура может быть симметрична сама себе относительно некоей точки О. Тогда эта точка О называется центром симметрии фигуры, а фигура центрально-симметричной.

Определение

2. Центральной симметрией фигуры относительно О называется такое отображение этой фигуры, которое сопоставляет каждой ее точке точку, симметричную относительно О.

Основное свойство: Центральная симметрия сохраняет расстояние, а направление изменяет на противоположное. Иначе говоря, любым двум точкам X и Y фигуры F соответствуют такие точки X" и Y", что X"Y" = -XY.

Доказательство. Пусть при центральной симметрии с центром в точке О точки X и Y отобразились на X" и Y". Тогда, как ясно из определения центральной симметрии, OX" = -OX, OY" = -OY.

Вместе с тем XY = OY - OX, X"Y" = OY" - OX".

Поэтому имеем: X"Y" = -OY + OX = -XY.

Отсюда выходит, что центральная симметрия является движением, изменяющим направление на противоположное и наоборот, движение, изменяющее направление на противоположное, есть центральная симметрия.

Центральная симметрия фигуры задается указанием одной пары существующих точек: если точка А отображается на А", то центр симметрии это середина отрезка AA".

6. Зеркальная симметрия (отражение в плоскости) .

Определение

1. Точки A и A" называются симметричными относительно плоскости (, если отрезок AA" перпендикулярен этой плоскости и делится ею пополам. Любая точка плоскости (считается симметричной самой себе относительно этой плоскости.

Две фигуры F и F" называются симметричными относительно данной плоскости, если они состоят из точек, попарно симметричных относительно этой плоскости, т.е. если для каждой точки одной фигуры есть симметричная ей точка в другой фигуре.

Если преобразование симметрии относительно плоскости переводит фигуру в себя, то фигура называется симметричной относительно плоскости (, а плоскость (плоскостью симметрии.

Определение

2. Отображение фигуры, при котором каждой ее точке соответствует точка, симметричная ей относительно данной плоскости, называется отражением фигуры в этой плоскости (или зеркальной симметрией) .

Теорема 1. Отражение в плоскости сохраняет расстояния и, стало быть, является движением.

См. Доказательство 1.

Теорема 2. Движение, при котором все точки некоторой плоскости неподвижны, является отражением в этой плоскости или тождественным отображением.

Зеркальная симметрия задается указанием одной пары соответствующих точек, не лежащих в плоскости симметрии: плоскость симметрии проходит через середину отрезка, соединяющего эти точки, перпендикулярно к нему.

7. Поворот вокруг прямой.

Для более четкого представления о повороте вокруг прямой следует вспомнить поворот на плоскости около данной точки. Поворотом на плоскости около данной точки называется такое движение, при котором каждый луч, исходящий из данной точки, поворачивается на один и тот же угол в одном и том же направлении. Перейдем теперь к повороту в пространстве.

Определение. Поворотом фигуры вокруг прямой a на угол (называется такое отображение, при котором в каждой плоскости, перпендикулярной прямой a, происходит поворот вокруг точки ее пересечения с прямой a на один и тот же угол (в одном и том же направлении. Прямая a называется осью поворота, а угол (- углом поворота.

Отсюда видим, что поворот всегда задается осью, углом и направлением поворота.

Теорема 1. Поворот вокруг прямой сохраняет расстояния, т.е. является движением.

См. Доказательство 2.

Теорема 2. Если движение пространства имеет множеством своих неподвижных точек прямую, то оно является поворотом вокруг этой прямой.

7.1. Фигуры вращения.

Фигура называется фигурой вращения, если существует такая прямая, любой поворот вокруг которой совмещает фигуру саму с собой, другими словами, отображает ее саму на себя. Такая прямая называется осью вращения фигуры. Простейшие тела вращения: шар, прямой круговой цилиндр, прямой круговой конус.

7.2. Осевая симметрия.

Частным случаем поворота вокруг прямой является поворот на 180(. При повороте вокруг прямой a на 180(каждая точка A переходит в такую точку A", что прямая a перпендикулярна отрезку AA" и пересекает его в середине. Про такие точки A и A" говорят, что они симметричны относительно оси a. Поэтому поворот на 180(вокруг прямой является называется осевой симметрией в пространстве.

8.1. Неподвижные точки движений пространства.

Важной характеристикой движения пространства является множество его неподвижных точек. Здесь могут представиться лишь следующие пять случаев: У движения неподвижных точек нет (нетождественный параллельный перенос) .

Движение имеет лишь одну неподвижную точку (центральная симметрия) .

Множество неподвижных точек движения пространства является прямой (поворот вокруг прямой) .

Множество неподвижных точек движения пространства является плоскостью (зеркальная симметрия) .

Множество неподвижных точек движения пространства является всем пространством (тождественное движение) .

Данная классификация очень удобна, так как представляет все виды движения как единую систему.

8.2. Основные теоремы о задании движений пространства.

Теорема 1. Пусть в пространстве даны два равных треугольника ABC и A"B"C". Тогда существуют два и только два таких движения пространства, которые переводят A в A", B в B", C в C". Каждое из этих движений получается из другого с помощью композиции его с отражением в плоскости A"B"C".

Теорема 2. Пусть в пространстве заданы два равных тетраэдра ABCD и A"B"C"D". Тогда существует единственное движение пространства (такое, что ((A) = A", ((B) = B", ((C) = C", ((D) = D".

9. Два рода движений.

Следует также знать, что все движения подразделяются на два рода в зависимости от того, непрерывны они или нет. Для лучшего понимания сущности этого разделения введу понятие базиса и его ориентации.

9.1. Базисы и их ориентация.

Базисом в пространстве называется любая тройка векторов, непараллельных одновременно никакой плоскости.

Тройка базисных векторов называется правой (левой) , если эти векторы, отложенные от одной точки, располагаются так, как расположены соответственно большой, указательный и средний пальцы правой (левой) руки.

Если имеются две правые (левые) тройки векторов, говорят, что эти тройки ориентированы одинаково. Если одна тройка является правой, а вторая - левой, то они ориентированы противоположно.

9.2. Два рода движения.

Движения первого рода - такие движения, которые сохраняют ориентацию базисов некоей фигуры. Они могут быть реализованы непрерывными движениями.

Движения второго рода - такие движения, которые изменяют ориентацию базисов на противоположную. Они не могут быть реализованы непрерывными движениями.

Примерами движений первого рода являются перенос и поворот вокруг прямой, а движениями второго рода - центральная и зеркальная симметрии.

Композицией любого числа движений первого рода является движение первого рода.

Композиция четного числа движений второго рода есть движение 1 рода, а композиция нечетного числа движений 2 рода - движение 2 рода.

10. Некоторые распространенные композиции.

Рассмотрим теперь некоторые комбинации движений, используемые достаточно часто, но не уделяя им особого внимания.

10.1. Композиции отражений в плоскости.

Теорема 1. Движение пространства первого рода представимо в виде композиции двух или четырех отражений в плоскости.

Движение пространства второго вида есть либо отражение в плоскости, либо представимо в виде композиции трех отражений в плоскости.

Отсюда мы можем объяснить уже известные нам движения так: Композиция отражения в 2 параллельных плоскостях есть параллельный перенос.

Композиция отражения в 2 пересекающихся плоскостях есть поворот вокруг прямой пересечения этих плоскостей.

Центральная симметрия относительно данной точки является композицией 3 отражений относительно любых 3 взаимно перпендикулярных плоскостей, пересекающихся в этой точке.

10.2. Винтовые движения.

Определение. Винтовым движением называется композиция поворота и переноса на вектор, параллельный оси поворота. Представление о таком движении дает ввинчивающийся или вывинчивающийся винт.

Теорема 2. Любое движение пространства первого рода - винтовое движение (в частности поворот вокруг прямой или перенос) .

10.3. Зеркальный поворот.

Определение. Зеркальным поворотом вокруг оси a на угол (называется композиция поворота вокруг оси a на угол (и отражения в плоскости, перпендикулярной оси поворота.

Теорема 3. Любое движение пространства второго рода, имеющее неподвижную точку, является зеркальным поворотом, который, в частности, может быть центральной или зеркальной симметрией.

10.4. Скользящие отражения.

Определение. Скользящим отражением называется композиция отражения в некоей плоскости и переноса на вектор, параллельный этой плоскости.

Теорема 4. Движение пространства второго рода, не имеющее неподвижных точек, есть скользящее отражение.

Теорема Шаля. Движение плоскости первого рода является либо поворотом, либо параллельным переносом.

Движение плоскости второго рода является скользящим отражением.

При создании реферата были использованы следующие книги:

1. "Геометрия для 9-10 классов". А. Д. Александров, А. Л. Вернер, В. И. Рыжик.

2. "Геометрия". Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.

3. "Математика". В. А. Гусев, А. Г. Мордкович.

ПРЕОБРАЗОВАНИЕ ПОДОБИЯ

Преобразование фигуры F в фигуру F" называется преобразованием подобия, если при этом преобразовании расстояния между точками изменяются в одно и то же число раз (рис. 1). Это значит, что если произвольные точки X, Y фигуры F при преобразовании подобия переходят в точки X", Y" фигуры F", то X"Y" = k-XY, причем число k -- одно и то же для всех точек X, Y. Число k называется коэффициентом подобия. При k = l преобразование подобия, очевидно, является движением.

Пусть F -- данная фигура и О -- фиксированная точка (рис. 2). Проведем через произвольную точку X фигуры F луч ОХ и отложим на нем отрезок ОХ", равный k?OX, где k -- положительное число. Преобразование фигуры F, при котором каждая ее точка X переходит в точку X", построенную указанным способом, называется гомотетией относительно центра О. Число k называется коэффициентом гомотетии, фигуры F и F" называются гомотетичными.

Теорема 1. Гомотетия есть преобразование подобия

Доказательство. Пусть О -- центр гомотетии, k -- коэффициент гомотетии, X и Y - две произвольные точки фигуры (рис.3)


Рис.3

При гомотетии точки X и Y переходят в точки X" и Y" на лучах ОХ и OY соответственно, причем OX" = k?OX, OY" = k?OY. Отсюда следуют векторные равенства ОХ" = kOX, OY" = kOY.

Вычитая эти равенства почленно, получим: OY"-OX" = k (OY- OX).

Так как OY" - OX"= X"Y", OY -OX=XY, то Х" Y" = kХY. Значит, /X"Y"/=k /XY/, т.e. X"Y" = kXY. Следовательно, гомотетия есть преобразование подобия. Теорема доказана.

Преобразование подобия широко применяется на практике при выполнении чертежей деталей машин, сооружений, планов местности и др. Эти изображения представляют собой подобные преобразования воображаемых изображений в натуральную величину. Коэффициент подобия при этом называется масштабом. Например, если участок местности изображается в масштабе 1:100, то это значит, что одному сантиметру на плане соответствует 1 м на местности.

Задача. На рисунке 4 изображен план усадьбы в масштабе 1:1000. Определите размеры усадьбы (длину и ширину).

Решение. Длина и ширина усадьбы на плане равны - 4 см и 2,7 см. Так как план выполнен в масштабе 1:1000, то размеры усадьбы равны соответственно 2,7 х1000 см = 27 м, 4х100 см = 40 м.

СВОЙСТВА ПРЕОБРАЗОВАНИЯ ПОДОБИЯ

Так же как и для движения, доказывается, что при преобразовании подобия три точки А, В, С, лежащие на одной прямой, переходят в три точки А 1 , В 1 , С 1 , также лежащие на одной прямой. Причем если точка В лежит между точками А и С, то точка В 1 лежит между точками А 1 и С 1 . Отсюда следует, что преобразование подобия переводит прямые в прямые, полупрямые в полупрямые, отрезки в отрезки.

Докажем, что преобразование подобия сохраняет углы между полупрямыми.

Действительно, пусть угол ABC преобразованием подобия с коэффициентом k переводится в угол А 1 В 1 С 1 (рис. 5). Подвергнем угол ABC преобразованию гомотетии относительно его вершины В с коэффициентом гомотетии k. При этом точки А и С перейдут в точки А 2 и С 2 . Треугольники А 2 ВС 2 и А 1 В 1 С 1 равны по третьему признаку. Из равенства треугольников следует равенство углов А 2 ВС 2 и А 1 В 1 С 1 . Значит, углы ABC и А 1 В 1 С 1 равны, что и требовалось доказать.

Малоязовская башкирская гимназия

Геометрия Реферат

“Преобразования фигур”

Выполнил: ученик 10 Б класса

Халиуллин А.Н.

Проверила: Исрафилова Р.Х.

Малояз 2003 год

I. Преобразование.

II. Виды преобразований

1. Гомотетия

2. Подобие

3. Движение

III. Виды движения

1. Симметрия относительно точки

2. Симметрия относительно прямой

3. Симметрия относительно плоскости

4. Поворот

5. Параллельный перенос в пространстве

I. Преобразование - смещение каждой точки данной фигуры каким-нибудь образом, и получение новой фигуры.

II. Виды преобразования в пространстве: подобие, гомотетия, движение.

Подобие Преобразование фигуры F называется преобразованием подобия, если при этом преобразовании расстояния между точками изменяются в одно и то же число раз, т.е. для любых точек X и Y фигуры F и точек X’, Y’ фигуры F’, в которые он переходят, X’Y’ = k * XY.

Свойства подобия: 1. Подобие переводит прямые в прямые, полупрямые – в полупрямые, отрезки – в отрезки.

2. Подобие сохраняет углы между полупрямыми

3. Подобие переводит плоскости в плоскости.

Две фигуры называются подобными, если они переводятся одна в другую преобразованием подобия.

Гомотетия

Гомотетия – простейшее преобразование относительно центра O с коэффициентом гомотетии k. Это преобразование, которое переводит произвольную точку X’ луча OX, такую, что OX’ = k*OX.

Свойство гомотетии: 1. Преобразованием гомотетии переводит любую плоскость, не проходящую через центр гомотетии, в параллельную плоскость (или в себя при k=1).

Доказательство. Действительно, пусть O – центр гомотетии и a - любая плоскость, не проходящая через точку O. Возьмем любую прямую AB в плоскости a. Преобразование гомотетии переводит точку A в точку A’ на луче OA, а точку B в точку B’ на луче OB, причем OA’/OA = k, OB’/OB = k, где k – коэффициент гомотетии. Отсюда следует подобие треугольников AOB и A’OB’. Из подобия треугольников следует равенство соответственных углов OAB и OA’B’, а значит, параллельность прямых AB и A’B’. Возьмем теперь другую прямую AC в плоскости a. Она при гомотетии перейдет а параллельную прямую A’C’. При рассматриваемой гомотетии плоскость aперейдет в плоскость a’, проходящую через прямые A’B’, A’C’. Так как A’B’||AB и A’C’||AC, то по теореме о двух пересекающихся прямых одной плоскости соответственно параллельными с пересекающимися прямыми другой плоскости, плоскости a и a’ параллельны, что и требовалось доказать.

Движение

Движением - преобразование одной фигуры в другую если оно сохраняет расстояние между точками, т.е. переводит любые две точки X и Y одной фигуры в точки X , Y другой фигуры так, что XY = X Y

Свойства движения: 1. Точки, лежащие на прямой, при движении переходят в точки, лежащие на прямой, и сохраняется порядок их взаимного расположения. Это значит, что если A, B, C, лежащие на прямой, переходят в точки A 1 ,B 1 ,C 1 . То эти точки также лежат на прямой; если точка B лежит между точками A и C, то точка B 1 лежит между точками A 1 и C 1.

Доказательство. Пусть точка B прямой AC лежит между точками A и C. Докажем, что точки A 1 ,B 1 ,C 1 лежат на одной прямой.

Если точка A 1 ,B 1 ,C 1 не лежат на прямой, то они являются вершинами треугольника. Поэтому A 1 C 1 < A 1 B 1 + B 1 C 1 . По определению движения отсюда следует, что AC

Мы пришли к противоречию. Значит, точка B 1 лежит на прямой A 1 C 1 . Первое утверждение теоремы доказано.

Покажем теперь, что точка B 1 лежит между A 1 и C 1 . Допустим, что точка A 1 лежит между точками B 1 и C 1 . Тогда A 1 B 1 + A 1 C 1 = B 1 C 1 , и, следовательно, AB+AC=BC. Но это противоречит неравенству AB+BC=AC. Таким образом, точка A 1 не может лежать между точками B 1 и C 1 .

Аналогично доказываем, что точка C 1 не может лежать между точками A 1 и B 1 .

Так как из трех точек A 1 ,B 1 ,C 1 одна лежит между двумя другими, то этой точкой может быть только B 1 . Теорема доказана полностью.

2. При движении прямые переходят в прямые, полупрямые – в полупрямые, отрезки – в отрезки

3. При движении сохраняются углы между полупрямыми.

Доказательство. Пусть AB и AC – две полупрямые, исходящие из точки A, не лежащие на оной прямой. При движении эти полупрямые переходят в некоторые полупрямые A 1 B 1 и A 1 C 1 . Так как движение сохраняет расстояние, то треугольники ABC и A 1 B 1 C 1 равны по третьему признаку равенства треугольников. Из равенства треугольников следует равенство углов BAC и B 1 A 1 C 1 , что и требовалось доказать.


С2. Треугольники А2ВС2 и А1В1С1 равны по третьему признаку. Из равенства треугольников следует равенство углов А2ВС2 и А1В1С1. Значит, углы ABC и А1В1С1 равны, что и требовалось доказать. 3. ПОДОБИЕ ФИГУР Две фигуры называются подобными, если они переводятся друг в друга преобразованием подобия. Для обозначения подобия фигур используется специальный значок: ∞. Запись F∞F" читается...

Медианы треугольников; 4. , где BH и B1H1 высоты треугольников. §5. Опытная работа Цель опытной работы: выявление методических особенностей изучения темы «Подобные треугольники» в средней школе. Идея: для выявления методических особенностей необходимо провести несколько уроков по разработанной методики, в конце обучения провести контрольную работу, при анализе которой можно судить о...

Различия между испытуемыми контрольной и экспериментальной групп послужили основанием для проведения целенаправленной педагогической работы по развитию представлений детей экспериментальной группы о форме предметов. 2.2 Использование задач-головоломок в развитие представлений о форме предметов у детей экспериментальной группы Представления детей о форме предметов имеет большое значение при...