Марсоход «Кьюриосити» (Марсианская научная лаборатория). Большой космический обман сша

MarsExplorationRover– это знаменитая программа NASA, направленная на всестороннее исследование планеты Марс. В рамках данной программы практически одновременно на поверхность «красной планеты» были доставлены два марсохода – Spirit и Opportunity. В 2012 году, в связи с выходом из строя аппарата Spirit и с постановкой новых научных задач, NASA доставляет на поверхность планеты марсоход нового поколения Curiosity, который ощутимо больше и тяжелее своих предшественников.

Первые шаги по планете Марс: Spirit и Opportunity

Марсоход Spirit опустился на поверхность Марса 3 января 2004 года. Opportunity присоединился к нему уже 25 января того же года. Что касается третьего всемирно известного марсохода Curiosity, то он достиг поверхности Марса 6 августа 2012 года, и сразу же приступил к работе.


Нужно сказать, что Spirit осуществил ряд интересных открытий. В частности, по результатам проб марсианского грунта, сделанных этим аппаратом, учёные смогли выдвинуть гипотезу о том, что в прошлом на Марсе были отличные условия для жизни микроорганизмов. Не смотря на то, что миссия этого марсохода должна была продлиться 90 дней, его использовали свыше шести лет. Связь со Spirit прервалась 23 июля 2010 года.


Opportunity, прибывший на три недели позже, чем Spirit работает до сих пор. Нужно отметить, что именно Opportunity смог найти на Марсе следы целого пересохшего океана. Кроме того, ему принадлежат очень точные измерения различных параметров марсианской атмосферы.

Исследование Марса Curiosity

Марсоход Curiosity – это не просто прекрасный марсианский вездеход нового поколения, но ещё и довольно крупная автономная химическая лаборатория. Основной задачей использования данного аппарата является проведение целого ряда глубоких исследований грунта и атмосферы. Сейчас марсоход занимается изучением геологической истории «красной планеты» в кратере Гейла, где есть возможность работать с глубинными грунтами.


Марсоход, который весит на Земле 900 кг 3 метра длины и 2,7 метра ширины, имеет 3 пары колес диаметром 50 см, способен передвигаться в любом направлении и передавать на Землю данные о проб грунта, снимки с поверхности планеты и другую ценную информацию. Ожидаемое время миссии 1 марсианский год, что равно 687 земных дней.

Первая цель после посадки, которую NASA Curiosity благополучно совершил 6 августа этого года в кратер Гейла диаметром в 150 км, стало путешествие к подножью горы Шарпа. Сама гора имеет высоту 5,5 км. Задача изучить версию воздействия водных потоков, которыми когда-то подвергались склоны горы Шарпа, но на данный момент марсоход на месте посадки обнаружил не так много воды, как того ожидалось по расчетам, всего 1,5%. А ведь предполагали ее наличие от 5,6 до 6,5%.

Основные результаты работы Curiosity состоят в том, что им была определена двухслойность марсианского грунта. Первый, так называемый сухой слой, практически не содержит воды. В то же время, на глубине свыше 40 см. содержание воды составляет порядка 4%.


И вот, получены качественные при помощи наложенных фильтров снимки с марса, который передал марсоход Curiosity. На одном из снимков виднеется подножье горы Шарпа к которой следует Curiosity.



Тем не менее, первые данные настоящей хроники с Марса получены. Температура окружающего воздуха +3 градуса по Цельсию и несколько любопытных снимков, на одном из них хорошо видна гора Шарпа к которой движется марсоход. Правда, достигнет ее он только к новому году на земле, ведь его скорость очень низкая, всего 0,14 км/ч.

(Видео поверхности планеты Марс, переданное марсоходом Curiosity)

Перед тем, как направиться к горе, марсоход NASA Curiosity проверил всю аппаратуру, сделал множество снимков, пошевелил буром и опробовал лазерную пушку, назначение которой не защита от марсиан, а сбор анализа образцов почвы и воздуха на расстоянии.


На данный момент из трёх марсоходов, запущенных в период с 2003 года, на Марсе работают два. За это время сделано множество научных открытий разных масштабов.


Ведущие мировые эксперты полагают, что основой успеха американских марсоходов является умение их создателей учиться на собственных ошибках. Соответственно, каждый новый аппарат становится более совершенным, чем его предшественники.

Любопытный факт. Сотрудники Nasa предусмотрели вариант первого знакомства с "марсианами". Так после приземления, марсоход первым делом обратился с приветствием к пустынной планете голосом директора NASA Чарльза Болдена и переслал на землю песню Will.I.Am.

В 2003 г. NASA планирует направить на Марс два одинаковых исследовательских марсохода Марс Эксплорэйшн Ровер (Mars Exploration Rover (MER)) , которые должны быть запущены 30 мая и 27 июня 2003 г. , посадки их на поверхность Марса произойдут, соответственно, 4 января и 8 февраля 2004 г. Пуск двух станций значительно увеличивает шансы на успех и в наиболее благоприятном случае - позволит исследовать сразу два района Марса.

В качестве кандидатов в таковые были предложены:

  • 1. долины Атабаска (Athabasca Vallis) на равнине Элизий - там следы недавнего вулканизма соседствуют с наносами, оставленными водным потоком, и вероятны гидротермальные отложения;
  • 2.кратер Гусев - в котором, предполагается, когда-то было озеро, но вода прорвала стену и вытекла;
  • 3. каньон Мелас (Melas Chasma) в долинах Маринера - где на глубине угадываются осадочные породы;
  • 4. Земля Меридиана (Terra Meridiani) - там обнаружен крупнозернистый гематит, который обычно образуется в воде.
Из одного только этого подбора мест видно, что наибольший интерес для планирующих исследовательские программы людей представляют районы, где могут быть обнаружены следы воды. Цели каждого робота-вездехода - фотографирование поверхности, исследование химического состава поверхности и ее геологического строения, поиск следов воды, исследование климатической и геологической истории данного участка поверхности Марса. Перед роверами не стоит задача поиска жизни на Марсе, но они будут заниматься исследованиями окружающей среды места посадки, в том числе и на предмет ее возможности поддержания жизни в какие-то прошлые времена, когда климат возможно был мягче..

Марсоходы имеют массу по 150 кг каждый, срок их работы расчитан на время от 3 до 6 месяцев, при этом марсоходы будут способны проходить до 100 м в сутки. Напомним, что маленький марсоход Pathfinder в 1996 г. отъехал от спускаемого аппарата на расстояние всего около 10 м. Инструменты миссии - камеры, спектрометры, и другие датчики, которые позволят измерять и изучать параметры окрестностей места прохождения марсоходов. Каждый из них "вооружен" не менее чем девятью камерами и тремя спектрометрами. Некоторые из инструментов предназначены для научных целей, в то время как задачами других является снабжение центра управления роверами информацией, согласно которой их будут вести сквозь препятствия марсианского ландшафта. Среди инструментов - панорамные камеры, микроскопы, спектрометр Мёссбауэра, манипулятор с пятью степенями свободы и шлифовальным устройством RAT (Rock Abrasion Tool), которое должно послужить для удаления ржавчины с исследуемых образцов на участке диаметром 45 мм.

Управление марсоходами будет осуществлять команда из приблизительно 100 человек. Большая часть работы команды придется на то время, когда роверы приблизительно 14 часов в день "спят", в это время данные, полученные при движении и исследовательских акциях роверов будут обрабатываться и интерпретироваться. На основании полученных результатов, команда будет выстраивать тактику дальнейших действий для роверов, на время их "пробуждения".

При разработке марсоходов большое внимание уделено двигательной системе. Каждое из шести колес ровера имеет независимый двигатель. Пары передних и задних колес имеют по регулирующему двигателю, которые позволяют роверам поворачиваться на месте. Регулирование четырьмя колесами позволяет роверу отклоняться и изгибаться в процессе поворотов. Двигательная система ровера разработана таким образом, чтобы при наклоне в 45 градусов в любом направлении избежать угрозы опрокидывания.

Перед вами фото, изображающее марсоход, которое, помимо всего прочего, позволяет оценить его размеры относительно человеческого роста. На фотографиях МЕR видна мачта, на которой расположены панорамные и навигационные камеры, мачта позволяет поднять их на высоту 1,4 метра от уровня земли, увеличивая таким образом видимую перспективу поверхности Марса.

Для взятия проб и анализа состава камней и почвы предусмотрена автоматизированная робототехническая рука с плечом, локтем, и запястьем. Рука позволяет ученым разместить набор четырех инструментов под точно выверенным углом против выбранной скалы или камня. Рука каждого марсохода оснащена средством измельчения горных пород (Rock Abrasion Tool, RAT) с алмазными резцами. Они позволят впервые за все время исследований Марса проникнуть в недра планеты.

Возможность изучить горные породы на Марсе даст геологам возможность понять их строение и механизм происхождения, а также получить новые данные о процессе эволюции на Марсе. Перемещаясь по Марсу, марсоходы будут находить интересующие их горные породы, после чего с помощью манипуляторов придвинут к интересующему их участку поверхности рабочую поверхность системы измельчения RAT, которая в течении 30 минут cнимет верхний слой горных пород, оставив круглое отверстие в породе диаметром около 45 мм и глубиной 5 мм. После этого обнажившиеся горные породы будут исследованы с помощью видеокамеры и химических анализаторов. RAT рассчитан на однократное использование, однако способен измельчить породу на десяти тестовых площадках.

Для посадки планируется использовать надувную конструкцию, которая была успешно испытана во время миссии аппарата Mars Pathfinder в 1996 г. Основное торможение будет осуществлено с помощью парашюта, непосредственно перед контактом с поверхностью сработают двигатели посадки и будут раздуты воздушные камеры. После достижения поверхности, космический корабль подпрыгнет на них дюжину раз, и сможет прокатиться до одного километра. Когда он остановится, воздушные камеры будут скачаны и отделены, лепестки откроются, приводя примарсившийся аппарат к вертикальному положению.

Вот на данный момент времени вкратце вся информация от "Красной Планеты" о этом интереснейшем проекте (точнее проектах, ведь марсоходов будет два). В дальнейшем, по мере претворения планов в жизнь, мы постараемся освещать этот процесс в нашем журнале. Будем надеяться на удачное осуществление миссий Марс Эксплорэйшн Роверов!

Исследование Марса самоходным аппаратом.

Марсоход на Марсе по представлению художника (рис. справа внизу) На пути к Марсу NASA произвел отладку научной аппаратуры и привязку камер на Spirit и Opportunity и оценил работоспособность приборов после нагрузок и вибраций при запуске этих двух аппаратов. Тестовые измерения в Лаборатории реактивного движения (Pasadena), завершились с положительными данными о работе и возможностях двух спектрометров.

Научная аппаратура включает в себя панорамную стереокамеру, микроскоп и три спектрометра. Тесты также оценили работоспособность каждой камер космического корабля. Все 10 камер - три камеры для научных исследований и семь прикладных камер показали хорошие результаты при тестировании. Один из трех спектрометров (Spirit) прошел тест неверно. Другие два спектрометра работали правильно. Тестирование началось почти три недели тому назад, и за это время было проанализировано около 200 мегабайт данных переданных с каждого космического корабля. "Все камеры работают нормально," сказал Dr. Justin Maki. "Всего мы получили 14 изображений с каждого космического корабля. Титры на изображениях дают характерные подписи, которые сообщают, что электроника работает правильно."

Научные камеры на марсоходах - "Pancam" для цветных панорамных съемок и блоки Microscopic для формирования изображения - все работает безукоризненно. Спектрометры на марсоходах для анализа минералов на расстояния, также работают нормально. Два других спектрометра - спектрометра альфа-частиц и спектрометр Mossbauer - установлены для определиния состава грунта. Оба инструмента, а также приемнк альфа-частиц рентгеновского спектрометра работают нормально. Спектрометр Mossbauer на Spirit - единственный, чьи данные теста не дали ожидаемого нормального функционирования.

Эти автоматические химические лаборатории исследуют поверхность планеты Марс. Миссия начата в 2003 отправкой двух марсоходов — MER-A Spirit и MER-B Opportunity для исследования поверхности Красной планеты и его геологии. В январе 2004 года марсоходы приземлились на Марсе и приступили к его исследования.

3 января 2004 на Марс опустился Спирит, а тремя неделями позже, к нему присоединился и Оппортюнити.

Спирит добротно проработал на поверхности Марса свыше 6 лет вместо запланированных 90 дней, сколько должна была продлиться его миссия. За шесть лет работы на Красной планете, Спирит сделал множество ценных открытий, однако 22 марта 2010 года, когда был проведен последний успешный сеанс связи с марсоходом, Спирит начал выходить из строя. Поскольку он не смог получить нужный наклон по отношению к солнцу, солнечные батареи не вырабатывают достаточное количество электроэнергии для работы в условиях марсианской зимы. Предполагается, что марсоход погрузился в спящий режим.

Большинство нагревателей, установленных внутри аппарата, также не работают из-за нехватки питания. Вероятно, его внутренняя температура опустилась до −55 градусов, тогда как в прошлые зимы она не опускалась ниже −40 градусов. Поэтому существует значительная вероятность утраты им работоспособности.

По расчетам американских экспертов, самый ранний срок, когда марсоход смог бы выработать достаточное количество электроэнергии для связи с Землёй — 23 июля. Предполагалось, что аккумуляторы аппарата накопят достаточное количество энергии не ранее конца сентября — середины октября 2010 г., однако 30 июля связаться с космическим аппаратом так и не удалось.

Марсоход Оппортьюнити продолжает работать и делать интересные открытия на Марсе, хотя его миссия также была рассчитана на 90 дней.

26 ноября 2010 года на помощь марсоходу Оппортюнити был запущен еще более совершенный вездеход под названием Кюрьозити. Он должен приземлиться на поверхность Марса в августе 2012 года с помощью инновационной системы приземления на воздушной подушке, разработанной специально для этого самого большого из всех существующих марсоходов. Вес последнего марсохода составляет около 900 кг. Он должен приземлиться в районе 20-километрового кратера Гейл и немедленно приступит к исследованию марсианского грунта.

Многие эксперты считают, что срок службы американских марсоходов во много раз превышает запланированный, так как американцы умеют надежно и качественно строить космические аппараты, используя самые передовые технологии. К тому же, они учатся на своих ошибках, и каждый новый марсоход во много раз является более совершенным предыдущего.

September 26th, 2015

Смотрим следующий аппарат, исследовавший "Марс" США и удивляемся:
https://ru.wikipedia.org/wiki/Mars_Exploration_Rover


Марсоход MER на Марсе в представлении художника
"Mars Exploration Rover (MER) программа НАСА по исследованию планеты Марс с помощью двух однотипных мобильных, передвигающихся по поверхности космических аппаратов - марсоходов. Научный руководитель программы - Стив Скваерс.
В ходе выполнения программы на Марс были успешно доставлены марсоходы второго поколения MER-A Спирит (Spirit) и MER-B Оппортьюнити (Opportunity). Спускаемый аппарат с марсоходом Спирит совершил мягкую посадку на Марс 4 января 2004 в кратер Гусева. (координаты места посадки 14.5718° ю. ш. 175,4785° в. д.). Спускаемый аппарат с марсоходом Оппортьюнити совершил мягкую посадку на Марс 25 января 2004 на Плато Меридиана. (координаты места посадки 1.95° ю. ш. 354,47° в. д.) При базовом 90-дневном сроке эксплуатации марсоходов Спирит проработал более 6 лет до 2011".

Марсоход MER в сравнении с предшественником Соджонер и человеком

Конструкция этого "чуда" США:

Сказка НАСА: https://ru.wikipedia.org/wiki/Mars_Exploration_Rover
"Конструкция аппаратов.
Автоматическая межпланетная станция проекта MER включает посадочный модуль и перелётный двигательный блок. Для разных этапов торможения в атмосфере Марса и посадки посадочный модуль обрамлён двумя коническими аэродинамическими щитами и имеет парашютную систему, ракетные двигатели и шаровидные воздушные подушки.
Марсоход имеет 6 колёс. Источником электроэнергии служат солнечные батареи мощностью до 140 ватт. При массе в 185 кг аппарат оснащён буром, несколькими камерами, микроскопом и двумя спектрометрами, смонтированными на манипуляторе.
Поворотный механизм марсохода выполнен на основе сервоприводов. Такие приводы расположены на каждом из передних и задних колёс, средняя пара таких деталей не имеет. Поворот передних и задних колёс марсохода осуществляется при помощи электромоторов, действующих независимо от моторов, обеспечивающих перемещение аппарата.
Когда марсоходу необходимо повернуть, двигатели включаются и поворачивают колеса на нужный угол. Всё остальное время двигатели, наоборот, препятствуют повороту, чтобы аппарат не сбивался с курса из-за случайного движения колёс. Переключение режимов поворот-тормоз производится с помощью реле.
Также марсоход способен копать грунт, вращая одно из передних колес, сам оставаясь при этом неподвижным. Бортовой компьютер построен на процессоре RAD6000 с частотой 20 МГц, 128 МБ DRAM ОЗУ, 3 МБ EEPROM и 256 Мбайт флэш-памяти. Рабочая температура робота от минус 40 до плюс 40 °C. Для работы при низких температурах используется радиоизотопный нагреватель, который может дополняться также электрическими нагревателями, когда это необходимо. Для теплоизоляции применяется аэрогель и золотая фольга.
Прототипы марсоходов MER испытывались в земных пустынях с 2002".

Пилили бюджет США американские лгуны по взрослому, естественно под руководством главных руководителей страны, не без этого:

АМС на сборке (Оппортьюнити)

Воздушные подушки спускаемого аппарата

Небо при прекрасной горизонтальной видимости у этого "марсохода" предстало светло розовым:

Видимость просто уникальная до самого горизонта, никаких признаков пыли, ну если только это нанопыль в очень малых количествах, что мало вероятно:

Розовое небо появилось явно не благодаря пыли в атмосфере "Марса", это фотография, выполненная через фильтр.

Следующая картинка это фотография, а не художественное произведение художника, и это фотография выполненная на Земле:

Следы марсохода на марсианской поверхности (Оппортьюнити)

Эти пейзажи потом обнаружат журналисты:

Кадр из телепередачи Би-би-си "The Sky at Night" Рис. 1

Увеличенный фрагмент кадра из того же видео сюжета Рис. 2

Интересно исследование этих фотографий об использовании фильтров:
http://alternathistory.org.ua/paranoiya-ili-taki-da
"Сюрприз от Би-би-си
В начале июля нынешнего года ТВ-канал BBC One государственного британского телевидения давал в эфир очередной выпуск ежемесячной передачи «Ночное небо», посвященной астрономии и исследованиям космоса. Одна из самых примечательных особенностей этой программы в том, что, начиная с самого первого выпуска Sky at Night, вышедшего в эфир 24 апреля 1957 года, ее постоянно ведет один и тот же основной ведущий - сэр Патрик Мур (Patrick Moore). Поэтому неудивительно, что «Ночное небо» уверенно держит титул самой долгоживущей ТВ-передачи с одним и тем же ведущим в истории телевидения. Что же касается июльского видео сюжета, о котором сейчас идет речь, то это был своего рода гимн в честь автоматического аппарата-марсохода Mars Rover Spirit. В нем говорилось о бесспорно выдающихся качествах и достижениях робота NASA, который намного превзошел ожидания своих конструкторов относительно надежности и долговечности. Попутно зрителям был представлен и новый марсоход Curiosity, отправляемый на Марс в самое ближайшее время.
Присутствующий в кадре человек, который, очевидно, и рассказал Муру обо всех этих вещах, в анонсах июльской передачи почему-то был представлен как «доктор Крис Норт» (Dr. Chris North). Однако в субтитрах самого видеоряда он фигурирует как профессор Стив Сквайрс (Steve Squyres) из Корнеллского университета. Вторая идентификация гарантированно более точная, поскольку - в отличие от неведомого Норта - именно Сквайрс хорошо известен как ученый, самым тесным образом связанный с ежедневными операциями марсоходов-близнецов Spirit и Opportunity. Но в данном случае интересен не столько сам Сквайрс, сколько два больших монитора за его спиной, демонстрирующие пейзаж Марса. Примечательная особенность, которую нельзя не заметить, – цвета в этом пейзаже совершенно не соответствуют тем зловещим красно-бурым оттенкам, которые обычно характерны для всех публикуемых в СМИ цветных фотографий марсианских ландшафтов.
Получается, что в версии снимков, с которыми работает команда сопровождения марсоходов, и небо марсианское выглядит совсем по-земному голубым, и цвет марсианского грунта оказывается намного более естественным (по нашим, конечно, земным меркам). Иначе говоря, хотели того авторы телепередачи или нет, но благодаря их видеосъемке в который уже раз обострились давно идущие дебаты о том, каков же действительный цвет у Марса и почему на протяжении вот уже тридцати с лишним лет не удается получить ответ на простой, казалось бы, вопрос.
Как это начиналось
Самый первый в истории человечества цветной снимок, сделанный на поверхности Марса, был получен летом 1976 года от спускаемого аппарата Viking Lander 1. И уже на нем люди увидели голубое небо и цвета ландшафта, похожие на земные (фото слева). Но буквально через несколько часов NASA выпустило «обновленную» версию того же самого снимка (фото справа), который поразил мир своими оранжевыми небесами и красным грунтом.

Первый снимок марсохода Spirit __Рис. 4
Наблюдательные люди тут же приметили необычный вид логотипа NASA, нанесенного на платформу доставочного модуля. Обычно густо-синий цвет звездного неба, образующего фон логотипа, на снимке с Марса имеет вид пятна грязновато-красного цвета. А застывшая голубая пена изолятора, окружающая электрические кабели на платформе, на снимке превратилась в ярко-розовую. Понятно, что при столь искаженной подаче хорошо известных оттенков и цвета ландшафта далекой планеты на изображениях от камер Spirit никак нельзя называть натуральными.

Вообще-то прекрасно известно, что специально для правильной регулировки цветобаланса ученые NASA используют имеющуюся у марсоходов эталонную мишень калибровки цветов, также известную как Sundial Target или «солнечные часы». Суть работы с этой мишенью достаточно проста - на круглом циферблате имеются четыре метки базовых эталонных цветов, настраиваясь на которые можно получить наиболее естественные цвета на картинке.

Беда в том, что всякий раз, когда эти «солнечные часы» попадают в кадр, становится совершенно очевидно, что публике скармливают неправильно откалиброванные по цвету фотографии марсианской поверхности. Вот как выглядит типичный тому пример - широко растиражированная и составленная из множества снимков панорама Марса, сделанная все тем же марсоходом Spirit и имеющая «часы» как раз по центру внизу. __Рис. 5

Если рассмотреть увеличенное изображение циферблата этих «часов» (справа) и сравнить их с эталонным изображением, сделанным на Земле (слева), то легко заметить, в чем именно заключается проблема. Синий цвет на Марсе превратился в красный, а зеленый вовсе исчез. Что может означать зеленый цвет в ландшафтах, пояснять, вероятно, не требуется…

Синий цвет превращается в красный, а зеленого просто нет __Рис. 6
Так в чем же дело?
Разъяснения официальных представителей NASA по поводу постоянных претензий к неадекватной цветопередаче в изображениях с Марса звучат примерно следующим образом. Корнем проблемы следует считать особенности устройства цифровых CCD-камер (charge coupled device), используемых в последних миссиях как роботов-марсоходов, так и орбитальных аппаратов-спутников. Потому что все эти камеры не записывают цвет напрямую в делаемых ими снимках. Вместо этого они снимают черно-белые фотографии через множество различных фильтров, каждый из которых пропускает свет лишь в узком диапазоне длин волн (или, иначе, цветов), некоторые из которых невидимы для глаза. Чтобы получился «натуральный» цветной снимок, камеры должны сделать три отдельные фотографии одной и той же сцены, каждую через разные фильтры основных цветов: красный, зеленый и синий. Когда все три части накладываются одна на другую, они могут предоставить подлинно цветную композитную картинку. Но даже в этом случае потребуется балансировка цветов таким образом, чтобы они наиболее близко соответствовали тому, что обычно видит глаз. То есть надо также брать в расчет эффекты пыли, изменения в уровнях освещенности и некоторые другие переменные.
Камеры марсоходов Spirit и Opportunity имеют по два «глаза», каждый из которых оснащен 8 цветовыми фильтрами. При этом левый глаз имеет в своем составе красный, зеленый, и синий цветовые фильтры (они требуются для естественной цветопередачи), а правый глаз сосредоточен целиком на невидимых глазу полосах ультрафиолетового и инфракрасного диапазонов. Из-за этих особенностей в каком-то смысле можно говорить, что повышенное внимание NASA к нуждам научного сообщества могло простимулировать публикацию неправильно окрашенных снимков Марса. Планетарные геологи опираются в своей работе на ультрафиолетовые и инфракрасные данные - чтобы эффективнее идентифицировать камни и минералы. А ведь это основная научная цель миссии марсоходов Spirit и Opportunity! Иначе говоря, поясняют в NASA, руководители миссии пытаются использовать эти фильтры так часто, насколько это возможно. Но всякий раз, когда они добавляют невидимые для глаза длины волн в композитную картинку, это с неизбежностью дает на выходе изображение с ложными цветами.
Таким образом, большинство красных марсианских снимков являются результатом использования фильтров с полосой, лежащей за пределами человеческого зрения. Большая проблема этого официального объяснения заключается в том, что ничего иного, кроме изображений Марса с ложными цветами, публике, похоже, вообще не предъявляется. Ну а как же Марс все-таки выглядит в действительности? Для отыскания ответа на этот вопрос, говорят специалисты, требуется декодирование систем фотосъемки NASA, изолирование информации от красного, зеленого и синего фильтров с финальной коррекцией цветов в соответствии с точными параметрами этих фильтров. К счастью, в природе существуют независимые специалисты, умеющие вполне профессионально все это делать и в массовых количествах выкладывающие в Сеть более адекватно обработанные марсианские снимки NASA (куда больше похожие, кстати, на пейзаж с монитора Стива Сквайрса из телепередачи BBC)".
Контраргументы адвоката лжи НАСА очень забавные:
http://geektimes.ru/post/160621/
"Особенность получения цветных снимков через три фильтра вызвала еще одно обвинение NASA в том, что они выкладывают много черно-белых снимков и совсем мало цветных. Во-первых, «мало цветных» это чушь, т.к. еще до Curiosity опубликованы тысячи цветных кадров Spirit и Opportunity, и десятки огромных 360-градусных панорам. Во-вторых, выкладывая сырые черно-белые кадры, сделанные через цветные фильтры, NASA дает всем возможность самостоятельно изготовить цветные снимки Марса. Но конспирологи осваивают Photoshop только до функции Autocolor, которой они «восстанавливают истинный цвет Марса», а тонкости работы с цветовыми каналами им неведомы."
Это что то новое, оказывается каждый может выбрать цвет Марса США по своему вкусу. Но цвет и не важен по большому счету, главная ошибка НАСА сделана, они показали небо своего "Марса" Светлым, и дальше не важно розовый там цвет или голубой, все приехали, цвет марсианского неба на реальном Марсе темный, черный.
Следующий контраргумент еще забавнее:
http://geektimes.ru/post/160621/
"Следующий аргумент адептов учения «марснекрасный» - это некий репортаж BBC о работе специалистов NASA. По сюжету передачи, ученый сидит за рабочим ноутбуком, тут к нему в кабинет входят журналисты, и что-то там спрашивают.
Но конспиролог кричит «Ага!» и тычет в мониторы за спиной ученого, а там не красный Марс и голубое небо. При этом более чем странно выглядит организация заговорщиков глобального масштаба, где журналисты с камерами спокойно разгуливают по кабинетам, заглядывая куда понравится. Но об этом не думают те, кто мечтает поймать NASA на лжи.
Так что же на том мониторе? Там изображен участок Cape Verde кратера Виктория, который исследовал Opportunity.
Ученые NASA используют обработку под земные условия освещения для того, чтобы облегчить определение пород камней, которые встречаются марсоходам. Поскольку глаза геологов привычны к земным условиям, то и изменение цветовой гаммы марсианских снимков производится в ту же сторону. И фотографии эти вовсе не секретные."
Очень оригинально изменять реальный цвет камней в Фотошопе, чтобы облегчить определение пород камней. Эти защитники НАСА мало того, что глупые, они еще и забавные, как что-нибудь придумают, так хоть стой, хоть падай!
Главное не надо было показывать на "Марсе" земных пейзажей:

И земные смерчи:

Ошибка везде одна и самая глупая - это светлое "марсианское" небо с хорошей видимостью дальних объектов, сказки про пыль не проходят:

Автопортрет «Кьюриосити»

Марсианская научная лаборатория (МНЛ) (Mars Science Laboratory , сокр. MSL ), «Марс сайенс лэборатори» - миссия НАСА , в ходе выполнения которой на был успешно доставлен и эксплуатируется третьего поколения «Кьюриосити» (Curiosity , - любопытство, любознательность ). Марсоход представляет собой автономную химическую лабораторию в несколько раз больше и тяжелее предыдущих марсоходов «Спирит» и «Оппортьюнити». Аппарат должен будет за несколько месяцев пройти от 5 до20 километров и провести полноценный анализ марсианских почв и компонентов атмосферы. Для выполнения контролируемой и более точной посадки использовались вспомогательные ракетные двигатели.

Запуск «Кьюриосити» к Марсу состоялся 26 ноября 2011 года, мягкая посадка на поверхность Марса - 6 августа 2012 года. Предполагаемый срок службы на Марсе - один марсианский год (686 земных суток).

MSL - часть долговременной программы НАСА по исследованию Марса роботизированными зондами Mars Exploration Program. В проекте, помимо НАСА, участвуют также Калифорнийский технологический институт и Лаборатория реактивного движения. Руководитель проекта - Дуг Маккистион (Doug McCuistion), сотрудник НАСА из отдела изучения других планет.Полная стоимость проекта MSL составляет примерно 2,5 миллиарда долларов.

Специалисты американского космического агентства НАСА решили отправить марсоход в кратер Гейла. В огромной воронке хорошо просматриваются глубинные слои марсианского грунта, раскрывающие геологическую историю красной планеты.

Название «Кьюриосити» было выбрано в 2009 году среди вариантов, предложенных школьниками, путём голосования в сети Интернет. Среди других вариантов были Adventure («Приключение»), Amelia , Journey («Путешествие»),Perception («Восприятие»), Pursuit («Стремление»), Sunrise («Восход»), Vision («Ви́дение»), Wonder («Чудо»).

История

Космический аппарат в собранном виде.

В апреле 2004 года НАСА начало отбор предложений по оснащению нового марсохода научным оборудованием, и 14 декабря 2004 года было принято решение об отборе восьми предложений. В конце того же года началась разработка и испытания составных частей системы, включая разработку однокомпонентного двигателя производства компании Aerojet, который способен выдавать тягу в диапазоне от 15 до 100 % от максимальной при постоянном давлении наддува.

Создание всех компонентов марсохода было завершено к ноябрю 2008 года, причём большая часть инструментов и программного обеспечения MSL продолжало испытываться. Перерасход бюджета миссии составил около 400 миллионов долларов. В следующем месяце НАСА отложило запуск MSL на конец 2011 года из-за недостатка времени для испытаний.

С 23 по 29 марта 2009 года на сайте НАСА проводилось голосование по выбору названия для марсохода, на выбор было дано 9 слов. 27 мая 2009 года победителем было объявлено слово «Кьюриосити». Оно было предложено шестиклассницей из Канзаса Кларой Ма.

Марсоход был запущен ракетой “Атлас-5” с мыса Канаверал 26 ноября 2011 года. 11 января 2012 года был проведён специальный манёвр, который эксперты называют «самым важным» для марсохода. В результате совершённого манёвра аппарат взял курс, который привёл его в оптимальную точку для десантирования на поверхность Марса.

28 июля 2012 года была проведена четвёртая небольшая коррекция траектории, двигатели включили всего на шесть секунд. Операция прошла настолько успешно, что финальная коррекция, изначально намеченная на 3 августа, не потребовалась.

Посадка произошла успешно 6 августа 2012 года, в 05:17 UTC. Радиосигнал, сообщающий об успешной посадке марсохода на поверхность Марса, достиг в 05:32 UTC.

Задачи и цели миссии

29 июня 2010 года инженеры из Лаборатории Реактивного Движения собрали «Кьюриосити» в большом чистом помещении, в рамках подготовки к запуску марсохода в конце 2011 года.

MSL имеет четыре основных цели:

  • установить, существовали ли когда-либо условия, подходящие для существования жизни на Марсе;
  • получить подробные сведения о климате Марса;
  • получить подробные сведения о геологии Марса;
  • провести подготовку к высадке человека на Марсе.

Для достижения этих целей перед MSL поставлено шесть основных задач:

  • определить минералогический состав марсианских почв и припочвенных геологических материалов;
  • попытаться обнаружить следы возможного протекания биологических процессов - по элементам, являющимся основой жизни, какой она известна землянам: (углерод, водород, азот, кислород, фосфор, серу);
  • установить процессы, в которых формировались марсианские камни и почвы;
  • оценить процесс эволюции марсианской атмосферы в долгосрочном периоде;
  • определить текущее состояние, распределение и круговорот воды и углекислого газа;
  • установить спектр радиоактивного излучения поверхности Марса.

Также в рамках исследований измерялось воздействие космической радиации на компоненты во время перелёта к Марсу. Эти данные помогут оценить уровни радиации, ожидающие людей в пилотируемой экспедиции на Марс.

Состав

Перелётный
модуль
Модуль управляет траекторией Mars Science Laboratory во время полёта с Земли на Марс. Также включает в себя компоненты для поддержки связи во время полёта и регулирования температуры. Перед входом в атмосферу Марса происходит разделение перелетного модуля и спускаемого аппарата.
Тыльная часть
капсулы
Капсула необходима для спуска через атмосферу. Она защищает марсоход от влияния космического пространства и перегрузок во время входа в атмосферу Марса. В тыльной части находится контейнер для парашюта. Рядом с контейнером установлено несколько антенн связи.
«Небесный кран» После того, как теплозащитный экран и тыльная часть капсула выполнят свою задачу, они расстыковываются, тем самым освобождая путь для спуска аппарата и позволяя радару определить место посадки. После расстыковки кран обеспечивает точный и плавный спуск марсохода на поверхность Марса, который достигается за счёт использования реактивных двигателей и контролируется с помощью радиолокатора на марсоходе.
Марсоход «Кьюриосити» Марсоход под названием «Кьюриосити», содержит все научные приборы, а также важные системы связи и энергоснабжения. Во время полёта шасси складывается для экономии места.
Лобовая часть
капсулы с
теплозащитным экраном
Теплозащитный экран защищает марсоход от крайне высокой температуры, воздействующей на спускаемый аппарат при торможении в атмосфере Марса.
Спускаемый аппарат Масса спускаемого аппарата (изображён в сборе с перелётным модулем) составляет 3,3 тонны. Спускаемый аппарат служит для контролируемого безопасного снижения марсохода при торможении в марсианской атмосфере и мягкой посадки марсохода на поверхность.

Технология полёта и посадки

Перелётный модуль готов к испытанию. Обратите внимание на часть капсулы снизу, в этой части находится радиолокатор, а на самом верху - солнечные батареи.

Траекторию движения Mars Science Laboratory от Земли до Марса контролировал перелётный модуль, соединённый с капсулой. Силовым элементом конструкции перелётного модуля была кольцевая ферма диаметром 4 метра, из алюминиевого сплава, укреплённая несколькими стабилизирующими стойками. На поверхности перелётного модуля были установлены 12 панелей , подключённых к системе энергоснабжения. К концу полёта, перед входом капсулы в атмосферу Марса, они вырабатывали около 1 кВт электрической энергии с КПД порядка 28,5 %. Для проведения энергоемких операций были предусмотрены литий-ионные аккумуляторы. Кроме того, система электропитания перелётного модуля, батареи спускаемого модуля и энергосистема «Кьюриосити» имели взаимные соединения, что позволяло перенаправить потоки энергии в случае возникновения неисправностей.

Ориентация космического аппарата в пространстве определялась при помощи звёздного датчика и одного из двух солнечных датчиков. Звёздный датчик наблюдал за несколькими выбранными для навигации звёздами; солнечный датчик использовал в качестве опорной точки . Эта система была спроектирована с резервированием для повышения надёжности миссии. Для коррекции траектории применялись 8 двигателей, работающих на гидразине, запас которого содержался в двух сферических титановых баках.