Советский ученый академик ан ссср. Первые академики ссср

Понятие энергии как физической величины вводится для характеристики способности тела или системы тел к совершению работы. Как известно, существуют различные виды энергии. Наряду с уже рассмотренной выше кинетической энергией, которой обладает движущееся тело, существуют различные виды потенциальной энергии: потенциальная энергия в поле тяжести, потенциальная энергия растянутой или сжатой пружины или вообще любого упруго деформированного тела и т. д.

Превращения энергии. Основное свойство энергии заключается в ее способности к превращению из одного вида в другой в эквивалентных количествах. Известные примеры таких превращений - переход потенциальной энергии в кинетическую при падении тела с высоты, переход кинетической энергий в потенциальную при подъеме брошенного вверх тела, чередующиеся взаимные превращения кинетической и потенциальной энергий при колебаниях маятника. Каждый из вас может привести массу других подобных примеров.

Потенциальная энергия связана с взаимодействием тел или частей одного тела. Для последовательного введения этого понятия естественно рассмотреть систему взаимодействующих тел. Отправным пунктом здесь может служить теорема о кинетической энергии системы, определяемой как сумма кинетических энергий составляющих систему частиц:

Работа внутренних сил. Как и раньше, когда обсуждался закон сохранения импульса системы тел, будем делить действующие на тела системы силы на внешние и внутренние. По аналогии с законом изменения импульса можно было бы ожидать, что для системы материальных точек изменение кинетической энергии системы будет равно работе только внешних сил, действующих на систему. Но легко видеть, что это не так. При рассмотрении

изменения полного импульса системы импульсы внутренних сил взаимно уничтожались из-за третьего закона Ньютона. Однако работы внутренних сил попарно уничтожаться не будут, так как в общем случае частицы, на которые эти силы действуют, могут совершать разные перемещения.

Действительно, при вычислении импульсов внутренних сил они умножались на одно и то же время взаимодействия, а при вычислении работы эти силы умножаются на перемещения соответствующих тел, которые могут различаться. Например, если две притягивающиеся частицы переместятся навстречу друг другу, то внутренние силы их взаимодействия совершат положительные работы и их сумма будет отлична от нуля.

Таким образом, работа внутренних сил может привести к изменению кинетической энергии системы. Именно благодаря этому обстоятельству механическая энергия системы взаимодействующих тел не сводится только к сумме их кинетических энергий. Полная механическая энергия системы наряду с кинетической энергией включает в себя потенциальную энергию взаимодействия частиц системы. Полная энергия зависит от положений и скоростей частиц, т. е. она представляет собой функцию механического состояния системы.

Потенциальная энергия. Наряду с делением сил, действующих на частицы системы, на внешние и внутренние, для введения понятия потенциальной энергии нужно разбить все силы на две группы по другому признаку.

В первую группу отнесем силы, работа которых при изменении взаимных положений частиц не зависит от способа изменения конфигурации системы, т. е. от того, по каким траекториям и в какой последовательности частицы системы перемещаются из своих начальных положений в конечные. Такие силы будем называть потенциальными. Примерами потенциальных сил могут служить силы тяготения, кулоновские силы электростатического взаимодействия заряженных частиц, упругие силы. Соответствующие силовые поля также называются потенциальными.

Ко второй группе отнесем силы, работа которых зависит от формы пути. Эти силы объединим под названием непотенциальных. Наиболее характерный пример непотенциальных сил - сила трения скольжения, направленная противоположно относительной скорости.

Работа в однородном поле. Потенциальная энергия количественно определяется через работу потенциальных сил. Рассмотрим, например, некоторое тело в однородном поле тяжести Земли, которую из-за ее большой массы будем считать неподвижной. В однородном поле действующая на тело сила тяжести всюду одинакова, и потому, как было показано в предыдущем параграфе,

ее работа при перемещении тела не зависит от формы траектории, соединяющей начальную и конечную точки. Работа силы тяжести при перемещении тела из положения 1 в положение 2 (рис. 115) определяется только разностью высот в начальном и конечном положениях:

Так как работа не зависит от формы пути, она может служить характеристикой начальной и конечной точек, т. е. характеристикой самого силового поля.

Рис. 115. Работа силы тяжести при перемещении из положения 1 в положение 2 равна

Примем какую-либо точку поля (например, ту, от которой отсчитаны высоты в формуле за начало отсчета и будем рассматривать работу, совершаемую силой тяжести при перемещении частицы в эту точку из другой произвольной точки Р, находящейся на высоте Эта работа, как следует из (2), равна и называется потенциальной энергией частицы в точке Р:

Фактически это есть потенциальная энергия гравитационного взаимодействия тела и Земли, создающей это поле.

Работа и потенциальная энергия. Работа силы тяжести при перемещении тела из точки 1 в точку 2, даваемая формулой (2), равна разности потенциальных энергий в начальной и конечной точках пути:

В произвольном потенциальном поле, где модуль и направление силы зависят от положения частицы, потенциальная энергия в некоторой точке Р, как и в однородном поле, равна работе силы поля при перемещении частицы из этой точки Р в начало отсчета, т. е. в фиксированную точку, потенциальная энергия в которой принята равной нулю. Выбор точки, в которой потенциальная энергия принимается равной нулю, произволен и определяется только соображениями удобства. Например, в однородном поле тяжести Земли отсчет высоты и потенциальной энергии удобно вести от поверхности Земли (уровня моря).

Отмеченная неоднозначность в определении потенциальной энергии никак не сказывается на результатах при практическом использовании понятия потенциальной энергии, так как физический смысл

имеет только изменение потенциальной энергии, т. е. разность ее значений в двух точках поля, через которую выражается работа сил поля при перемещении тела из одной точки в другую.

Центральное поле. Покажем потенциальный характер центрального поля, в котором сила зависит только от расстояния до силового центра и направлена по радиусу. Примерами центральных полей могут служить поле тяготения планеты или любого тела со сферически-симметричным распределением масс, электростатическое поле точечного заряда и т. д.

Пусть тело, на которое действует центральная сила направленная по радиусу от силового центра О (рис. 116), перемещается из точки 1 в точку 2 по некоторой кривой. Разобьем весь путь, на маленькие участки так, чтобы силу в пределах каждого участка можно было считать постоянной. Работа силы на таком участке

Но как видно из рис. 116, есть проекция элементарного перемещения на направление радиуса-вектора проведенного из силового центра: Таким образом, - работа на отдельном участке равна произведению силы на изменение расстояния до силового центра. Суммируя работы на всех участках, убеждаемся, что работа сил поля при перемещении тела из точки I в точку 2 равна работе по перемещению вдоль радиуса из точки I в точку 3 (рис. 116). Итак, эта работа определяется только начальным и конечным расстояниями тела от силового центра и не зависит от формы пути, что и доказывает потенциальный характер любого центрального поля.

Рис. 116. Работа сил центрального поля

Потенциальная энергия в поле тяготения. Чтобы получить явное выражение для потенциальной энергии тела в некоторой точке поля, нужно рассчитать работу при перемещении тела из этой точки в другую, потенциальная энергия в которой принимается равной нулю. Приведем выражения для потенциальной энергии в некоторых важных случаях центральных полей.

Потенциальная энергия гравитационного взаимодействия точечных масс и М или тел со сферически-симметричным распределением масс, центры которых находятся на расстоянии друг от друга, дается выражением

Разумеется, об этой энергии можно говорить и как о потенциальной энергии тела массы в поле тяготения, создаваемом телом массы М. В выражении (5) потенциальная энергия принята равной нулю при бесконечно большом расстоянии между взаимодействующими телами: при

Для потенциальной энергии тела массы в поле тяготения Земли удобно видоизменить формулу (5) с учетом соотношения (7) из § 23 и выразить потенциальную энергию через ускорение свободного падения поверхности Земли и радиус Земли

Если высота тела над поверхностью Земли мала по сравнению с радиусом Земли то, подставляя в в виде и используя приближенную формулу можно преобразовать формулу (6) следующим образом:

Первое слагаемое в правой части (7) можно опустить, так как оно постоянно, т. е. не зависит от положения тела. Тогда вместо (7) имеем

что совпадает с формулой (3), полученной в приближении «плоской» Земли для однородного поля тяжести. Подчеркнем, однако, что в отличие от (6) или (7) в формуле (8) потенциальная энергия отсчитывается от поверхности Земли.

Задачи

1. Потенциальная энергия в поле тяготения Земли. Чему равна потенциальная энергия тела на поверхности Земли и на бесконечно большом расстоянии от Земли, если принять ее равной нулю в центре Земли?

Решение. Чтобы найти потенциальную энергию тела на поверхности Земли при условии, что она равна нулю в центре Земли, нужно рассчитать работу, совершаемую силой тяготения при мысленном перемещении тела с поверхности Земли в ее центр. Как было выяснено ранее (см. формулу (10) § 23), действующая на находящееся в глубине Земли тело сила тяготения пропорциональна его расстоянию от центра Земли, если считать Землю однородным шаром с одинаковой всюду плотностью:

Для вычисления работы весь путь от поверхности Земли до ее центра разбиваем на малые участки, на протяжении которых силу можно считать постоянной. Работа на отдельном малом участке изображается на графике зависимости силы от расстояния (рис. 117) площадью узкой заштрихованной полоски. Эта работа положительна, так как направления силы тяжести и перемещения совпадают. Полная работа, очевидно,

изображается площадью треугольника с основанием и высотой

Значение потенциальной энергии на поверхности Земли равно работе, даваемой формулой (9):

Для того чтобы найти значение потенциальной энергии на бесконечно большом расстоянии от Земли, следует учесть, что разность потенциальных энергий на бесконечности и на поверхности Земли равна, в соответствии с (6), и не зависит от того, где выбран нуль потенциальной энергии. Именно такую величину нужно прибавить к значению (10) потенциальной энергии на поверхности, чтобы получить искомое значение на бесконечности:

2. График потенциальной энергии. Постройте график потенциальной энергии тела массы в поле тяготения Земли, считая ее однородным шаром.

Решение. Примем для определенности значение потенциальной энергии в центре Земли равным нулю.

Рис. 117. К расчету потенциальной энергии

Рис. 118. График потенциальной энергии

Для любой внутренней точки, находящейся на расстоянии от центра Земли, потенциальная энергия рассчитывается так же, как и в предыдущей задаче: как следует из рис. 117, она равна площади треугольника с основанием и высотой Таким образом,

Для построения графика потенциальной энергии при где сила убывает обратно пропорционально квадрату расстояния (рис. 117), следует воспользоваться формулой (6). Но в соответствии со сделанным выбором точки отсчета потенциальной энергии к значению, даваемому

мулой (6), следует прибавить постоянную величину Поэтому

Полный график показан на На участке от центра Земли до ее поверхности он представляет собой отрезок параболы (12), минимум которой расположен при Такую зависимость иногда называют «квадратичной потенциальной ямой». На участке от поверхности Земли до бесконечности график представляет собой отрезок гиперболы (13). Эти отрезки параболы и гиперболы плавно, без излома, переходят друг в друга. Ход графика соответствует тому, что в случае сил притяжения потенциальная энергия возрастает при увеличении расстояния.

Энергия упругой деформации. К потенциальным силам относятся также и силы, возникающие при упругой деформации тел. В соответствии с законом Гука эти силы пропорциональны деформации. Поэтому потенциальная энергия упругой деформации квадратично зависит от деформации. Это становится сразу ясным, если учесть, что зависимость силы от смещения из положения равновесия здесь такая же, как и у рассмотренной выше силы тяжести, действующей на тело внутри однородного массивного шара. Например, при растяжении или сжатии на упругой пружины жесткости к, когда действующая сила потенциальная энергия дается выражением

Здесь принято, что в положении равновесия потенциальная энергия равна нулю.

Потенциальная энергия в каждой точке силового поля имеет определенное значение. Поэтому она может служить характеристикой этого поля. Таким образом, силовое поле можно описать, задавая либо силу в каждой точке, либо значение потенциальной энергии. Эти способы описания потенциального силового поля эквивалентны.

Связь силы и потенциальной энергии. Установим связь этих двух способов описания, т. е. общее соотношение между силой и изменением потенциальной энергии. Рассмотрим перемещение тела между двумя близкими точками поля. Работа сил поля при этом перемещении равна . С другой стороны, эта работа равна разности значений потенциальной энергии в начальной и конечной точках перемещения т. е. взятому с обратным знаком изменению потенциальной энергии. Поэтому

Левую часть этого соотношения можно записать в виде произведения проекции силы на направление перемещения и модуля этого перемещения Отсюда

Проекция потенциальной силы на произвольное направление может быть найдена как взятое с обратным знаком отношение изменения потенциальной энергии при малом перемещении вдоль этого направления к модулю перемещения.

Эквипотенциальные поверхности. Обоим способам описания потенциального поля можно сопоставить наглядные геометрические образы - картины силовых линий или эквипотенциальных поверхностей. Потенциальная энергия частицы в силовом поле является функцией ее координат. Приравнивая постоянной величине, получаем уравнение поверхности, во всех точках которой потенциальная энергия имеет одно и то же значение. Эти поверхности равных значений потенциальной энергии, называемые эквипотенциальными, дают наглядную картину силового поля.

Сила в каждой точке направлена перпендикулярно проходящей через эту точку эквипотенциальной поверхности. Это легко увидеть с помощью формулы (15). В самом деле, выберем перемещение вдоль поверхности постоянной энергии. Тогда , следовательно, равна нулю проекция силы на поверхность Так, например, в гравитационном поле, создаваемом телом массы М со сферически-симметричным распределением масс, потенциальная энергия тела массы дается выражением Поверхности постоянной энергии такого поля представляют собой сферы, центры которых совпадают с силовым центром.

Действующая на массу сила перпендикулярна эквипотенциальной поверхности и направлена к силовому центру. Проекцию этой силы на радиус, проведенный из силового центра, можно найти из выражения (5) для потенциальной энергии с помощью формулы (15):

что при дает

Полученный результат подтверждает приведенное выше без доказательства выражение для потенциальной энергии (5).

Наглядное представление о поверхностях равных значений потенциальной энергии можно составить на примере рельефа пересеченной

местности. Точкам земной поверхности, находящимся на одном горизонтальном уровне, соответствуют одинаковые значения потенциальной энергии поля тяготения. Эти точки образуют непрерывные линии. На топографических картах такие линии называются горизонталями. По горизонталям легко восстановить все черты рельефа: холмы, впадины, седловины. На крутых склонах горизонтали идут гуще, ближе друг к другу, чем на пологих. В этом примере равным значениям потенциальной энергии соответствуют линии, а не поверхности, так как здесь речь идет о силовом поле, где потенциальная энергия зависит от двух координат (а не от трех).

Объясните различие между потенциальными и непотенциальными силами.

Что такое потенциальная энергия? Какие силовые поля называются потенциальными?

Получите выражение (2) для работы силы тяжести в однородном поле Земли.

С чем связана неоднозначность потенциальной энергии и почему эта неоднозначность никак не сказывается на физических результатах?

Докажите, что в потенциальном силовом поле, где работа при перемещении тела между любыми двумя точками не зависит от формы траектории, работа при перемещении тела по любому замкнутому пути равна нулю.

Получите выражение (6) для потенциальной энергии тела массы в поле тяготения Земли. Когда справедлива эта формула?

Как зависит потенциальная энергия в поле тяготения Земли от высоты над поверхностью? Рассмотрите случаи, когда высота мала и когда она сравнима с радиусом Земли.

Укажите на графике зависимости потенциальной энергии от расстояния (см. рис. 118) область, где справедливо линейное приближение (7).

Вывод формулы для потенциальной энергии. Чтобы получить формулу (5) для потенциальной энергии в центральном поле тяготения, нужно вычислить работу сил поля при мысленном перемещении тела массы из данной точки в бесконечно удаленную точку. Работа в соответствии с формулой (4) § 31, выражается интегралом от силы вдоль траектории, по которой перемещается тело. Так как эта работа не зависит от формы траектории, вычислять интеграл можно для перемещения по радиусу, проходящему через интересующую нас точку;

Слово «энергия» в переводе с греческого означает «действие». Энергичным мы называем человека, который активно двигается, производя при этом множество разнообразных действий.

Энергия в физике

И если в жизни энергию человека мы можем оценивать в основном по последствиям его деятельности, то в физике энергию можно измерять и изучать множеством различных способов. Ваш бодрый друг или сосед, скорее всего, откажется повторить тридцать-пятьдесят раз одно и то же действие, когда вдруг вам взбредет на ум исследовать феномен его энергичности.

А вот в физике вы можете повторять почти любые опыты сколь угодно много раз, производя необходимые вам исследования. Так и с изучением энергии. Ученые-исследователи изучили и обозначили множество видов энергии в физике. Это электрическая, магнитная, атомная энергия и так далее. Но сейчас мы поговорим о механической энергии. А конкретнее о кинетической и потенциальной энергии.

Кинетическая и потенциальная энергия

В механике изучают движение и взаимодействие тел друг с другом. Поэтому принято различать два вида механической энергии: энергию, обусловленную движением тел, или кинетическую энергию, и энергию, обусловленную взаимодействием тел, или потенциальную энергию.

В физике существует общее правило, связывающее энергию и работу. Чтобы найти энергию тела, надо найти работу, которая необходима для перевода тела в данное состояние из нулевого, то есть такого, при котором его энергия равна нулю.

Потенциальная энергия

В физике потенциальной энергией называют энергию, которая определяется взаимным положением взаимодействующих тел или частей одного и того же тела. То есть, если тело поднято над землей, то оно обладает возможностью падая, произвести какую-либо работу.

И возможная величина этой работы будет равна потенциальной энергии тела на высоте h. Для потенциальной энергии формула определяется по следующей схеме:

A=Fs=Fт*h=mgh, или Eп=mgh,

где Eп потенциальная энергия тела,
m масса тела,
h - высота тела над поверхностью земли,
g ускорение свободного падения.

Причем за нулевое положение тела может быть принято любое удобное нам положение в зависимости от условий проводимых опыта и измерений, не только поверхность Земли. Это может быть поверхность пола, стола и так далее.

Кинетическая энергия

В случае, когда тело движется под влиянием силы, оно уже не только может, но и совершает какую-то работу. В физике кинетической энергией называется энергия, которой обладает тело вследствие своего движения. Тело, двигаясь, расходует свою энергию и совершает работу. Для кинетической энергии формула рассчитывается следующей образом:

A = Fs = mas = m * v / t * vt / 2 = (mv^2) / 2 , или Eк= (mv^2) / 2 ,

где Eк кинетическая энергия тела,
m масса тела,
v скорость тела.

Из формулы видно, что чем больше масса и скорость тела, тем выше его кинетическая энергия.

Каждое тело обладает либо кинетической, либо потенциальной энергией, либо и той, и другой сразу, как, например, летящий самолет.

Кинетическая энергия механической системы - это энергия механического движения этой системы.

Сила F , действуя на покоящееся тело и вызывая его движение, совершает рабо­ту, а энергия движущегося тела возраста­ет на величину затраченной работы. Таким образом, работа dA силы F на пути, кото­рый тело прошло за время возрастания скорости от 0 до v, идет на увеличение кинетической энергии dT тела, т. е.

Используя второй закон Ньютона F =mdv /dt

и умножая обе части равен­ства на перемещение dr , получим

F dr =m(dv /dt)dr=dA

Таким образом, тело массой т, движущее­ся со скоростью v, обладает кинетической энергией

Т = т v 2 /2. (12.1)

Из формулы (12.1) видно, что кинети­ческая энергия зависит только от массы и скорости тела, т. е. кинетическая энергия системы есть функция состояния ее дви­жения.

При выводе формулы (12.1) предпола­галось, что движение рассматривается в инерциальной системе отсчета, так как иначе нельзя было бы использовать за­коны Ньютона. В разных инерциальных системах отсчета, движущихся друг отно­сительно друга, скорость тела, а следова­тельно, и его кинетическая энергия будут неодинаковы. Таким образом, кинетиче­ская энергия зависит от выбора системы отсчета.

Потенциальная энергия - механиче­ская энергия системы тел, определяемая их взаимным расположением и характе­ром сил взаимодействия между ними.

Пусть взаимодействие тел осуществля­ется посредством силовых полей (напри­мер, поля упругих сил, поля гравитацион­ных сил), характеризующихся тем, что работа, совершаемая действующими сила­ми при перемещении тела из одного поло­жения в другое, не зависит от того, по какой траектории это перемещение прои­зошло, а зависит только от начального и конечного положений. Такие поля на­зываются потенциальными, а силы, дей­ствующие в них,- консервативными. Если же работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такая сила называется диссипативной; ее примером является си­ла трения.

Тело, находясь в потенциальном поле сил, обладает потенциальной энергией II. Работа консервативных сил при элемен­тарном (бесконечно малом) изменении конфигурации системы равна приращению потенциальной энергии, взятому со знаком минус, так как работа совершается за счет убыли потенциальной энергии:

Работа dА выражается как скалярное произведение силы F на перемещение dr и выражение (12.2) можно записать в виде

F dr =-dП. (12.3)

Следовательно, если известна функция П(r ), то из формулы (12.3) можно найти силу F по модулю и направлению.

Потенциальная энергия может быть определена исходя из (12.3) как

где С - постоянная интегрирования, т. е. потенциальная энергия определяется с точностью до некоторой произвольной по­стоянной. Это, однако, не отражается на физических законах, так как в них входит или разность потенциальных энергий в двух положениях тела, или производная П по координатам. Поэтому потенциаль­ную энергию тела в каком-то определен­ном положении считают равной нулю (вы­бирают нулевой уровень отсчета), а энер­гию тела в других положениях отсчитыва­ют относительно нулевого уровня. Для консервативных сил

или в векторном виде

F =-gradП, (12.4) где

(i, j, k - единичные векторы координат­ных осей). Вектор, определяемый выраже­нием (12.5), называется градиентом ска­ляра П.

Для него наряду с обозначением grad П применяется также обозначение П.  («набла») означает символический вектор, называе­мый оператором Гамильтона или набла-оператором:

Конкретный вид функции П зависит от характера силового поля. Например, по­тенциальная энергия тела массой т, под­нятого на высоту h над поверхностью Зем­ли, равна

П = mgh, (12.7)

где высота h отсчитывается от нулевого уровня, для которого П 0 = 0. Выражение (12.7) вытекает непосредственно из того, что потенциальная энергия равна работе силы тяжести при падении тела с высоты h на поверхность Земли.

Так как начало отсчета выбирается произвольно, то потенциальная энергия может иметь отрицательное значение (ки­нетическая энергия всегда положитель­на!}. Если принять за нуль потенциальную энергию тела, лежащего на поверхности Земли, то потенциальная энергия тела, находящегося на дне шахты (глубина h"), П= - mgh".

Найдем потенциальную энергию упругодеформированного тела (пружины). Сила упругости пропорциональна дефор­мации:

F х упр = -kx,

где F x упр - проекция силы упругости на ось х; k - коэффициент упругости (для пружины - жесткость), а знак минус ука­зывает, что F x упр направлена в сторону, противоположную деформации х.

По третьему закону Ньютона, дефор­мирующая сила равна по модулю силе упругости и противоположно ей направле­на, т. е.

F x =-F x упр =kx Элементарная работа dA, совершаемая силой F x при бесконечно малой деформации dx, равна

dA = F x dx = kxdx,

а полная работа

идет на увеличение потенциальной энергии пружины. Таким образом, потенциальная энергия упругодеформированного тела

П=kx 2 /2.

Потенциальная энергия системы, подо­бно кинетической энергии, является функ­цией состояния системы. Она зависит толь­ко от конфигурации системы и ее положе­ния по отношению к внешним телам.

Полная механическая энергия систе­мы - энергия механического движения и взаимодействия:

т. е. равна сумме кинетической и потен­циальной энергий.

Мышцы, приводящие в движение звенья тела, совершают механическую работу.

Работа в некотором направлении – это произведение силы (F), действующей в направлении перемещения тела на пройденный им путь (S): А = F S.

Выполнение работы требует энергии. Следовательно, при выполнении работы энергия в системе уменьшается. Поскольку для того чтобы была совершена работа, необходим запас энергии, последнюю можно определить следующим образом: Энергия это возможность совершить работу, это некоторая мера имеющегося в механической системе « ресурса» для её выполнения . Кроме того, энергия – это мера перехода одного вида движения в другой.

В биомеханике рассматривают следующие основные виды энергии :

Потенциальная, зависящая от взаимного расположения элементов механической системы тела человека;

Кинетическая поступательного движения;

Кинетическая вращательного движения;

Потенциальная деформации элементов системы;

Тепловая;

Обменных процессов.

Полная энергия биомеханической системы равна сумме всех перечисленных видов энергии.

Поднимая тело, сжимая пружину, можно накопить энергию в форме потенциальной для последующего её использования. Потенциальная энергия всегда связана с той или иной силой, действующей со стороны одного тела на другое. Например, Земля силой тяжести действует на падающий предмет, сжатая пружина – на шарик, натянутая тетива – на стрелу.

Потенциальная энергия это энергия, которой обладает тело благодаря своему положению по отношению к другим телам, или благодаря взаимному расположению частей одного тела .

Стало быть сила тяготения и упругая сила являются потенциальными.

Гравитационная потенциальная энергия: Еп = m g h

Где k – жёсткость пружины; х – её деформация.

Из приведённых примеров видно, что энергию можно накопить в форме потенциальной энергии (поднять тело, сжать пружину) для последующего использования.

В биомеханике рассматривают и учитывают два вида потенциальной энергии: обусловленную взаимным расположением звеньев тела к поверхности Земли (гравитационная потенциальная энергия); связанную с упругой деформацией элементов биомеханической системы (кости, мышцы, связки) или каких-либо внешних объектов (спортивных снарядов, инвентаря).

Кинетическая энергия запасается в теле при движении. Движущееся тело совершает работу за счёт её убыли. Поскольку звенья тела и тело человека совершают поступательное и вращательное движения, суммарная кинетическая энергия (Ек) будет равна: , где m – масса, V – линейная скорость, J – момент инерции системы, ω – угловая скорость.

Энергия поступает в биомеханическую систему за счёт протекания в мышцах метаболических обменных процессов. Изменение энергии, в результате которого совершается работа, не является высокоэффективным процессом в биомеханической системе, то есть не вся энергия переходит в полезную работу. Часть энергии теряется необратимо, переходя в тепло: только 25 % используется для выполнения работы, остальные 75 % преобразуются и рассеиваются в организме.

Для биомеханической системы применяют закон сохранения энергии механического движения в форме:

Епол = Ек + Епот + U,

где Епол – полная механическая энергия системы; Ек – кинетическая энергия системы; Епот – потенциальная энергия системы; U – внутренняя энергия системы, представляющая в основном тепловую энергию.

Полная энергия механического движения биомеханической системы имеет в своей основе два следующих источника энергии: метаболические реакции в организме человека и механическая энергия внешней среды (деформирующихся элементов спортивных снарядов, инвентаря, опорных поверхностей; противников при контактных взаимодействиях). Передаётся эта энергия посредством внешних сил.

Особенностью энергопродукции в биомеханической системе является то, что одна часть энергии при движении расходуется на совершение необходимого двигательного действия, другая идёт на необратимое рассеивание запасённой энергии, третья сохраняется и используется при последующем движении. При расчёте затрачиваемой при движениях энергии и совершаемой при этом механической работы тело человека представляют в виде модели многозвеньевой биомеханической системы, аналогичной анатомическому строению. Движения отдельного звена и движения тела в целом рассматривают в виде двух более простых видов движения: поступательного и вращательного.

Полную механическую энергию некоторого i-го звена (Епол) можно подсчитать как сумму потенциальной (Епот) и кинетической энергии (Ек). В свою очередь Ек можно представить как сумму кинетической энергии центра масс звена (Ек.ц.м.), в которой сосредоточена вся масса звена, и кинетической энергии вращения звена относительно центра масс (Ек. Вр.).

Если известна кинематика движения звена, это общее выражение для полной энергии звена будет иметь вид: , где mi – масса i-го звена; ĝ – ускорение свободного падения; hi – высота центра масс над некоторым нулевым уровнем (например, над поверхностью Земли в данном месте); - скорость поступательного движения центра масс; Ji – момент инерции i- го звена относительно мгновенной оси вращения, проходящей через центр масс; ω – мгновенная угловая скорость вращения относительно мгновенной оси.

Работа по изменению полной механической энергии звена (Аi) за время работы от момента t1 до момента t2 равна разности значений энергии в конечный (Еп(t2)) и начальный (Еп(t1)) моменты движения:

Естественно, в данном случае работа затрачивается на изменение потенциальной и кинетической энергии звена.

Если величина работы Аi > 0, то есть энергия увеличилась, то говорят, что над звеном совершена положительная работа. Если же Аi < 0, то есть энергия звена уменьшилась, - отрицательная работа.

Режим работы по изменению энергии данного звена называется преодолевающим, если мышцы совершают положительную работу над звеном; уступающим, если мышцы совершают отрицательную работу над звеном.

Положительная работа совершается, когда мышца сокращается против внешней нагрузки, идёт на разгон звеньев тела, тела в целом, спортивных снарядов и т. д. Отрицательная работа совершается, если мышцы противодействуют растяжению за счёт действия внешних сил. Это происходит при опускании груза, спуска по лестнице, противодействии силе, превышающей силу мышц (например в армрестлинге).

Замечены интересные факты соотношения положительной и отрицательной работ мышц: отрицательная работа мышц экономичней положительной; предварительное выполнение отрицательной работы повышает величину и экономичность следующей за ней положительной работы.

Чем больше скорость передвижения тела человека (во время легкоатлетического бега, бега на коньках, бега на лыжах и т. п.), тем большая часть работ затрачивается не на полезный результат - перемещение тела в пространстве, а на перемещение звеньев относительно ОЦМ. Поэтому при скоростных режимах основная работа тратится на разгон и торможение звеньев тела, так как с ростом скорости резко растут ускорения движения звеньев тела.

Кинетическая энергия - это энергия движения тела. Соотвественно, если у нас есть какой-то объект, обладающий хоть какой-то массой и хоть какой-то скоростью, то он и обладает кинетической энергией. Однако относительно разных систем отсчета эта кинетическая энергия у одного и того же объекта может быть разной.

Пример. Есть бабушка, которая относительно земли нашей планеты находится в состоянии покоя, то есть не движется и, скажем, сидит на остановке в ожидании своего автобуса. Тогда относительно нашей планеты ее кинетическая энергия равна нулю. Но если посмотреть на эту же бабушку с Луны или с Солнца, относительно которых можно наблюдать движение планеты и, соответственно, этой бабушки, которая находится на нашей планете, то бабушка уже будет обладать кинетической энергией относительно упомянутых небесных тел. И тут приезжает автобус. Эта самая бабушка быстро встает и бежит занимать положенное ей место. Теперь относительно планеты она уже не в покое, а вполне себе движется. А значит и обладает кинетической энергией. И чем толще бабушка и быстрее, тем больше ее кинетическая энергия.

Есть несколько фундаментальных видов энергии - основных. Расскажу, например, про механические. К ним относятся энергия кинетическая, которая зависит от скорости и массы объекта, энергия потенциальная, которая зависит от того, где вы возьмете нулевой уровень потенциальной энергии, и от того положения, где находится этот объект относительно нулевого уровня потенциальной энергии. То есть потенциальная энергия - энергия, зависящая от положения объекта. Эта энергия характеризует работу, совершаемую полем, в котором находится объект, по его перемещению.

Пример. Несете вы в руках огромную коробку и падаете. Коробка лежит на полу. Выходит, что нулевой уровень потенциальной энергии у вас будет находится, соответственно, на уровне пола. Тогда верхняя часть коробки будет обладать большей потенциальной энергией, так как она находится выше пола и выше нулевого уровня потенциальной энергии.

Глупо говорить про энергию, не упомянув закон о ее сохранении. Таким образом, по закону сохранения энергии, эти два ее вида, описывающих состояние объекта, ни откуда не берутся и никуда не исчезают, а только переходят друг в друга.

А вот и пример. Падаю я с высоты дома, изначально имея потенциальную энергию относительно земли в момент перед прыжком, а моя кинетическая энергия пренебрежимо мала, поэтому можем приравнять её к нулю. Вот я отрываю ножки от карниза и моя потенциальная энергия начинает уменьшаться, так как высота, на которой я нахожусь, становится все меньше и меньше. В этот же момент при падении вниз я постепенно приобретаю кинетическую энергию, так как падаю вниз все с большей скоростью. В момент падения я уже обладаю максимальной кинетической энергией, но потенциальная равно нулю, такие дела.