Сезонные изменения физиологических процессов. Причины биологических ритмов

Сезоны — это времена года, отличающиеся погодой и температурой. Они меняются в зависимости от годового цикла. Растения и животные прекрасно приспосабливаются к этим сезонным изменениям.

Времена года на Земле

В тропиках никогда не бывает очень холодно или очень жарко, там только два сезона: один — влажный и дождливый, другой — сухой. У экватора (на средней воображаемой линии) жарко и влажно в течение всего года.

В умеренных зонах (за пределами линий тропиков) бывает весна, лето, осень и зима. Обычно чем ближе к Северному или Южному полюсу, тем прохладнее лето и холоднее зима.

Сезонные изменения у растений

Чтобы образовывать питательные вещества и расти, зеленые растения нуждаются в солнечном свете и воде. Больше всего они растут весной и летом или во влажный период. Они по-разному переносят зиму или сухое время года. У многих растений есть так называемый период отдыха. Многие растения накапливают питательные вещества в утолщенных частях, находящихся под землей. Их надземная часть умирает, растение отдыхает до весны. Морковь, лук и картофель — такого типа растения, накапливающие питательные вещества, которые используют люди.

Такие, как дуб и бук, сбрасывают листву осенью, потому что в это время недостаточно солнечного света для образования в листьях питательных веществ. Зимой они отдыхают, а весной на них появляются новые листочки.

Вечнозеленые деревья всегда покрыты листвой, которая никогда не опадает. Чтобы узнать больше о вечнозеленых и сбрасывающих листья деревьях.

У некоторых вечнозеленых деревьев, таких, как сосна и ель, листья длинные и тонкие, называемые иголками. Многие из вечнозеленых деревьев растут далеко на севере, где лето короткое и прохладное, а зима суровая. Сохраняя свою листву, они могут начать расти, как только придет весна.

В пустынях обычно очень сухо, иногда там вообще ие бывает дождя, а иногда случаются очень короткие сезоны дождей. Семена прорастают и дают новые всходы только в дождливый период. Растения цветут и очень быстро дают семена. В них накапливаются питательные вещества

Сезонные изменения у животных

Некоторые животные, такие, как рептилии , чтобы выжить в холодный или сухой сезон, уменьшают свою активность и засыпают. Когда становится теплее, они возвращаются к активному образу жизни. Другие животные ведут себя иначе, у них есть свои способы выживания в суровые периоды.

Некоторые животные, такие, как соня, спят всю зиму. Это явление называется спячкой. Все лето они едят, накапливая жир, чтобы зимой можно было спать, не принимая пищи.

Большинство млекопитающих и птиц выводят детенышей весной, когда везде много пищи, так что они успевают подрасти и окрепнуть к зиме.

Многие животные и птицы каждый год предпринимают длинные путешествия, называемые миграциями, в места, где больше пищи. Например, ласточки вьют гнезда в Европе весной, а осенью улетают в Африку. Весной, когда в Африке становится очень сухо, они возвращаются.

Карибу (называемые северными оленями в Европе и Азии) тоже мигрируют, проводя лето за Полярным кругом. Огромные стада поедают траву и другие мелкие растения там, где тает лед. Осенью они переходят к югу, в район вечнозеленых лесов, и поедают такие растения, как мох и лишайник, находящиеся под снегом.


Одно из фундаментальных свойств живой природы - это цикличность большинства происходящих в ней процессов. Между движением небесных тел и живыми организмами на Земле существует связь.

Живые организмы не только улавливают свет и тепло солнца и луны, но и обладают различными механизмами, точно определяющими положение Солнца, реагирующими на ритм приливов, фазы луны и движение нашей планеты. Они растут и размножаются в ритме, который приурочен к продолжительности дня и смене времени года, обусловленном в свою очередь движением Земли вокруг Солнца. Совпадение фаз жизненного цикла с временем года, к условиям которого они приспособлены, имеет решающее значение для существования вида. В процессе исторического развития циклические явления, происходящие в природе, были восприняты и усвоены живой материей, и у организмов выработалось свойство периодически изменять свое физиологическое состояние.

Равномерное чередование во времени каких-либо состояний организма называется биологическим ритмом.

Различают внешние (экзогенные), имеющие географическую природу и следующие за циклическими изменениями во внешней среде, и внутренние (эндогенные), или физиологические, ритмы организма.

Внешние ритмы

Внешние ритмы имеют географическую природу, связаны с вращением Земли относительно Солнца и Луны относительно Земли.

Множество экологических факторов на нашей планете, в первую очередь световой режим, температура, давление и влажность воздуха, атмосферное электромагнитное поле, морские приливы и отливы и др. под влиянием этого вращения закономерно изменяются. На живые организмы воздействуют и такие космические ритмы, как периодические изменения солнечной активности. Для Солнца характерен 11-летний и целый ряд других циклов. Существенное влияние оказывают на климат нашей планеты изменения солнечной радиации. Помимо циклического воздействия абиотических факторов внешними ритмами для любого организма являются и закономерные изменения активности, а также поведение других живых существ.

Внутренние, физиологические, ритмы

Внутренние, физиологические, ритмы возникли исторически. Ни один физиологический процесс в организме не осуществляется непрерывно. Обнаружена ритмичность в процессах синтеза ДНК и РНК в клетках, в синтезе белков, в работе ферментов, деятельности митохондрий. Деление клеток, сокращение мышц, работа желез внутренней секреции, биение сердца, дыхание, возбудимость нервной системы, т. е. работа всех клеток, органов и тканей организма подчиняется определенному ритму. Каждая система имеет свой собственный период. Действиями факторов внешней среды изменить этот период можно лишь в узких пределах, а для некоторых процессов практически невозможно. Данную ритмику называют эндогенной.

Внутренние ритмы организма соподчинены, интегрированы в целостную систему и выступают в конечном итоге в виде общей периодичности поведения организма. Организм как бы отсчитывает время, ритмически осуществляя свои физиологические функции. Как для внешних, так и для внутренних ритмов наступление очередной фазы прежде всего зависит от времени. Отсюда время выступает как один из важнейших экологических факторов, на который должны реагировать живые организмы, приспосабливаясь к внешним циклическим изменениям природы.

Изменения в жизнедеятельности организмов нередко совпадают по периоду с внешними, географическими циклами. Среди них такие, как адаптивные биологические ритмы - суточные, приливно-отливные, равные лунному месяцу, годовые. Самые важные биологические функции организма (питание, рост, размножение и т. д.) благодаря им совпадают с наиболее благоприятными для этого времени суток и года.

Суточный режим. Дважды в сутки, на рассвете и на закате, активность животных и растений на нашей планете меняется так сильно, что приводит нередко к практически полной, образно выражаясь, смене «действующих лиц». Это так называемый суточный ритм, обусловленный периодическим изменением освещенности из-за вращения Земли вокруг своей оси. В зеленых растениях фотосинтез идет только в светлое (дневное) время суток. У растений нередко открывание и закрывание цветков, поднятие и опускание листьев, максимальная интенсивность дыхания, скорость роста колеоптиля и др. приурочены к определенному времени суток.

Примечание в кружках показано примерное время открывания и закрывания цветков у разных растений

Некоторые виды животных активны лишь при солнечном свете, другие, напротив, его избегают. Различия между дневным и ночным образом жизни - явление сложное, и связано оно с разнообразными физиологическими и поведенческими адаптациями, которые выработаны в процессе эволюции. Млекопитающие обычно более активны ночью, но существуют и исключения, например человек: зрение человека, так же как и человекообразных обезьян, приспособлено к дневному свету. Свыше 100 физиологических функций, затронутых суточной периодичностью, отмечено у человека: сон и бодрствование, изменение температуры тела, ритма сердечных сокращений, глубины и частоты дыхания, объема и химического состава мочи, потоотделения, мышечной и умственной работоспособности и т. д. Таким образом, большинство животных подразделяется на две группы видов - дневную и ночную, практически не встречающиеся друг с другом.

Дневные животные (большая часть птиц, насекомых и ящериц) на закате солнца отправляются спать, а мир заполняют ночные животные (ежи, летучие мыши, совы, большинство кошачьих, травяные лягушки, тараканы и др.). Имеются виды животных с приблизительно одинаковой активностью как днем, так и ночью, с чередованием коротких периодов покоя и бодрствования. Такой ритм называют полифазным (ряд хищников, многие землеройки и т. д.).

Суточный ритм четко прослеживается в жизни обитателей крупных водных систем - океанов, морей, больших озер. Зоопланктон ежедневно совершает вертикальные миграции, поднимаясь к поверхности на ночь и опускаясь днем. Вслед за зоопланктоном вверх-вниз перемещаются питающиеся им более крупные животные, а за ними - еще более крупные хищники. Считается, что вертикальные перемещения планктонных организмов происходят под влиянием многих факторов: освещенности, температуры, солености воды, гравитации, наконец, просто голода. Однако первичным все же является, по мнению большинства ученых, освещенность, так как ее изменение может вызывать изменение реакции животных на гравитацию.

У многих животных суточная периодичность не сопровождается существенными отклонениями физиологических функций, а проявляется в основном изменениями двигательной активности, например, у грызунов. Наиболее четко физиологические сдвиги в течение суток можно проследить у летучих мышей. В период дневного покоя летом многие из летучих мышей ведут себя как пойкилотермные животные. Температура их тела в это время практически совпадает с температурой среды. Пульс, дыхание, возбудимость органов чувств резко понижены. Для взлета потревоженная летучая мышь долго разогревается за счет химической теплопродукции. Вечером и ночью - это типичные гомойотер-мные млекопитающие с высокой температурой тела, активными и точными движениями, быстрой реакцией на добычу и врагов.

Периоды активности у одних видов живых организмов приурочены к строго определенному времени суток, у других могут сдвигаться в зависимости от обстановки. Например, активность жуков-чернотелок или пустынных мокриц сдвигается на разное время суток в зависимости от температуры и влажности на поверхности почвы. Из норок они выходят рано утром и вечером (двухфазный цикл), или только ночью (однофазный цикл), или в течение всего дня. Другой пример. Открывание цветков шафрана зависит от температуры, соцветий одуванчика от освещенности: в пасмурный день корзинки не раскрываются. Эндогенные суточные ритмы от экзогенных можно отличить экспериментальным путем. При полном постоянстве внешних условий (температура, освещенность, влажность и др.) у многих видов продолжают сохраняться длительное время циклы, близкие по периоду к суточному. Так, у дрозофил такой эндогенный ритм отмечается в течение десятков поколений. Следовательно, живые организмы приспосабливались воспринимать колебания внешней среды и соответственно им настраивали свои физиологические процессы. Это происходило в основном под влиянием трех факторов - вращении Земли по отношению к Солнцу, Луне и звездам. Эти факторы, накладываюсь друг на друга, воспринимались живыми организмами как ритмика, близкая, но не точно соответствующая 24-часовому периоду. Это и явилось одной из причин некоторого отклонения эндогенных биологических ритмов от точного суточного периода. Данные эндогенные ритмы получили название циркадных (от лат. circa - около и dies - день, сутки), т. е. приближающимися к суточному ритму.

У разных видов и даже у разных особей одного вида циркадные ритмы, как правило, различаются по продолжительности, но под влиянием правильного чередования света и темноты могут стать равными 24 ч. Так, если летяг (Pebromys volans) содержать в абсолютной темноте беспрерывно, то все они просыпаются и ведут активный образ жизни вначале одновременно, но вскоре - в разное время, и при этом каждая особь сохраняет свой ритм. При восстановлении правильного чередования дня и ночи периоды сна и бодрствования летяг снова становятся синхронными. Отсюда вывод, что внешний раздражитель (смена дня и ночи) регулируют врожденные циркадные ритмы, приближая их к 24-часовому периоду.

Стереотип поведения, обусловленный циркадным ритмом, облегчает существование организмов при суточных изменениях среды. Вместе с тем при расселении растений и животных, попадании их в географические условия с другой ритмикой дня и ночи прочный стереотип может быть неблагоприятным. Расселитель-ные возможности тех или иных видов живых организмов нередко ограничены глубоким закреплением их циркадных ритмов.

Кроме Земли и Солнца, есть еще одно небесное тело, движение которого заметно сказывается на живых организмах нашей планеты, - это Луна. У самых различных народов существуют приметы, говорящие о влиянии Луны на урожайность сельскохозяйственных культур, естественных лугов и пастбищ, поведение человека и животных. Периодичность, равная лунному месяцу, в качестве эндогенного ритма выявлена как у наземных, так и водных организмов. В приуроченности к определенным фазам Луны периодичность проявляется в роении ряда комаров-хирономид и поденок, размножении японских морских лилий и многощетинковых червей палоло (Eunice viridis). Так, в необычном процессе размножения морских многощетинковых червей палоло, которые обитают в коралловых рифах Тихого океана, роль часов играют фазы Луны. Половые клетки червей созревают раз в год примерно в одно и то же время - в определенный час определенного дня, когда Луна находится в последней четверти. Задняя часть тела червя, набитая половыми клетками, отрывается и всплывает на поверхность. Яйца и сперма выходят наружу, и происходит оплодотворение. Верхняя половина тела, оставшаяся в норе кораллового рифа, к следующему году снова наращивает нижнюю половину с половыми клетками. Периодическое изменение интенсивности лунного света в течение месяца влияет на размножение и других животных. Начало двухмесячной беременности гигантских лесных крыс Малайзии обычно приходится на полнолуние. Не исключено, что яркий лунный свет стимулирует зачатие у этих ночных животных.

Периодичность, равная лунному месяцу, выявлена у ряда животных в реакции на свет и слабые магнитные поля, в скорости ориентации. Высказывается мнение, что на полнолуние приходятся периоды максимальной эмоциональной приподнятости у людей; 28-дневный менструальный цикл женщин, возможно, унаследован от предков млекопитающих, у которых синхронно со сменой фаз Луны менялась и температура тела.

Приливно-отливные ритмы. Влияние Луны прежде всего сказывается на жизни водных организмов морей и океанов нашей планеты, связано с приливами, которые обязаны своим существованием совместному притяжению Луны и Солнца. Движение Луны вокруг Земли приводит к тому, что существует не только суточная ритмика приливов, но и месячная. Максимальной высоты приливы достигают примерно раз в 14 дней, когда Солнце и Луна находятся на одной прямой с Землей и оказывают максимальное воздействие на воды океанов. Сильнее всего ритмика приливов сказывается на организмах, обитающих в прибрежных водах. Чередование приливов и отливов для живых организмов здесь важнее, чем смена дня и ночи, обусловленная вращением Земли и наклонным положением земной оси. Этой сложной ритмике приливов и отливов подчинена жизнь организмов, обитающих в первую очередь в прибрежной зоне. Так, физиология рыбки-грунина, обитающей у побережья Калифорнии, такова, что в самые высокие ночные приливы они выбрасываются на берег. Самки, зарыв хвост в песок, откладывают икру, затем самцы оплодотворяют ее, после чего рыбы возвращаются в море. С отступлением воды оплодотворенная икра проходит все стадии развития. Выход мальков происходит через полмесяца и приурочен к следующему высокому приливу.

Сезонная периодичность относится к числу наиболее общих явлений в живой природе. Непрекращающаяся смена времени года, обусловленная вращением Земли вокруг Солнца, всегда восхищает и поражает человека. Весной все живое пробуждается от глубокого сна, по мере того как тают снега и ярче светит солнце. Лопаются почки и распускается молодая листва, молодые зверята выползают из нор, в воздухе снуют насекомые и вернувшиеся с юга птицы. Смена времен года наиболее заметно протекает в зонах умеренного климата и северных широтах, где контрастность метеорологических условий разных сезонов года весьма значительна. Периодичность в жизни животных и растений является результатом приспособления их к годичному изменению метеорологических условий. Она проявляется в выработке определенного ежегодного ритма в их жизнедеятельности, согласованного с метеорологическим ритмом. Потребность в пониженных температурах в осенний период и в тепле в период вегетации означает, что для растений умеренных широт имеет значение не только общий уровень тепла, но и определенное распределение его во времени. Так, если растениям дать одинаковое количество тепла, но по-разному распределенного: одному теплое лето и холодную зиму, а другому соответствующую постоянную среднюю температуру, то нормальное развитие будет только в первом случае, хотя общая сумма тепла в обоих вариантах одинакова.

Потребность растений умеренных широт в чередовании в течение года холодных и теплых периодов получила название сезонного термопериодизма.

Нередко решающим фактором сезонной периодичности является увеличение продолжительности дня. Продолжительность дня меняется на протяжении всего года: дольше всего солнце светит в день летнего солнцестояния в июне, меньше всего - в день зимнего солнцестояния в декабре.

У многих живых организмов имеются специальные физиологические механизмы, реагирующие на продолжительность дня и в соответствии с этим изменяющие их образ действий. Например, пока продолжительность дня составляет 8 ч, куколка бабочки-сатурнии спокойно спит, так как на дворе еще зима, но как только день становится длиннее, особые нервные клетки в мозге куколки начинают выделять специальный гормон, вызывающий ее пробуждение.

Сезонные изменения мехового покрова некоторых млекопитающих также определяются относительной продолжительностью дня и ночи, мало или не зависят от температуры. Так, постепенно искусственно сокращая светлое время суток в вольере, ученые как бы имитировали осень и добивались того, что содержащиеся в неволе ласки и горностаи раньше времени меняли свой коричневый летний наряд на белый зимний.

Общепринято считать, что существует четыре времени года (весна, лето, осень, зима). Экологи же, изучающие сообщества умеренного пояса, обычно выделяют шесть времен года, различающиеся по набору видов в сообществах: зима, ранняя весна, поздняя весна, раннее лето, позднее лето и осень. Общепринятого деления года на четыре сезона не придерживаются птицы: состав сообщества птиц, куда входят как постоянные обитатели данной местности, так и птицы, проводящие здесь зиму или лето, все время меняется, при этом максимальной численности птицы достигают весной и осенью во время пролетов. В Арктике, по сути дела, существует два времени года: девятимесячная зима и три летних месяца, когда солнце не заходит за горизонт, почва оттаивает и в тундре просыпается жизнь. По мере продвижения от полюса к экватору смена времени года все меньше определяется температурой, а все больше и больше влажностью. В пустынях умеренного пояса лето - это период, когда жизнь замирает, и расцветает ранней весной и поздней осенью.

Смена времени года связана не только с периодами обилия или недостатка пищи, но и с ритмом размножения. У домашних животных (коров, лошадей, овец) и животных в естественной природной среде умеренного пояса потомство обычно появляется весной и подрастает в наиболее благоприятный период, когда больше всего растительной пищи. Поэтому может возникнуть мысль, что весной размножаются вообще все животные.

Однако размножение многих мелких млекопитающих (мышей, полевок, леммингов) часто не имеет строго сезонной приуроченности. В зависимости от количества и обилия кормов размножение может идти как весной, так и летом, и зимой.

В природе наблюдается кроме суточных и сезонных ритмов .многолетняя периодичность биологических явлений. Она определяется изменениями погоды, закономерной ее сменой под влиянием солнечной активности и выражается чередованием урожайных и неурожайных лет, лет обилия или малочисленности популяций.

Д. И. Маликов за 50 лет наблюдений отметил пять крупных волн изменений поголовья скота или столько, сколько было солнечных циклов (рис. 7.8). Такая же связь проявляется в цикличности изменений удоев молока, годовом приросте мяса, шерсти у овец, а также в других показателях сельскохозяйственного пооизводства.

Периодичность изменений свойств вируса гриппа связывают с солнечной активностью.

Согласно прогнозу, после относительно спокойного по гриппу периода начала 80-х гг. XX в. с 2000 г. ожидается резкое усиление интенсивности его распространения.

Различают 5-6- и 11-летние, а также 80-90-летние или вековые циклы солнечной активности. Это позволяет в какой-то мере объяснить совпадения периодов массового размножения животных и роста растений с периодами солнечной активности.

Биологические часы

Циркадные и суточные ритмы лежат в основе способности организма чувствовать время. Механизм, ответственный за такую периодическую активность - будь то питание или размножение, - получил название «биологических часов». Поразительная точность работы биологических часов, управляющих жизнедеятельностью многих растений и животных, является объектом исследований ученых разных стран мира.

Как видно из приведенных кривых, листья бобовых на ночь сникают, а днем снова расправляются. График активности крыс состоит из последовательно чередующихся прямоугольных ям (день - крыса спит) и плато (ночь - крыса бодрствует). Комнатные мухи большей частью вылупляются из куколок утром. Эта адаптация имеет столь глубокие корни, что даже в условиях постоянных освещенности, температуры и влажности мухи сохраняют свойственную им периодичность поведения.

Множество животных - различные виды птиц, черепах, пчел и др. - ориентируются в своих путешествиях по небесным светилам. Думается, что для этого нужно обладать не только хорошей памятью, позволяющей запоминать положение Солнца или других светил, но и чем-то вроде хронометра, показывающего, сколько времени потребовалось Солнцу и звездам, чтобы занять новое место на небосводе. Организмы, обладающие такими внутренними биологическими часами, получают еще одно преимущество - они способны «предвидеть» наступление регулярно повторяющихся событий и соответствующим образом подготовиться к предстоящим переменам. Так, пчелам их внутренние часы помогают прилететь на цветок, на котором побывали вчера, точно к тому времени, когда он распускается. Цветок, который посещает пчела, также обладает некими внутренними часами, некими внутренними часами, сигнализирующими о времени распускания. О существовании собственных биологических часов известно каждому. Проснувшись несколько дней подряд от звонка будильника, быстро привыкаешь просыпаться прежде, чем он зазвонит. Сегодня имеются различные точки зрения на природу биологических часов, их принцип действия, но одно несомненно - они реально существуют и широко распространены в живой природе. Определенные внутренние ритмы присущи и человеку. Химические реакции в его организме происходят, как это было показано выше, с определенной периодичностью. Даже во время сна электрическая активность мозга человека меняется каждые 90 мин.

Биологические часы, по мнению целого ряда ученых, представляют собой еще один экологический фактор, ограничивающий активность живых существ. Свободному расселению животных и растений препятствуют не только экологические барьеры, они привязаны к своему местообитанию не только конкуренцией и симбиотическими отношениями, границы их ареалов определяются не только адаптациями, но их поведение управляется еще и опосредованно, через внутренние биологические часы, движением далеких небесных тел.



Реакция организмов на сезонные изменения длины дня получила название фотопериодизма. Его проявление зависит не от интенсивности освещения, а только от ритма чередования темного и светлого периодов суток.

Фотопериодическая реакция живых организмов имеет большое приспособительное значение, так как для подготовки к переживанию неблагоприятных условий или, наоборот, к наиболее интенсивной жизнедеятельности требуется довольно значительное время. Способность реагировать на изменение длины дня обеспечивает заблаговременные физиологические перестройки и пригнанность цикла к сезонным сменам условий. Ритм дня и ночи выступает как сигнал предстоящих изменений климатических факторов, обладающих сильным непосредственным воздействием на живой организм (температуры, влажности и др.). В отличие от других экологических факторов ритм освещения влияет лишь на те особенности физиологии, морфологии и поведения организмов, которые являются сезонными приспособлениями в их жизненном цикле. Образно говоря, фотопериодизм - это реакция организма на будущность.

Хотя фотопериодизм встречается во всех крупных систематических группах, он свойствен далеко не всем видам. Существует много видов с нейтральной фотопериодической реакцией, у которых физиологические перестройки в цикле развития не зависят от длины дня. У таких видов либо развиты другие способы регулирования жизненного цикла (например, озимость у растений), либо они не нуждаются в точном его регулировании. Например, там, где нет резко выраженных сезонных изменений, большинство видов не обладает фотопериодизмом. Цветение, плодоношение и отмирание листьев у многих тропических деревьев растянуто во времени, и на дереве одновременно встречаются и цветки и плоды. В умеренном климате виды, успевающие быстро завершить жизненный цикл и практически не встречающиеся в активном состоянии в неблагоприятные сезоны года, также не проявляют фотопериодических реакций, например многие эфемерные растения.

Различают два типа фотопериодической реакции: короткодневный и длиннодневный. Известно, что длина светового дня, кроме времени года, зависит от географического положения местности. Короткодневные виды живут и произрастают в основном в низких широтах, а длиннодневные -в умеренных и высоких. У видов с обширными ареалами северные особи могут отличаться по типу фотопериодизма от южных. Таким образом, тип фотопериодизма - это экологическая, а не систематическая особенность вида.

У длиннодневных растений и животных увеличивающиеся весенний и раннелетний дни стимулируют ростовые процессы и подготовку к размножению. Укорачивающиеся дни второй половины лета и осени вызывают торможение роста и подготовку к зиме. Так, морозостойкость клевера и люцерны гораздо выше при выращивании растений на коротком дне, чем на длинном. У деревьев, растущих в городах близ уличных фонарей, осенний день оказывается удлиненным, в результате у них задерживается листопад и они чаще подвергаются обморожению.

Как показали исследования, короткодневные растения особенно чувствительны к фотопериоду, так как длина дня на их родине меняется в течение года мало, а сезонные климатические изменения могут быть очень значительными. Тропические виды фотопериодическая реакция подготавливает к сухому и дождливому сезонам. Некоторые сорта риса в Шри-Ланке, где общее годовое изменение длины дня составляет не более часа, улавливают даже ничтожную разницу в световом ритме, что определяет время их цветения.

Фотопериодизм насекомых может быть не только прямым, но и опосредованным. Например, у капустной корневой мухи зимняя диапауза возникает через воздействие качества пищи, которое изменяется в зависимости от физиологического состояния растения.

Длина светлого периода суток, обеспечивающая переход в очередную фазу развития, получила название критической длины дня для этой фазы. По мере повышения географической широты критическая длина дня возрастает. Например, переход в диапаузу яблоневой листовертки на широте 32° происходит при продолжительности светлого периода суток, равной 14 ч, 44°-16 ч, 52°-18 ч. Критическая длина дня часто служит препятствием для широтного передвижения растений и животных, для их интродукции.

Фотопериодизм растений и животных - наследственно закрепленное, генетически обусловленное свойство. Однако фотопериодическая реакция проявляется лишь при определенном воздействии других факторов среды, например в определенном интервале температур. При некотором сочетании экологических условий возможно естественное расселение видов в несвойственные им широты несмотря на тип фотопериодизма. Так, в высокогорных притропических районах много растений длинного дня, выходцев из районов умеренного климата.

Для практических целей длину светового дня изменяют при выращивании культур в закрытом грунте, управляя продолжительностью освещения, увеличивают яйценоскость кур, регулируют размножение пушных зверей.

Средние многолетние сроки развития организмов епределяются прежде всего климатом местности, именно к ним и приспособлены реакции фотопериодизма. Отклонения от этих сроков обусловливаются погодной обстановкой. При изменении погодных условий сроки прохождения отдельных фаз могут в определенных пределах изменяться. Это особенно сильно проявляется у растений и пойкилотермных животных.’ Так, растения, не набравшие необходимой суммы эффективных температур, не могут зацвести даже в условиях фотопериода, стимулирующих переход в генеративное состояние. Например, в Подмосковье береза зацветает в среднем 8 мая при накоплении суммы эффективных температур 75 °С. Однако в годовых отклонениях сроки ее зацветания изменяются от 19 апреля до 28 мая. Гомойотермные животные отвечают на особенности погоды изменением поведения, сроков гнездования, миграций.

Изучением закономерностей сезонного развития природы занимается особая прикладная отрасль экологии - фенология (дословный перевод с греческого - наука о явлениях).

Согласно биоклиматическому закону Хопкинса, выведенному им применительно к условиям Северной Америки, сроки наступления различных сезонных явлений (фенодат) различаются в среднем на 4 дня на каждый градус широты, на каждые 5 градусов долготы и на 120 м высоты над уровнем моря, т. е. чем севернее, восточнее и выше местность, тем позже наступление весны и раньше - осени. Кроме того, фенологические даты зависят от местных условий (рельефа, экспозиции, удаленности от моря и т. п.). На территории Европы сроки наступления сезонных событий изменяются на каждый градус широты не на 4, а на 3 дня. Соединяя на карте точки с одинаковыми фенодатами, получают изолинии, отражающие фронт продвижения весны и наступления очередных сезонных явлений. Это имеет большое значение для планирования многих хозяйственных мероприятий, в частности сельскохозяйственных работ.

Свет. Солнечная энергия - практически единственный источник света и тепла на нашей планете. Количество солнечного света закономерно изменяется в течение года и суток. Его биологическое действие обусловлено интенсивностью, спектральным составом, сезонной и суточной периодичностью. В связи с этим у живых организмов приспособления также носят сезонный и зональный характер.

Ультрафиолетовые лучи губительны для всего живого. Основная часть этого излучения задерживается озоновым экраном атмосферы. Поэтому живые организмы распространены до озонового слоя. Но небольшое количество ультрафиолетовых лучей полезно животным и человеку, так как они способствуют выработке витамина D.

Свет видимого спектра необходим для растений и животных. Зеленые растения на свету, в основном в красном спектре, фотосинтезируют органические вещества. Многие одноклеточные организмы реагируют на свет. Высокоорганизованные животные имеют светочувствительные клетки или специальные органы - глаза. Они способны воспринимать предметы, находить пищу, вести активный образ жизни днем.

Глаз человека и большинства животных не воспринимает инфракрасные лучи, являющиеся источником тепловой энергии.

Особенно важны эти лучи для холоднокровных животных (насекомых, пресмыкающихся), которые используют их для повышения температуры тела.

Световой режим меняется в зависимости от географической широты, рельефа, времени года и суток. В связи с вращением Земли световой режим имеет отчетливую суточную и сезонную периодичность.

Реакция организма на суточную смену режима освещения (день и ночь) называется фотопериодизмом.

В связи с фотопериодизмом в организме изменяются процессы обмена веществ, роста и развития. Фотопериодичность - это один из главных факторов, влияющих на биологические часы организма, определяющие его физиологические ритмы в соответствии с изменениями в окружающей среде.

У растений суточный фотопериодизм влияет на процессы фотосинтеза, бутонизации, цветения, листопада. Некоторые растения раскрывают свои цветки ночью, их опыляют насекомые-опылители, активные в это время суток.

У животных также существуют приспособления к дневному и ночному образу жизни. Так, например, большинство копытных, медведи, волки, орлы, жаворонки активны днем, тогда как тигры, мыши, суслики, ежи, совы наибольшую активность проявляют ночью. Продолжительность светового дня влияет на наступление брачного периода, миграций и перелетов (у птиц), спячки и т. д.

Большое значение имеет и степень освещенности. В зависимости от способности расти в условиях затенения или освещения различают теневыносливые и светолюбивые растения. Степные и луговые травы, большинство древесных растений (береза, дуб, сосна) относятся к светолюбивым. Теневыносливые растения часто обитают в лесу, в его нижнем ярусе. Это кислица, мхи, папоротники, ландыши и др. Из древесных растений - это ель, поэтому ее крона наиболее пышная в нижней части. Еловые леса всегда более мрачные и темные, чем сосновые и широколиственные. Способность к существованию в различном световом режиме определяет ярусность растительных сообществ.

Степень освещенности в разное время года зависит от географической широты. Продолжительность дня на экваторе всегда одинакова и составляет 12 часов. По мере приближения к полюсам продолжительность дня увеличивается летом и уменьшается зимой. И только в дни весеннего (23 марта) и осеннего (23 сентября) равноденствия продолжительность дня везде равна 12 часам. Зимой за Северным полярным кругом господствует полярная ночь, когда солнце не поднимается над горизонтом, а летом - полярный день, когда оно не заходит круглые сутки. В Южном полушарии - наоборот. В связи с сезонными изменениями освещенности меняется и активность живых организмов.

Сезонные ритмы - это реакция организма на изменение времени года.

Так, при наступлении осеннего короткого дня растения сбрасывают листву и готовятся к зимнему покою.

Зимний покой - это приспособительные свойства многолетних растений: прекращение роста, отмирание надземных побегов (у трав) или листопад (у деревьев и кустарников), замедление или остановка многих процессов жизнедеятельности.

У животных зимой также наблюдается существенное снижение активности. Сигналом к массовому отлету птиц служит изменение длины светового дня. Многие животные впадают в зимнюю спячку - приспосабливание для перенесения неблагоприятного зимнего времени года.

В связи с постоянными суточными и сезонными изменениями в природе у живых организмов вырабатывались определенные механизмы приспособительного характера.

Тепло. Все процессы жизнедеятельности протекают при определенной температуре - в основном от 10 до 40 °C. Лишь немногие организмы приспособлены к жизни при более высоких температурах. Например, некоторые моллюски живут в термальных источниках при температуре до 53 °C, синезеленые (цианобактерии) и бактерии могут обитать при 70-85 °C. Оптимальная температура для жизни большинства организмов колеблется в узких пределах от 10 до 30 °C. Однако диапазон колебания температур на суше значительно шире (от -50 до 40 °C), чем в воде (от 0 до 40 °C), поэтому предел устойчивости к температуре у водных организмов уже, чем у наземных.

В зависимости от механизмов поддержания постоянной температуры тела организмы делятся на пойкилотермных и гомойотермных.

Пойкилотермные, или холоднокровные, организмы имеют непостоянную температуру тела. Повышение температуры окружающей среды вызывает у них сильное ускорение всех физиологических процессов, изменяет активность поведения. Так, ящерицы предпочитают температурную зону около 37 °C. С повышением температуры ускоряется развитие некоторых животных. Так, например, при 26 °C у гусеницы бабочки-капустницы период от выхода из яйца до окукливания продолжается 10-11 дней, а при 10 °C он увеличивается до 100 дней, т. е. в 10 раз.

Для многих холоднокровных животных характерен анабиоз - временное состояние организма, при котором жизненные процессы существенно замедляются, а видимые признаки жизни отсутствуют. Анабиоз может наступать у животных как при понижении температуры среды, так и при ее повышении. Например, у змей, ящериц при повышении температуры воздуха выше 45 °C наступает оцепенение, у земноводных при понижении температуры воды ниже 4 °C жизненная активность практически отсутствует.

У насекомых (шмелей, саранчи, бабочек) во время полета температура тела достигает 35-40 °C, но с прекращением полета быстро снижается до температуры воздуха.

Гомойотермные, или теплокровные, животные с постоянной температурой тела обладают более совершенной терморегуляцией и в меньшей степени зависят от температуры среды. Способность поддерживать постоянную температуру тела - это важная особенность таких животных, как птицы и млекопитающие. У большинства птиц температура тела составляет 41-43 °C, а у млекопитающих - 35-38 °C. Она сохраняется на постоянном уровне вне зависимости от колебаний температуры воздуха. Например, при морозе в -40 °C температура тела песца 38 °C, а белой куропатки - 43 °C. У более примитивных групп млекопитающих (яйцекладущих, мелких грызунов) терморегуляция несовершенна (рис. 93).

Рис. 93. Зависимость температуры тела различных животных от температуры воздуха

Температурный режим имеет большое значение и для растений. Наиболее интенсивно процесс фотосинтеза идет в диапазоне 15-25 °C. При высоких температурах происходит сильное обезвоживание растений и начинается их угнетение. Процессы дыхания и испарения воды (транспирация) начинают преобладать над фотосинтезом. При более низких температурах (менее 10 °C) могут возникать холодовые повреждения клеточных структур, угнетение фотосинтеза.

Основные приспособления растений к холодным местам обитания - это уменьшение размеров и появление специфических форм роста. На Севере, за Полярным кругом, произрастают карликовые березы, ивы, стелющиеся формы можжевельника, рябины. Даже во время долгого полярного лета, когда освещенность очень большая, отсутствие тепла сказывается на процессах фотосинтеза.

У растений существуют специальные механизмы, позволяющие предотвратить замерзание воды в клетках при низких температурах (ниже 0 °C). Так, зимой в тканях растений находятся концентрированные растворы сахаров, глицерина и других веществ, препятствующих замерзанию воды.

Температура, как и световой режим, от которого она зависит, также закономерно изменяется в течение суток, года и на разных широтах. На экваторе она относительно постоянна (около 25-30 °C). По мере приближения к полюсам амплитуда возрастает, причем летом существенно меньше, чем зимой. Поэтому особенно большое значение приобретает наличие у животных и растений приспособлений к перенесению низких температур.

Вода. Наличие воды - это необходимое условие существования всех организмов на Земле. Все живые организмы не менее чем на 30 % состоят из воды. Поддержание водного баланса является основной физиологической функцией организма. Вода по земному шару распределяется неравномерно. Так как большинство наземных растений и животных влаголюбивы, то ее недостаток часто оказывается причиной, ограничивающей распространение организмов.

Наличие воды - это один из основных экологических факторов, лимитирующих рост и развитие растений. В отсутствие воды растение увядает и может погибнуть, поэтому у многих растений существуют специальные приспособления, позволяющие им переносить недостаток влаги.

Так, в пустынях и полупустынях широко распространены ксерофиты, растения засушливых мест обитания. Они могут переносить временное увядание с потерей воды до 50 %. У них хорошо развита корневая система, в десятки раз превышающая по массе надземную часть. Корни могут уходить в глубину на 15-20 м (у черного саксаула - до 30 м), что позволяет им добывать воду на больших глубинах. Экономное расходование воды обеспечивается и развитием особых приспособлений надземных органов. Для уменьшения испарения воды листья у растений степей и пустынь обычно мелкие, узкие, часто они превращены в колючки или чешуйки (кактусы, верблюжья колючка, ковыль). Кутикула листа утолщена, покрыта восковым налетом или густо опушена. Иногда наблюдается полная потеря листьев (саксаулы, джузгун). Фотосинтез у таких растений осуществляется зелеными стеблями. У некоторых обитателей пустынь (агава, молочай, кактус) в тканях сильно утолщенных, мясистых стеблей запасается большое количество влаги.

Мезофиты - это растения, развивающиеся в условиях, когда воды достаточно. К ним относятся листопадные деревья, кустарники, многие травы лесной и лесостепной зон.

Гигрофиты - растения влажных мест обитания, имеют крупные сочные листья и стебли и значительно хуже развитую корневую систему. Межклетники в листьях и зеленых стеблях хорошо развиты. К числу таких растений относятся рис, калужница болотная, стрелолист, мхи и др.

У гидрофитов - водных обитателей часто плохо развиты или отсутствуют механическая ткань, корневая система (ряска, элодея).

Вода также необходима и животным. Большинство обитателей пустынь - верблюды, антилопы, куланы, сайгаки - достаточно долго способны обходиться без воды. Большая подвижность и выносливость позволяют им совершать миграции на значительные расстояния в поисках воды. Способы регуляции водного баланса у них более разнообразны. Так, например, жировые отложения у верблюда (в горбах), грызунов (под кожей), насекомых (жировая ткань) служат источником метаболической воды, которая освобождается в результате окисления жира. Большинство обитателей засушливых мест ведут ночной образ жизни, тем самым избегая перегрева и избыточного испарения воды.

Для организмов, обитающих в условиях периодической сухости, характерны снижение жизненной активности, состояние физиологического покоя в период отсутствия влаги. В жаркое сухое лето растения могут сбросить листву, иногда полностью отмирают надземные побеги. Особенно это характерно для луковичных и корневищных растений (тюльпанов, осок), которые бурно растут и цветут весной, а оставшуюся часть года проводят в виде покоящихся подземных побегов.

Животные с наступлением жаркого и сухого периода могут впадать в летнюю спячку (сурки), меньше двигаться и кормиться. Некоторые виды впадают в состояние анабиоза.

Почва служит средой обитания для многих микроорганизмов, животных, а также в ней закрепляются корни растений и гифы грибов. Первостепенными факторами, важными для почвенных обитателей, являются ее структура, химический состав, влажность, наличие питательных веществ.

| |
§ 66. Экология как наука. Экологические факторы § 68. Взаимодействие факторов. Ограничивающий фактор

» Воздействие на организмы некоторых экологических факторов

Сезонные ритмы

– это реакция организма на изменение времени года. Актуальная информация купить поплавковый клапан у нас .

Так, при наступлении осеннего короткого дня растения сбрасывают листву и готовятся к зимнему покою.

Зимний покой

– это приспособительные свойства многолетних растений: прекращение роста, отмирание надземных побегов (у трав) или листопад (у деревьев и кустарников), замедление или остановка многих процессов жизнедеятельности.

У животных зимой также наблюдается существенное снижение активности. Сигналом к массовому отлету птиц служит изменение длины светового дня. Многие животные впадают в зимнюю спячку

– приспосабливание для перенесения неблагоприятного зимнего времени года.

В связи с постоянными суточными и сезонными изменениями в природе у живых организмов вырабатывались определенные механизмы приспособительного характера.

Тепло.

Все процессы жизнедеятельности протекают при определенной температуре – в основном от 10 до 40 °C. Лишь немногие организмы приспособлены к жизни при более высоких температурах. Например, некоторые моллюски живут в термальных источниках при температуре до 53 °C, синезеленые (цианобактерии) и бактерии могут обитать при 70–85 °C. Оптимальная температура для жизни большинства организмов колеблется в узких пределах от 10 до 30 °C. Однако диапазон колебания температур на суше значительно шире (от -50 до 40 °C), чем в воде (от 0 до 40 °C), поэтому предел устойчивости к температуре у водных организмов уже, чем у наземных.

В зависимости от механизмов поддержания постоянной температуры тела организмы делятся на пойкилотермных и гомойотермных.

Пойкилотермные,

или холоднокровные,

организмы имеют непостоянную температуру тела. Повышение температуры окружающей среды вызывает у них сильное ускорение всех физиологических процессов, изменяет активность поведения. Так, ящерицы предпочитают температурную зону около 37 °C. С повышением температуры ускоряется развитие некоторых животных. Так, например, при 26 °C у гусеницы бабочки-капустницы период от выхода из яйца до окукливания продолжается 10–11 дней, а при 10 °C он увеличивается до 100 дней, т. е. в 10 раз.

Для многих холоднокровных животных характерен анабиоз

– временное состояние организма, при котором жизненные процессы существенно замедляются, а видимые признаки жизни отсутствуют. Анабиоз может наступать у животных как при понижении температуры среды, так и при ее повышении. Например, у змей, ящериц при повышении температуры воздуха выше 45 °C наступает оцепенение, у земноводных при понижении температуры воды ниже 4 °C жизненная активность практически отсутствует.

У насекомых (шмелей, саранчи, бабочек) во время полета температура тела достигает 35–40 °C, но с прекращением полета быстро снижается до температуры воздуха.

Гомойотермные,

или теплокровные,

животные с постоянной температурой тела обладают более совершенной терморегуляцией и в меньшей степени зависят от температуры среды. Способность поддерживать постоянную температуру тела – это важная особенность таких животных, как птицы и млекопитающие. У большинства птиц температура тела составляет 41–43 °C, а у млекопитающих – 35–38 °C. Она сохраняется на постоянном уровне вне зависимости от колебаний температуры воздуха. Например, при морозе в -40 °C температура тела песца 38 °C, а белой куропатки – 43 °C. У более примитивных групп млекопитающих (яйцекладущих, мелких грызунов) терморегуляция несовершенна (рис. 93).