Электротехника электрические измерения и измерительные приборы. Учебное пособие по дисциплине "электротехнические измерения"

ЛЕКЦИЯ № 1

Тема: ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ И ИЗМЕРЕНИЯ ЭЛЕКТРИЧЕСКИХ ВЕЛИЧИН

1. Общие сведения об электроизмерительных приборах

Электроизмерительные приборы предназначены для измерения различных величин и параметров электрической цепи: напряжения, силы тока, мощности, частоты, сопротивления, индуктивности, емкости и других.

На схемах электроизмерительные приборы изображаются условными графическими обозначениями в соответствии с ГОСТ 2.729-68. На рис.1.1 приведены общие обозначения показывающих и регистрирующих приборов.

Рис. 1.1 Условные графические обозначения электроизмерительных приборов.

Для указания назначения электроизмерительного прибора в его общее обозначение вписывают конкретизирующее условное обозначение, установленное в стандартах, или буквенное обозначение единиц измерения прибора согласно ГОСТ в соответствии с табл.1.1.

Таблица 1.1

Наименование

единицы измерения

Условное обозначение

Наименование

единицы измерения

Условное обозначение

Миллиампер

Микроампер

Милливольт

Киловатт

Коэффициент мощности

2. Электромеханические измерительные приборы

По принципу действия электромеханические приборы подразделяются на приборы магнитоэлектрической, электромагнитной, ферродинамической, индукционной, электростатической систем. Условные обозначения систем приведены в табл. 1.2. Наибольшее распространение получили приборы первых трех типов: магнитоэлектрические, электромагнитные, электродинамические.

Таблица 1.2

Тип прибора

Условное обозначение

Род измеряемого тока

Достоинства

Недостатки

электрический

Постоянный

Высокая точность, равномерность шкалы

Неустойчив к перегрузкам

магнитный

Переменный

постоянный

Простота устройства, к перегрузкам устойчив

Низкая точность, чувствителен к помехам

динамический

Переменный

постоянный

Высокая точность

Низкая чувствительность,

чувствителен к помехам

Индукционный

Переменный

Высокая надежность, к перегрузкам устойчив

Низкая точность

3. Области применения электромеханических приборов

Магнитоэлектрические приборы: щитовые и лабораторные амперметры и вольтметры; нулевые индикаторы при измерениях в мостовых и компенсационных цепях.

В промышленных установках переменного тока низкой частоты большинство амперметров и вольтметров - приборы электромагнитной системы. Лабораторные приборы класса 0,5 и точнее могут изготовляться для измерения постоянного и переменного токов и напряжения.

Электродинамические механизмы используются в лабораторных и образцовых, приборах для измерения постоянных и переменных токов, напряжений и мощностей.

Индукционные приборы на базе индукционных механизмов используют главным образом в качестве одно - и трехфазных счетчиков энергии переменного тока. По точности счетчики подразделяются на классы 1,0; 2,0; 2,5. Счетчик СО (счетчик однофазный) используют для учета активной энергии (ватт-часов) в однофазных цепях. Для измерения активной энергии в трехфазных цепях применяют двухэлементные индуктивные счетчики, счетный механизм которых учитывает киловатт-часы. Для учета реактивной энергии служат специальные индуктивные счетчики, имеющие некоторые изменения в устройстве обмоток или в схеме включения.

Активные и реактивные счетчики устанавливают на всех предприятиях для расчета с энергоснабжающими организациями за используемую электроэнергию.

Принцип выбора измерительных приборов

1.Определяют расчетом цепи максимальные значения тока, напряжения и мощности в цепи. Часто значения измеряемых величин известны заранее, например, напряжение сети или аккумуляторной батареи .

2. В зависимости от рода измеряемой величины, постоянного или переменного тока, выбирают систему прибора. Для технических измерений постоянного и переменного тока выбирают соответственно магнитоэлектрическую и электромагнитную системы. При лабораторных и точных измерениях для определения постоянных токов и напряжений применяют магнитоэлектрическую систему, а для переменного тока и напряжения - электродинамическую систему.

3. Выбирают предел измерения прибора таким образом, чтобы
измеряемая величина находилась в последней, третьей части шкалы
прибора.

4. В зависимости от требуемой точности измерения выбирают класс
точности прибора.

4. Способы включения приборов в цепь

Амперметры включают в цепь последовательно с нагрузкой, вольтметры - параллельно, ваттметры и счетчики, как имеющие две обмотки (токовую и напряжения), включают последовательно – параллельно (Рис. 1.2.).

https://pandia.ru/text/78/613/images/image013_9.gif" width="296" height="325">

https://pandia.ru/text/78/613/images/image016_8.gif" width="393" height="313 src=">

Рис. 1.3. Способы расширения пределов измерения приборов.

Цена деления многопредельных амперметров, вольтметров, ваттметров определяется по формуле:

П" в старшем разряде) и изменить полярность входного сигнала при мигании знака "-" в старшем разряде.

Погрешность измерения мультиметра ВР-11 А.

Постоянное напряжение: ±(0,5% Ux +4 зн.).

Переменное напряжение: ±(0,5% Ux + 10 зн.),

где Ux - показание прибора;

зн. - единица младшего разряда.

Достоинства электронных приборов: высокое входное сопротивление, что позволяет проводить измерения без влияния на цепь; широкий диапазон измерений, высокая чувствительность, широкий частотный диапазон, высокая точность измерений.

6. Погрешности измерений и измерительных приборов

Качество средств и результатов измерений принято характеризовать указанием их погрешностей. Разновидностей погрешностей около 30. Определения им даны в литературе по измерениям. Следует иметь в виду, что погрешности средств измерений и погрешности результатов измерений - понятия не идентичные. Исторически часть наименований разновидности погрешностей закрепилась за погрешностями средств измерений, другая за погрешностями результатов измерений, а некоторые применяются по отношению и к тем, и к другим.

Способы представления погрешности следующие.

В зависимости от решаемых задач используются несколько способов представления погрешности, чаще всего используются абсолютная, относительная и приведенная.

Абсолютная погрешность измеряется в тех же единицах что и измеряемая величина. Характеризует величину возможного отклонения истинного значения измеряемой величины от измеренного.

Относительная погрешность – отношение абсолютной погрешности к значению величины. Если мы хотим определить погрешность на всем интервале измерений, мы должны найти максимальное значение отношения на интервале. Измеряется в безразмерных единицах.

Класс точности относительная погрешность, выраженная в процентах. Обычно значения класса точности выбираются из ряда: 0,1; 0,5: 1,0; 1,5; 2,0; 2,5 и т. д.

Понятия абсолютной и относительной погрешностей применяют и к измерениям, и к средствам измерения, а приведенная погрешность оценивает только точность средств измерения.

Абсолютная погрешность измерения - это разность между измеренным значением х и ее истинным значением хи:

Обычно истинное значение измеряемой величины неизвестно, и вместо него в (1.1) подставляют значение величины, измеряемой более точным прибором, т. е. имеющим меньшую погрешность, чем прибор, дающий значение х. Абсолютная погрешность выражается в единицах измеряемой величины. Формулой (1.1) пользуются при поверке измерительных приборов.

Относительная погрешность https://pandia.ru/text/78/613/images/image020_7.gif" width="99" height="45"> (1.2)

По относительной погрешности измерения проводят оценку точности измерения.

Приведенная погрешность измерительного прибора определяется как отношение абсолютной погрешности к нормирующему значению xn и выражается в процентах:

(1.3)

Нормирующее значение обычно принимают равным верхнему пределу рабочей части шкалы, у которой нулевая отметка находится на краю шкалы.

Приведенная погрешность определяет точность измерительного прибора, не зависит от измеряемой величины и имеет единственное значение для данного прибора. Из (1..gif" width="15" height="19 src="> тем больше, чем меньше измеряемая величина х по отношению к пределу измерения прибора хN.

Многие измерительные приборы различаются по классам точности. Класс точности прибора G - обобщенная характеристика, которая характеризует точность прибора, но не является непосредственной характеристикой точности измерения, выполняемого с помощью данного прибора.

Класс точности прибора численно равен наибольшей допустимой приведенной основной погрешности, вычисленной в процентах. Для амперметров и вольтметров установлены следующие классы точности: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0; 5,0. Эти числа наносятся на шкалу прибора. Например, класс 1 характеризует гарантированные границы погрешности в процентах (± 1%, например, от конечного значения 100 В, т. е. ±1В) в нормальных условиях эксплуатации.

По международной классификации приборы с классом точности 0,5 и точнее считаются точными или образцовыми, а приборы с классом точности 1,0 и грубее - рабочими. Все приборы подлежат периодической поверке на соответствие метрологических характеристик, в том числе и класса точности, их паспортным значениям. При этом образцовый прибор должен быть точнее поверяемого через класс, а именно: поверка прибора с классом точности 4,0 проводится прибором с классом точности 1,5, а поверка прибора с классом точности 1,0 проводится прибором с классом точности 0,2.

Поскольку на шкале прибора приводится и класс точности прибора G, и предел измерения XN, то абсолютная погрешность прибора определяется из формулы (1.3):

https://pandia.ru/text/78/613/images/image019_7.gif" width="15 height=19" height="19"> с классом точности прибора G выражается формулой:

откуда следует, что относительная погрешность измерения равна классу точности прибора только при измерении предельной величины на шкале, т. е. когда х = XN. С уменьшением измеряемой величины относительная погрешность возрастает. Во сколько раз XN > х, во столька раз > G. Поэтому рекомендуется выбирать пределы измерения показывающего прибора так, чтобы отсчитывать показания в пределах последней трети шкалы, ближе к ее концу.

7. Представление результата измерений при однократных измерениях

Результат измерения состоит из оценки измеряемой величины и погрешности измерения, характеризующей точность измерения. По ГОСТ 8.011-72 результат измерения представляют в форме:

где А - результат измерения;

Абсолютная погрешность прибора;

Р - вероятность, при статистической обработке данных.

При этом А и https://pandia.ru/text/78/613/images/image023_5.gif" width="15" height="17"> не должна иметь более двух значащих цифр.

При изучении электротехники приходится иметь дело с электрическим, магнитными и механическими величинами и измерять эти величины.

Измерить электрическую, магнитную или какую-либо иную величину - это значит сравнить ее с другой однородной величиной, принятой за единицу.

В этой статье рассмотрена классификация измерений, наиболее важная для . К такой классификации можно отнести классификацию измерений с методологической точки зрения, т. е. в зависимости от общих приемов получения результатов измерений (виды или классы измерений), классификацию измерений в зависимости от использования принципов и средств измерений (методы измерений) и классификацию измерений в зависимости от динамики измеряемых величин.

Виды электрических измерений

В зависимости от общих приемов получения результата измерения делятся на следующие виды: прямые, косвенные и совместные.

К прямым измерениям относятся те, результат которых получается непосредственно из опытных данных. Прямое измерение условно можно выразить формулой Y = Х, где Y - искомое значение измеряемой величины; X -значение, непосредственно получаемое из опытных данных. К этому виду измерений относятся измерения различных физических величин при помощи приборов, градуированных в установленных единицах.

Например, измерения силы тока амперметром, температуры - термометром и т. д. К этому виду измерений относятся и измерения, при которых искомое значение величины определяется непосредственным сравнением ее с мерой. Применяемые средства и простота (или сложность) эксперимента при отнесении измерения к прямому не учитываются.

Косвенным называется такое измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. При косвенных измерениях числовое значение измеряемой величины определяется путем вычисления по формуле Y = F(Xl, Х2 ... Хn ), где Y - искомое значение измеряемой величины; Х1 , Х2, Хn - значения измеренных величин. В качестве примера косвенных измерений можно указать на измерение мощности в цепях постоянного тока амперметром и вольтметром.

Совместными измерениями называются такие, при которых искомые значения разноименных величин определяются путем решения системы уравнений, связывающих значения искомых величин с непосредственно измеренными величинами. В качестве примера совместных измерений можно привести определение коэффициентов в формуле, связывающей сопротивление резистора с его температурой: Rt = R20

Методы электрических измерений

В зависимости от совокупности приемов использования принципов и средств измерений все методы делятся на метод непосредственной оценки и методы сравнения.

Сущность метода непосредственной оценки заключается в том, что о значении измеряемой величины судят по показанию одного (прямые измерения) или нескольких (косвенные измерения) приборов, заранее проградуированных в единицах измеряемой величины или в единицах других величин, от которых зависит измеряемая величина.

Простейшим примером метода непосредственной оценки может служить измерение какой-либо величины одним прибором, шкала которого проградуирована в соответствующих единицах.

Вторая большая группа методов электрических измерений объединена под общим названием методов сравнения . К ним относятся все те методы электрических измерений, при которых измеряемая величина сравнивается с величиной, воспроизводимой мерой. Таким образом, отличительной чертой методов сравнения является непосредственное участие мер в процессе измерения.

Методы сравнения делятся на следующие: нулевой, дифференциальный, замещения и совпадения.

Нулевой метод - это метод сравнения измеряемой величины с мерой, при котором результирующий эффект воздействия величин на индикатор доводится до нуля. Таким образом, при достижении равновесия наблюдается исчезновение определенного явления, например тока в участке цепи или напряжения на нем, что может быть зафиксировано при помощи служащих для этой цели приборов - нуль-индикаторов. Вследствие высокой чувствительности нуль-индикаторов, а также потому, что меры могут быть выполнены с большой точностью, получается и большая точность измерений.

Примером применения нулевого метода может быть измерение электрического сопротивления мостом с полным его уравновешиванием.

При дифференциальном методе , так же как и при нулевом, измеряемая величина сравнивается непосредственно или косвенно с мерой, а о значении измеряемой величины в результате сравнения судят по разности одновременно производимых этими величинами эффектов и по известной величине, воспроизводимой мерой. Таким образом, в дифференциальном методе происходит неполное уравновешивание измеряемой величины, и в этом заключается отличие дифференциального метода от нулевого.

Дифференциальный метод сочетает в себе часть признаков метода непосредственной оценки и часть признаков нулевого метода. Он может дать весьма точный результат измерения, если только измеряемая величина и мера мало отличаются друг от друга.

Например, если разность этих двух величин равна 1 % и измеряется с погрешностью до 1 %, то тем самым погрешность измерения искомой величины уменьшается до 0,01%, если не учитывать погрешности меры. Примером применения дифференциального метода может служить измерение вольтметром разности двух напряжений, из которых одно известно с большой точностью, а другое является искомой величиной.

Метод замещения заключается в поочередном измерении искомой величины прибором и измерении этим же прибором меры, воспроизводящей однородную с измеряемой величину. По результатам двух измерений может быть вычислена искомая величина. Вследствие того что оба измерения делаются одним и тем же прибором в одинаковых внешних условиях, а искомая величина определяется по отношению показаний прибора, в значительной мере уменьшается погрешность результата измерения. Так как погрешность прибора обычно неодинакова в различных точках шкалы, наибольшая точность измерения получается при одинаковых показаниях прибора.

Примером применения метода замещения может быть измерение сравнительно большого путем поочередного измерения силы тока, протекающего через контролируемый резистор и образцовый. Питание цепи при измерениях должно производиться от одного и того же источника тока. Сопротивление источника тока и прибора, измеряющего ток, должно быть очень мало по сравнению с изменяемым и образцовым сопротивлениями.

Метод совпадений - это такой метод, при котором разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют, используя совпадение отметок шкал или периодических сигналов. Этот метод широко применяется в практике неэлектрических измерений.

Примером может служить измерение длины . В электрических измерениях в качестве примера можно привести измерение частоты вращения тела стробоскопом.

Укажем еще классификацию измерений по признаку изменения во времени измеряемой величины . В зависимости от того, изменяется ли измеряемая величина во времени или остается в процессе измерения неизменной, различаются статические и динамические измерения. Статическими называются измерения постоянных или установившихся значений. К ним относятся и измерения действующих и амплитудных значений величин, но в установившемся режиме.

Если измеряются мгновенные значения изменяющихся во времени величин, то измерения называются динамическими . Если при динамических измерениях средства измерений позволяют непрерывно следить за значениями измеряемой величины, такие измерения называются непрерывными.

Можно осуществить измерения какой-либо величины путем измерений ее значений в некоторые моменты времени t1 , t2 и т. д. В результате окажутся известными не все значения измеряемой величины, а лишь значения в выбранные моменты времени. Такие измерения называются дискретными .

Электроизмерительные приборы предназначены для измерения параметров, характеризующих: 1) процессы в электрических системах: токов, напряжений, мощностей, электрической энергии, частот, сдвигов фаз. Для этого используются амперметры, вольтметры, ваттметры, частотомеры, фазомеры; счетчики электрической...
()
  • и метод сравнения.
    (ОБЩАЯ ЭЛЕКТРОТЕХНИКА)
  • Мерами
  • Основные сведения о средствах электрических измерений и электроизмерительных приборах
    К средствам электрических измерений относятся: меры, электроизмерительные приборы, измерительные преобразователи, электроизмерительные установки и измерительные информационные системы. Мерами называют средства измерений, предназначенные для воспроизведения физической величины заданного размера....
    (АВТОМАТИЗАЦИЯ УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ БУРЕНИЯ НЕФТЕГАЗОВЫХ СКВАЖИН)
  • А. Электрические измерения
    Развитие науки и техники неразрывно связаны с измерениями. Д. И. Менделеев писал: «Наука начинается с тех пор, как начинают измерять, точная наука немыслима без меры». У. Т. Кельвин говорил: «Каждая вещь известна лишь в той степени, в какой ее можно измерить». Совершенно естественно, что электротехника...
    (ТЕОРИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ)
  • Электрические измерения, классификация средств измерений
    Измерение - нахождение значений физических величин опытным путем с помощью специальных средств, называемых средствами измерений, и выражение этих значений в принятых единицах Фридман А. Э. Теория метрологической надежности средств измерений // Фундаментальные проблемы теории точности. СПб.: Наука,...
    (ТЕОРЕТИЧЕСКАЯ ИННОВАТИКА)
  • Основные методы электрических измерений. Погрешности измерительных приборов
    Существует два основных метода электрических измерений: метод непосредственной оценки и метод сравнения. В методе непосредственной оценки измеряемая величина отсчитывается непосредственно по шкале прибора. При этом шкала измерительного прибора предварительно градуируется по эталонному прибору...
    (ОБЩАЯ ЭЛЕКТРОТЕХНИКА)
  • Объектами электрических измерений являются все электрические и магнитные величины: ток, напряжение, мощность, энергия, магнитный поток и т. д. Определение значений этих величин необходимо для оценки работы всех электротехнических устройств, чем и определяется исключительная важность измерений в электротехнике.

    Электроизмерительные устройства широко применяются и для измерения неэлектрических величин (температуры, давления и т. д.), которые для этой цели преобразуются в пропорциональные им. электрические величины. Такие методы измерений известны под общим названием электрических измерений неэлектрических величин. Применение электрических методов измерений дает возможность относительно просто передавать показания приборов на дальние расстояния (телеизмерение), управлять машинами и аппаратами (автоматическое регулирование), выполнять автоматически математические операции над измеряемыми величинами, просто записывать (например, на ленту) ход контролируемых процессов и т. д. Таким образом, электрические измерения необходимы при автоматизации самых различных производственных процессов.

    В Советском Союзе развитие электроприборостроения идет параллельно с развитием электрификации страны и особенно быстро после Великой Отечественной войны. Высокое качество аппаратуры и необходимая точность измерительных приборов, находящихся в эксплуатации, гарантируются государственным надзором за всеми мерами и измерительными приборами.

    12.2 Меры, измерительные приборы и методы измерения

    Измерение любой физической величины заключается в ее сравнении посредством физического эксперимента с принятым за единицу значением соответствующей физической величины. В общем случае для такого сопоставления измеряемой величины с мерой - вещественным воспроизведением единицы измерения - нужен прибор сравнения. Например, образцовая катушка сопротивления применяется как мера сопротивления совместно с прибором сравнения - измерительным мостом.

    Измерение существенно упрощается, если есть прибор непосредственного отсчета (называемый также показывающим прибором), показывающий численное значение измеряемой величины непосредственно на шкале или циферблате. Примерами могут служить амперметр, вольтметр, ваттметр, счетчик электрической энергии. При измерении таким прибором мера (например, образцовая катушка сопротивления) не нужна, но мера была нужна при градуировании шкалы этого прибора. Как правило, у приборов сравнения выше точность и чувствительность, но измерение приборами непосредственного отсчета проще, быстрее и дешевле.

    В зависимости от того, как получаются результаты измерения, различают измерения прямые, косвенные и совокупные.

    Если результат измерения непосредственно дает искомое значение исследуемой величины, то такое измерение принадлежит к числу прямых, например измерение тока амперметром.

    Если измеряемую величину приходится определять на основании прямых измерений других физических величин, с которыми измеряемая величина связана определенной зависимостью, то измерение относится к косвенным. Например, косвенным будет измерение, сопротивления элемента электрической цепи при измерении напряжения вольтметром и тока амперметром.

    Следует иметь в виду, что при косвенном измерении возможно существенное снижение точности по сравнению с точностью при прямом измерении из-за сложения погрешностей прямых измерений величин, входящих в расчетные уравнения.

    В ряде случаев конечный результат измерения выводился из результатов нескольких групп прямых или косвенных измерений отдельных величин, причем исследуемая величина зависит от измеренных величин. Такое измерение называют совокупным. Например, к совокупным измерениям относится определение температурного коэффициента электрического сопротивления материала на основании измерения сопротивления материала при различных температурах. Совокупные измерения характерны для лабораторных исследований.

    В зависимости от способа применения приборов и мер принято различать следующие основные методы измерения: непосредственного измерения, нулевой и дифференциальный.

    При пользовании методом непосредственного измерения (или непосредственного отсчета) измеряемая величина определяется путем

    непосредственного отсчета показания измерительного прибора или непосредственного сравнения с мерой данной физической величины (измерение тока амперметром, измерение длины метром). В этом случае верхним пределом точности измерения является точность измерительного показывающего прибора, которая не может быть очень высокой.

    При измерении нулевым методом образцовая (известная) величина (или эффект ее действия) регулируется и значение ее доводится до равенства со значением измеряемой величины (или эффектом ее действия). При помощи измерительного прибора в этом случае лишь добиваются равенства. Прибор должен быть высокой чувствительности, и он именуется нулевым прибором или нуль-индикатором. В качестве нулевых приборов при постоянном токе обычно применяются магнитоэлектрические гальванометры (см. § 12.7), а при переменном токе - электронные нуль-индикаторы. Точность измерения нулевым методом очень высока и в основном определяется точностью образцовых мер и чувствительностью нулевых приборов. Среди нулевых методов электрических измерений важнейшими являются мостовые и компенсационные.

    Еще большая точность может быть достигнута при дифференциальных методах измерения. В этих случаях измеряемая величина уравновешивается известной величиной, но до полного равновесия измерительная цепь не доводится, а путем прямого отсчета измеряется разность измеряемой и известной величин. Дифференциальные методы применяются для сравнения двух величин, значения которых мало отличаются один от другого.

    В системах электроснабжения измеряют ток (I) , напряжение (U) , активную и реактивную мощности (Р , Q ), электроэнергию (P h , Q h или W a , W p ), активное, реактивное и полное сопротивление (R , X , Z ), частоту (f) , коэффициент мощности (cosφ); при энергоснабжении измеряют температуру (G) , давление (p) , расход энергоносителя (G) , тепловую энергию (Е) , перемещение (X) и др.


    В условиях эксплуатации обычно используют методы непосредственной оценки для измерения электрических величин и нулевой - для неэлектрических.


    Электрические величины определяют электроизмерительными приборами, представляющими собой устройство (прибор), предназначенное для измерения, например, напряжения, тока, сопротивления, мощности и т. д.


    По принципу действия и конструктивным особенностям приборы бывают: магнитоэлектрические, электромагнитные, электродинамические, ферродинамические, индукционные, вибрационные и др. Электроизмерительные приборы классифицируются также по степени защищенности измерительного механизма от влияния внешних магнитных и электрических полей на точность его показаний, способу создания противодействующего момента, характеру шкалы, конструкции отсчетного устройства, положению нулевой отметки на шкале и другим признакам.


    На шкалу электроизмерительных приборов нанесены условные обозначения, определяющие систему прибора, его техническую характеристику.


    Электрическая энергия, вырабатываемая генераторами или потребляемая потребителями, измеряется счетчиками.


    Для определения электрической энергии переменного тока в основном применяют счетчики с измерительным механизмом индукционной системы и электронные. Отклонение результата измерения от истинного значения величины называют погрешностью измерения.


    Точность измерения - это его качество, отражающее близость результатов к истинному значению измеряемой величины. Высокая точность измерений соответствует малой погрешности.


    Погрешность измерительного прибора - это разность между показаниями прибора и истинным значением измеряемой величины.


    Результат измерения - это значение величины, найденное путем ее измерения.


    При однократном измерении показание прибора является результатом измерения, а при многократном результат измерения находят путем статистической обработки итогов каждого наблюдения. По точности результатов измерения подразделяют на три вида: точные (прецизионные), результат которых должен иметь минимальную погрешность; контрольно-поверочные, погрешность которых не должна превышать заданного значения; технические, результат которых содержит погрешность, определяемую погрешностью измерительного прибора. Как правило, точные и контрольно-поверочные измерения требуют многократных наблюдений.


    По способу выражения погрешности средств измерений разделяют на абсолютные, относительные и приведенные.


    Абсолютная погрешность АА - это разность между показанием прибора А и действительным значением измеряемой величины А д:


    АА = А А д.


    Относительная погрешность bА - это отношение абсолютной погрешности АА к значению измеряемой величины А , выраженное в процентах:



    Приведенная погрешность g (в процентах) - это отношение абсолютной погрешности АА к нормирующему значению A ном:



    Для приборов с нулевой отметкой на краю или вне шкалы нормирующее значение равно конечному значению диапазона измерений. Для приборов с двухсторонней шкалой, то есть с отметками шкалы, расположенными по обе стороны от нуля, оно равно арифметической сумме конечных значений диапазона измерений.


    Для приборов с логарифмической или гиперболической шкалой нормирующее значение равно длине всей шкалы.


    В табл. 1 приведены сведения о классах точности измерительных приборов. Класс точности численно равен наибольшей допустимой приведенной основной погрешности, выраженной в процентах.


    Таблица 1. Классы точности средств измерений



    * Допускается 1,0 .


    ** Допускается 3,0 .


    Средства измерений электрических величин должны удовлетворять следующим основным требованиям (ПУЭ):


    Класс точности измерительных приборов должен быть не ниже 2,5;


    Классы точности измерительных шунтов, добавочных резисторов, трансформаторов и преобразователей должны быть не ниже приведенных в табл. 1;


    Пределы измерения приборов должны выбираться с учетом возможных наибольших длительных отклонений измеряемых величин от номинальных значений.


    Учет активной электрической энергии должен обеспечивать определение количества энергии: выработанной генераторами ЭС; потребленной на собственные и хозяйственные нужды (раздельно) ЭС и ПС; отпущенной потребителям по линиям, отходящим от шин ЭС непосредственно к потребителям; переданной в другие энергосистемы или полученной от них; отпущенной потребителям из электрической сети. Кроме того, учет активной электрической энергии должен обеспечивать возможность определения поступления электрической энергии в электрические сети разных классов напряжений энергосистемы, составления балансов электрической энергии для хозрасчетных подразделений энергосистемы, контроля за соблюдением потребителями заданных им режимов потребления и баланса электрической энергии.


    Учет реактивной электрической энергии должен обеспечивать возможность определения количества реактивной электрической энергии, полученной потребителем от электроснабжающей организации или переданной ей, только если по этим данным производятся расчеты или контроль соблюдения заданного режима работы компенсирующих устройств.


    Ток должен измеряться в цепях всех напряжений, где это необходимо для систематического контроля технологического процесса или оборудования.


    Постоянный ток измеряется в цепях: генераторов постоянного тока и силовых преобразователей; АБ, зарядных, подзарядных и разрядных устройств; возбуждения СГ, СК, а также электродвигателей с регулируемым возбуждением.


    Амперметры постоянного тока должны иметь двухсторонние шкалы, если возможно изменение направления тока.


    В цепях трехфазного тока следует, как правило, измерять ток одной фазы. Ток каждой фазы должен измеряться:


    Для ТГ 12 МВт и более;


    Для ВЛ с пофазным управлением, линий с продольной компенсацией и линий, для которых предусматривается возможность длительной работы в неполнофазном режиме;


    В обоснованных случаях можно предусмотреть измерение тока каждой фазы ВЛ 220 кВ и выше с трехфазным управлением; для дуговых электропечей.


    Напряжение должно измеряться:


    На секциях сборных шин постоянного и переменного тока, которые могут работать раздельно; допускается установка одного прибора с переключением на несколько точек измерения; на ПС напряжение допускается измерять только на стороне НН, если установка ТН на стороне ВН не требуется для других целей;


    В цепях генераторов постоянного и переменного тока, СК, а также в отдельных случаях в цепях агрегатов специального назначения;


    При автоматизированном пуске генераторов или других агрегатов установка на них приборов для непрерывного измерения напряжения необязательна;


    В цепях возбуждения СМ от 1 МВт и более;


    В цепях силовых преобразователей, АБ, зарядных и подзарядных устройств;


    В цепях дугогасящих катушек.


    В трехфазных сетях измеряется, как правило, одно междуфазное напряжение. В сетях выше 1 кВ с эффективно заземленной нейтралью допускается измерение трех междуфазных напряжений для контроля исправности цепей напряжения одним прибором (с переключением) .


    Необходимо регистрировать значения одного междуфазного напряжения сборных шин 110 кВ и выше (либо отклонения напряжения от заданного значения) ЭС и подстанций, по напряжению на которых ведется режим энергосистемы.


    В сетях переменного тока выше 1 кВ с изолированной или заземленной через дугогасящий реактор нейтралью, сетях переменного тока до 1 кВ с изолированной нейтралью и сетях постоянного тока с изолированными полюсами или изолированной средней точкой, как правило, должен выполняться автоматический контроль изоляции, действующий на сигнал при снижении сопротивления изоляции одной из фаз (или полюса) ниже заданного значения с последующим контролем асимметрии напряжения с помощью показывающего прибора (с переключением) . Допускается контроль изоляции путем периодических измерений напряжений с целью визуального контроля асимметрии напряжения.


    Измерение мощности генераторов активной и реактивной мощности: при установке на ТГ 100 МВт и более щитовых показывающих приборов их класс точности должен быть не ниже 1,0 . Производится регистрация:


    На ЭС 200 МВт и более - суммарной активной мощности;


    Конденсаторных батарей 25 Мвар и более и СК реактивной мощности;


    Трансформаторов и линий, питающих собственные нужды 6 кВ и выше ЭС, активной мощности;


    Повышающих двухобмоточных трансформаторов ЭС - активной и реактивной мощности; в цепях повышающих трехобмоточных трансформаторов (или автотрансформаторов с использованием обмотки НН) измерение активной и реактивной мощности должно производиться со стороны СН и НН; для трансформатора, работающего в блоке с генератором, мощность со стороны НН следует измерять в цепи генератора;


    Понижающих трансформаторов 220 кВ и выше - активной и реактивной, 110–150 кВ - активной мощности; в цепях понижающих двухобмоточых трансформаторов измерение мощности должно производиться со стороны НН, а в цепях понижающих трехобмоточных трансформаторов - со стороны СН и НН; на ПС 110–220 кВ без выключателей на стороне ВН мощность допускается не измерять;


    Линий 110 кВ и выше с двусторонним питанием, а также обходных выключателей - активной и реактивной мощности;


    На других элементах ПС, на которых для периодического контроля режимов сети необходимы измерения перетоков активной и реактивной мощности, должна предусматриваться возможность присоединения контрольных переносных приборов.


    Обязательна регистрация активной мощности ТГ 60 МВт и более, суммарной мощности ЭС (200 МВт и более) .


    Частота измеряется:


    На каждой секции шин генераторного напряжения; на каждом ТГ блочной ЭС или АЭС;


    На каждой системе (секции) шин ВН ЭС;


    В узлах возможного деления энергосистемы на несинхронно работающие части.


    Частота или ее отклонения от заданного значения должны регистрироваться на ЭС 200 МВт и более; на ЭС 6 МВт и более, работающих изолированно.


    Абсолютная погрешность регистрирующих частотомеров на ЭС, участвующих в регулировании мощности, должна быть не более ±0,1 Гц.


    Для измерения при точной (ручной или полуавтоматической) синхронизации должны предусматриваться следующие приборы - два вольтметра (или двойной вольтметр), два частотомера (или двойной частотомер), синхроноскоп.


    Для автоматической регистрации аварийных процессов в электрической части энергосистем должны предусматриваться автоматические осциллографы. Расстановка автоматических осциллографов на объектах, а также выбор регистрируемых ими электрических параметров производятся по указаниям ПУЭ.


    Для определения мест повреждений на ВЛ 110 кВ и выше длиной более 20 км должны предусматриваться фиксирующие приборы.


    Краткая характеристика измерительных приборов: современные промышленные предприятия и жилищно-коммунальные хозяйства характеризуются потреблением различных видов энергии - электроэнергии, тепла, газа, сжатого воздуха и др.; для наблюдения за режимом потребления энергии необходимо измерять и регистрировать электрические и неэлектрические величины с целью дальнейшей обработки информации.


    Номенклатура приборов, используемых в энергоснабжении для измерения электрических и неэлектрических величин, весьма разнообразна как по методам измерений, так и по сложности преобразователей. Наряду со способом непосредственной оценки часто используют нулевой и дифференциальный методы, повышающие точность.


    Ниже приведены краткая характеристика измерительных приборов по принципу действия.


    Магнитоэлектрические приборы обладают высокой чувствительностью, малым потреблением тока, плохой перегрузочной способностью и высокой точностью измерений. Их показания зависят от температуры окружающей среды. Амперметры и вольтметры имеют линейные шкалы и используются часто как образцовые приборы, имеют малую чувствительность к внешним магнитным полям, однако чувствительны к ударам и вибрации.


    Электромагнитные приборы имеют невысокую чувствительность, значительное потребление тока, хорошую перегрузочную способность и невысокую точность измерений. Шкалы нелинейны и линеаризуются в верхней части специальным выполнением механизма. Чаще используются как щитовые технические приборы, просты и надежны в эксплуатации, чувствительны к внешним магнитным полям. Электромагнитные приборы могут измерять как постоянные, так и переменные токи и напряжение. При этом они реагируют на среднее квадратическое (действующее) значение переменного сигнала вне зависимости от формы сигнала (в пределах сравнительно неширокого частотного диапазона) .


    Электродинамические и ферродинамические приборы обладают невысокой чувствительностью, большим потреблением тока, чувствительностью к перегрузкам и высокой точностью. У амперметров и вольтметров нелинейные шкалы. Серьезным преимуществом являются одинаковые показания на постоянном и переменном токах, что позволяет поверять их на постоянном токе.


    Приборы индукционной системы характеризуются невысокой чувствительностью, существенным потреблением тока и нечувствительностью к перегрузкам. В основном они служат счетчиками энергии переменного тока. Такие приборы выпускаются одно-, двухи трехэлементными для работы в однофазных, трехфазных трехпроводных и трехфазных четырехпроводных цепях. Для расширения пределов используются трансформаторы тока и напряжения.


    Электростатические приборы имеют невысокую чувствительность, но чувствительны к перегрузкам и служат для измерения напряжения на постоянном и переменном токах. Для расширения пределов используются емкостные и резистивные делители. Электростатические вольтметры имеют малое потребление и широкий диапазон частот измерения, они просты и надежны.


    Термоэлектрические приборы характеризуются низкой чувствительностью, большим потреблением тока, низкой перегрузочной способностью, невысокой точностью и нелинейностью шкалы, а также невысоким быстродействием. Однако их показания не зависят от формы тока в широком диапазоне частот. Для расширения пределов амперметров используют высокочастотные трансформаторы тока. Приборы могут работать как с постоянными, так и с переменными токами и напряжениями.


    Выпрямительные приборы обладают высокой чувствительностью, малым потреблением тока, небольшой перегрузочной способностью и линейностью шкалы. Показания приборов зависят от формы тока. Они используются в качестве амперметров и вольтметров, которые реагируют на среднее выпрямленное значение переменного сигнала, а не на действующее (которое требуется чаще всего) . Градуируются они обычно в действующих значениях для частного случая синусоидального сигнала. При работе с несинусоидальными сигналами возможны большие погрешности измерения.


    Цифровые электронные измерительные приборы преобразуют аналоговый входной сигнал в дискретный, представляя его в цифровой форме с помощью цифрового отсчетного устройства (ЦОУ) и могут выводить информацию на внешнее устройство - дисплей, цифропечать. Преимуществами цифровых измерительных приборов (ЦИП) являются автоматический выбор диапазона измерения, автоматический процесс измерения, вывод информации в коде на внешние устройства и представление результата измерений с высокой точностью.