Двигатель искривления. Варп-двигатель: разработка и испытания

Существует большое количество случаев, когда самым удобным методом нахождения напряженности поля считается решение дифференциального уравнения для потенциала. После его получения применим в качестве основы теорему Остроградского-Гаусса в дифференциальной форме:

где ρ является плотностью распределения заряда, ε 0 - электрической постоянной, d i v E → = ∇ → E → = ∂ E x ∂ x + ∂ E y ∂ y + ∂ E z ∂ z - дивергенцией вектора напряженности и выражением, связывающим напряженность поля и потенциал.

Произведем подстановку (2) в (1) :

Учитывая, что d i v g r a d φ = ∇ 2 φ = ∂ 2 φ ∂ x 2 + ∂ 2 φ ∂ y 2 + ∂ 2 φ ∂ z 2 , где ∆ = ∇ 2 - это оператор Лапласа, равенство (3) принимает вид:

Выражение (4) получило название уравнения Пуассона для вакуума. При отсутствующих зарядах запишется как уравнение Лапласа:

После нахождения потенциала переходим к вычислению напряженности, используя (2) . Решения уравнения Пуассона должны удовлетворять требованиям:

  • значение потенциала как непрерывная функция;
  • потенциал должен быть конечной функцией;
  • производные потенциала как функции по координатам должны быть конечными.

При наличии сосредоточенных зарядов в объеме V , решение уравнения (4) будет выражаться для потенциала вида:

Определение 1

Общая задача электростатики сводится к нахождению решения дифференциального уравнения, то есть уравнения Пуассона, удовлетворяющего вышеперечисленным требованиям. Теоретические вычисления известны для небольшого количества частных случаев. Если возможно подобрать функцию φ , удовлетворяющую условиям, то она является единственным решением.

В таких задачах не всегда необходимо задавать заряды или потенциалы во всем пространстве. Для нахождения электрического поля в полости, окруженной проводящей оболочкой, достаточно вычислить поле тел, находящихся внутри нее.

Любое решение уравнения Пуассона ограниченной области может быть определено краевыми условиями, накладывающимися на поведение решения. Границы перехода из одной среды в другую имеют условия, которые должны быть выполнены:

E 2 n - E 1 n = 4 π σ , или ∂ φ 1 ∂ n - ∂ φ 2 ∂ n = 0 .

E 1 τ = E 2 τ .

где σ - это поверхностная полость свободных зарядов, n – единичный вектор нормали к границе раздела, проведенный из среды 1 в 2 , τ - единичный вектор, касательный к границе.

Эти уравнения выражают скачок нормальных составляющих вектора напряженности и непрерывность касательной вектора напряженностей электрического поля при переходе через любую заряженную поверхность независимо от ее формы и наличия или отсутствия зарядов вне ее.

Уравнение Пуассона в сферических, полярных и цилиндрических координатах

Запись уравнения может быть как при помощи декартовых координат, также и сферических, цилиндрических, полярных.

При наличии сферических r , θ , υ уравнение Пуассона запишется как:

1 r 2 · ∂ ∂ r r 2 ∂ φ ∂ r + 1 r 2 sin θ ∂ θ sin θ · ∂ φ ∂ θ + ∂ 2 φ r 2 sin 2 θ ∂ φ 2 = - 1 ε 0 ρ .

В полярных r , θ:

1 r · ∂ ∂ r r ∂ φ ∂ r + ∂ 2 φ r 2 ∂ θ 2 = - 1 ε 0 ρ .

В цилиндрических r , υ , z:

1 r · ∂ ∂ r r ∂ φ ∂ r + ∂ 2 φ ∂ z 2 + ∂ 2 φ r 2 ∂ υ 2 = - 1 ε 0 ρ .

Пример 1

Найти поле между коаксиальными цилиндрами с радиусами r 1 и r 2 и с имеющейся разностью потенциалов ∆ U = φ 1 - φ 2 .

Рисунок 1

Решение

Необходимо зафиксировать уравнение Лапласа с цилиндрическими координатами, учитывая аксиальную симметрию:

1 r · ∂ ∂ r r ∂ φ ∂ r = 0 .

Решение имеет вид φ = - A ln (r) + B . Для этого следует выбрать нулевой потенциал на нужном цилиндре, тогда:

φ (r 2) = 0 = - A ln r 2 + B , следовательно

φ (r 1) = ∆ U = - A ln r 1 + B , получим:

A = ∆ U ln r 2 r 1 .

После преобразования:

φ (r) = - ∆ U ln r 2 r 1 ln (r) + ∆ U ln r 2 r 1 ln r 2 .

Ответ: поле с двумя коаксиальными цилиндрами может быть задано при помощи функции φ (r) = - ∆ U ln r 2 r 1 ln (r) + ∆ U ln r 2 r 1 ln r 2 .

Пример 2

Найти потенциал поля, которое создает бесконечно круглый цилиндр с радиусом R и объемной плотностью заряда ρ . Использовать уравнение Пуассона.

Решение

Необходимо направить ось Z по оси цилиндра. Видно, что цилиндрическое распределение заряда аксиально симметрично, потенциал имеет такую же симметрию, иначе говоря, считается функцией φ (r) с r , являющимся расстоянием от оси цилиндра. Для решения используется цилиндрическая система координат. Уравнение Пуассона в ней запишется как:

φ 2 = C 2 ln r + C " 2 .

C 1 , C " 1 , C 2 , C " 2 - это постоянные интегрирования. Имеем, что потенциал во всех точках должен быть конечным, а l i m r → 0 ln r = ∞ . Отсюда следует, что C 1 = 0 . Далее необходимо пронормировать потенциал, задействовав условие φ 1 (0) = 0 . Получим C " 1 = 0 .

Поверхностные заряды отсутствуют, поэтому напряженность электрического поля на поверхности шара является непрерывной. Следовательно, что и производная от потенциала также непрерывна при r = R , как и сам потенциал. Исходя из условий, можно найти C 2 , C " 2:

C 2 ln R + C " 2 = - 1 4 ρ ε 0 R 2 .

C 2 R = - 1 2 ρ ε 0 R .

Значит, полученные выражения записываются как:

Ответ: потенциал поля равняется:

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Уравнение (10.2) устанавливает связь между потенциалом электростатического поля и напряженностью этого поля. Из этого уравнения можно получить соотношение между потенциалом и плотностью заряда. Для этого нужно образовать дивергенцию обеих частей этого уравнения и воспользоваться затем формулой (6.5):

Согласно правилам векторного анализа [см. уравнение (40]

так что уравнение (11.1) может быть записано так:

Это дифференциальное уравнение носит название уравнения Пуассона. В тех участках поля, где нет электрических зарядов

Уравнение это обращается в следующее:

Этот частный вид уравнения Пуассона носит название уравнения Лапласа.

Уравнение Пуассона дает возможность определить потенциал поля объемных зарядов, если известно расположение этих зарядов. Решение (интеграл) этого дифференциального уравнения (при определенных граничных условиях) должно, очевидно, совпадать с выведенной нами ранее формулой (8.8):

В дальнейшем мы докажем это непосредственным вычислением. Пока же отметим, что для решения некоторых задач удобнее исходить не из интеграла (8.8), а непосредственно из дифференциального уравнения (11.3).

Пример. Определить плотность термоионного тока между двумя бесконечными плоскими электродами в вакууме. Пример этот на применение уравнения Пуассона взят не из электростатики, а из учения о токе и имеет большое значение для теории катодных (усилительных) ламп.

Известно, что накаленные металлы испускают со своей поверхности в окружающее пространство поток свободных электронов. Если к двум металлическим электродам приложить определенную разность потенциалов и раскалить отрицательный электрод (катод), то непрерывно испускаемые накаленным катодом электроны будут притягиваться к поверхности положительного электрода (анода). Поток электронов, движущихся от катода к аноду, эквивалентен электрическому току. Ток этот называется термоионным.

Выберем оси декартовых координат так, чтобы начало их находилось на катоде, а ось х была перпендикулярна плоскости электродов и направлена к аноду. Примем потенциал катода равным нулю, а потенциал анода равным Из соображений симметрии явствует, что эквипотенциальные поверхности параллельны электродам, поэтому и уравнение Пуассона в пространстве между электродами принимает вид

Если обозначить через число электронов, приходящихся на единицу объема в пространстве между электродами на расстоянии х от катода, а через абсолютную величину заряда электрона, то плотность заряда на

этом расстоянии будет:

Предположим для простоты, что испускаемые катодом электроны при выходе из его поверхности не обладают никакой начальной скоростью. На пути от катода к аноду силы электрического поля будут совершать над электронами заряда работу - которая будет, очевидно, переходить в кинетическую энергию движения электронов. Обозначая через скорость электрона на расстоянии х от катода, а через потенциал на том же расстоянии, получим

где 771 - масса электрона. Наконец, плотность электрического тока, т. е. заряд, протекающий за единицу времени через перпендикулярную току (т. е. перпендикулярную оси площадку в равна, очевидно:

ибо есть число электронов, проходящих за единицу времени через эту площадку. В отличие от плотность тока есть величина постоянная, не зависящая от х, ибо по достижении стационарного состояния через любую параллельную электродам плоскость проходит, очевидно, одинаковое число электронов.

Исключим из уравнения (11.5) все неизвестные функции х, кроме Прежде всего

Но из (11.6) следует, что

стало быть,

Вводя обозначение А - получим

Как легко убедиться подстановкой, из решений этого дифференциального уравнения, которое, согласно условию задачи, обращается на катоде в нуль и, кроме того, удовлетворяет условию

Если обозначить расстояние от анода до катода через I, то при потенциал должен обращаться в Стало быть,

Таким образом, плотность термоионного тока не подчиняется закону Ома, а растет пропорционально степени 3/2 приложенного к электродам напряжения и обратно пропорционально квадрату расстояния между ними. Это отличие законов термоионного тока от законов тока в металлах обусловливается двоякого рода причинами. Во-первых, электроны в металлах соударяются с положительными ионами, образующими твердый скелет металла, и испытывают благодаря этому сопротивление своему движению, отсутствующее при движении в вакууме 1). Во-вторых, при термоионном токе в пространстве между электродами находятся лишь свободные электроны, заряд которых не компенсируется зарядом положительных ионов, как это имеет место в металлах, вследствие чего поле этого так называемого «пространственного заряда» искажает поле электродов.

Отметим, что формула (11.9) перестает быть справедливой при больших плотностях тока 2). При повышении потенциала анода наступает момент, когда все выделяемые катодом электроны немедленно же увлекаются к аноду. Дальнейшее повышение потенциала анода не может, очевидно, повести к увеличению плотности тока, которая, таким образом, достигает постоянного значения (ток насыщения).

Задача 10. Пусть означает расстояние данной точки пространства от некоторой произвольно выбранной начальной точки Показать, что скаляр

удовлетворяет уравнению Лапласа

Точка не рассматривается.

Задача 11. Бесконечная плоская пластина толщиной 2а равномерно заряжена электричеством с объемной плотностью Ось х перпендикулярна пластине, начало координат расположено в срединной плоскости, равноотстоящей от обеих поверхностей пластины. Показать, что потенциал поля внутри и вне пластины равен соответственно:

а вектор направлен вдоль оси х от срединной плоскости и численно равен:

Сравнить этот случай с предельным случаем бесконечной заряженной плоскости (§ 4).

Задача 12. Найти потенциал поля шара, равномерно заряженного по своему объему [формула (8.12)], исходя из уравнения Пуассона в сферических координатах.

Я хотел бы в познавательных целях рассказать об уравнениях, которые применялись при выводе уравнения Дебая-Хюккеля. Это уравнение Пуассона и распределение Больцмана.

Уравнение Пуассона

Мы выяснили, что плазма квазинейтральна в равновесном состоянии и что под действием электрического поля от движущихся зарядов, заряженные частицы смещаются на дебаевскую длину и поле в пределах этой длины затухает. В электростатике взаимодействие заряженных частиц описывается кулоновским уравнением:

Где – величины взаимодействующих точечных зарядов, – квадрат расстояния между зарядами. Коэффициент k является константой. Если мы используем систему в электростатических единицах СГС, обозначаемых СГСЭq, то k = 1. Если используется система СИ, то , где – диэлектрическая проницаемость среды, в которой расположены заряды, – электрическая постоянная, равная 8,86 ∙ .

В физике непосредственно силой не пользуются, а вводят понятие электростатического поля распределённых зарядов и измеряют поле величиной напряженности электрического поля . Для этого в каждую точку поля мысленно помещают единичный пробный заряд и измеряют силу, с которой поле зарядов действует на пробный заряд:


Отсюда, если подставить в это уравнение силу Кулона, то получим:
Но и этим физики не ограничиваются, для того чтобы описать полноценно электрическое поле. Рассмотрим единичный заряд, помещённый в электростатическое поле. Поле выполняет работу по перемещению этого заряда на элементарное расстояние ds из точки P1 в точку P2:
Величину называют разностью потенциалов или напряжением. Напряжение измеряется в Вольтах. Знак минус говорит нам о том, что само поле выполняет работу для переноса единицы положительного заряда. Силы, перемещающие заряды являются консервативными, так как работа по замкнутому пути равна всегда нулю, независимо от того, по какому пути перемещается заряд.

Отсюда следует глубокий смысл разности потенциалов. Если зафиксировать точку Р1 и перемещать заряд в переменную точку Р2, то работа зависит только от положения второй точки Р2. Таким образом мы можем ввести понятие потенциала. Потенциал – это силовая функция, показывающая какую необходимо выполнить работу полю, чтобы переместить заряд из бесконечности в данную точку P2, где условно принимают потенциал в бесконечности равным нулю.

Чтобы понять уравнение Пуассона, необходимо разбираться в «особой» векторной математике. Я вкратце расскажу про такие понятия как градиент поля и дивергенции (подразумевается, что читатель знаком с математическим анализом)
Пусть f(x,y,z) является некоторой непрерывной дифференцируемой функцией координат. Зная её частные производные в каждой точке пространства можно построить вектор, компоненты которого x, y, z равны соответствующим частным производным:


где – единичные векторы соответствующих осей x, y, z. Значок читается «набла» и является дифференциальным оператором
Этот оператор ввёл в математику Гамильтон. С набла можно выполнять обычные математические операции, такие как обычное произведение, скалярное произведение, векторное произведение и так далее.

Теперь вернёмся к электростатическому полю E. С одной стороны изменение потенциала при переходе из одной точки в другую имеет следующий вид:


С другой стороны, согласно формуле (*)
Применяя только что введённое понятие градиент, эта формула преобразуется в:
Теперь разберёмся с таким понятием, как дивергенция поля. Рассмотрим конечный замкнутый объем V произвольной формы (см. рис. ниже). Обозначим площадь этой поверхности S. Полный поток вектора F, выходящего из этого объема по определению равно
, где da является бесконечно малым вектором, величина которого равна площади малого элемента поверхности S, а направление совпадает с наружной нормалью к этому элементу.
Возьмём этот поток вектора F поделим на объём и найдём предел при стремящейся к нулю, т.е. будем стягивать объём в бесконечно малую точку.


Мы подошли к понятию дивергенции. Обозначается дивергенция символом div и является отношением потока вектора F к объёму V, при V стремящейся к нулю.

Прежде чем показать, как получается уравнение Пуассона, важно знать закон Гаусса и теорему Гаусса. Представим себе сферу, внутри которой находится заряд q. Заряд создаёт вокруг себя электрическое поле напряжённости E. Возьмём поток вектора E


где S площадь нашей сферы равная . Следовательно
Это и есть закон Гаусса, утверждающий, что поток электрического поля E через любую замкнутую поверхность равен произведению на полный заряд, охватываемый поверхностью:
где – плотность объёмного заряда, т.е. величина электрического заряда в единице объёма, и – элементарный объём, выделенный внутри нашего замкнутого объёма.

Теорема Гаусса (полное название теорема Гаусса-Остроградского) чисто математическая теорема о дивергенции. Перепишем полный поток вектора F следующим образом:


В пределе, когда N → ∞, →0 величина в скобках становится дивергенцией и сумма переходит в объёмный интеграл:
Это и есть теорема Гаусса, и является поистине самой важной формулой полевой теории. Применим эту теорему к электростатическому полю. С одной стороны, согласно закону Гаусса
А с другой стороны, согласно теореме Гаусса (только не путайте теорему с законом Гаусса):
Комбинируя два последних уравнения, получим:
Вспомним формулу (**) и подставим сюда вместо E потенциал поля
Дивергенция градиента это новый оператор, который в математике называют оператор Лапласа, или сокращённо лапласиан. Лапласиан обозначается значком набла следующим образом и равен
Перепишем предыдущую формулу в форме лапласиана:
Наконец мы получили уравнение Пуассона. В первой статье это уравнение было немного в другой форме, с учётом диэлектрической проницаемости среды. Вспомните силу Кулона в системе СИ, там константа . Соответственно в законе Гаусса будет не , а коэффициент . Таким образом получаем уравнение Пуассона в форме представленной в предыдущей статье
Таким образом по сути уравнение Пуассона – это закон Кулона (а точнее закон Гаусса) переписанный в другой форме, в обозначениях векторного дифференциального анализа.

В мы разберём важное распределение из математической статистики - распределение Больцмана.

Теги:

  • физика
  • электростатики
Добавить метки