Размерность температуры. Переходы из разных шкал

Парадокс заключается в том, что чтобы измерять температуру в быту, промышленности и даже в прикладной науке не нужно знать, что такое «температура». Достаточно довольно расплывчатого представления, что «температура - это степень нагретости тела». Действительно, большинство практических приборов для измерения температуры фактически измеряют другие свойства веществ, меняющиеся от этой степени нагретости, такие как давление, объем, электрическое сопротивление и т.д. Затем их показания автоматически или вручную пересчитываются в единицы температуры.

Любознательные люди и студенты, которые либо хотят, либо вынуждены разобраться, что же такое температура, обычно попадают в стихию термодинамики с ее нулевым, первым и вторым законами, циклом Карно и энтропией. Нужно признать, что определение температуры, как параметра идеальной обратимой тепловой машины, не зависящего от рабочего вещества, обычно не добавляет ясности в наше ощущение понятия «температура».

Более «осязаемым» кажется подход, называемый молекулярно-кинетической теорией, из которого формируется представление, что теплота может рассматривается просто как одна из форм энергии, а именно - кинетическая энергия атомов и молекул. Эта величина, усредненная по огромному числу беспорядочно движущихся частиц, и оказывается мерилом того, что называется температурой тела. Частицы нагретого тела движутся быстрее, чем холодного.

Поскольку понятие температуры тесно связано с усредненной кинетической энергией частиц, было бы естественным и в качестве единиц ее измерения использовать джоуль. Однако, энергия теплового движения частиц очень мала по сравнению с джоулем, поэтому использование этой величины оказывается неудобным. Тепловое движение измеряется в других единицах, которые получаются из джоулей посредством переводного коэффициента «k».

Если температура T измеряется в кельвинах (К), то связь ее со средней кинетической энергией поступательного движения атомов идеального газа имеет вид

E k = (3/2) kT , (1)

Где k - переводный коэффициент, определяющий, какая часть джоуля содержится в кельвине. Величина k называется постоянной Больцмана.

Учитывая, что давление тоже может быть выражено через среднюю энергию движения молекул

p=(2/3)n E k (2)

Где n = N/V, V - объем, занимаемый газом, N - полное число молекул в этом объеме

Уравнение состояния идеального газа будет иметь вид:

p = n kT

Если полное число молекул представить в виде N = µN A , где µ - число молей газа, N A - число Авагадро,т.е число частиц на один моль, можно легко получить известное уравнение Клапейрона - Менделеева:

pV = µ RT,где R - молярнаягазовая постоянная R = N A . k

или для одного моля pV = N A . kT (3)

Таким образом, температура - это искусственно введенный в уравнение состояния параметр. С помощью уравнения состояния можно определить термодинамическую температуру Т, если все другие параметры и константы известны. Из такого определения температуры очевидно, что значения Т будут зависеть от константы Больцмана. Можем ли выбрать для этого коэффициента пропорциональности произвольное значение и затем на него опираться? Нет. Ведь мы можем таким образом получить произвольное значение для тройной точки воды, в то время как мы должны получить значение 273,16 К! Возникает вопрос - почему именно 273,16 К?

Причины тому чисто исторические, а не физические. Дело в том, что в первых температурных шкалах были приняты точные значения сразу для двух состояний воды - точки затвердевания (0 °С) и точки кипения (100 °С). Это были условные значения, выбранные для удобства. Учитывая, что градус Цельсия равен градусу Кельвина и выполняя измерения термодинамической температуры газовым термометром, градуированным в этих точках, получили для абсолютного нуля (0 °К) методом экстраполяции значение - 273,15 °С. Конечно, это значение можно считать точным только в том случае, если измерения газовым термометром были абсолютно точны. Это не так. Поэтому фиксируя значение 273,16 К для тройной точки воды, и измерив точку кипения воды более совершенным газовым термометром, можно получить слегка отличное от 100 °С значение для кипения. Например, сейчас наиболее реальным является значение 99,975 °С. И это только потому, что ранние работы с газовым термометром дали ошибочное значение для абсолютного нуля. Таким образом, мы либо фиксируем абсолютный ноль, либо интервал 100 °С между точками затвердевания и кипения воды. Если зафиксировать интервал и повторить измерения для экстраполяции к абсолютному нулю, то получим -273,22 °С.

В 1954 г. МКМВ принял резолюцию о переходе на новое определение кельвина, никак не связанное с интервалом 0 -100 °С. Оно фактически закрепило за тройной точкой воды значение 273,16 К (0,01 °С) и «пустило в свободное плаванье» около 100 °С точку кипения воды. Вместо «градуса Кельвина» для единицы температуры был введен просто «кельвин».

Из формулы (3) следует, что приписав Т при таком стабильном и хорошо воспроизводимом состоянии системы как тройная точка воды фиксированное значение 273,16 К, значение константы k можно определить экспериментально. До недавнего времени наиболее точные экспериментальные значения константы Больцмана к получались методом предельно разреженного газа.

Существуют и другие методы получения постоянной Больцмана, основанные на использовании законов, в которые входит параметр кТ.

Это закон Стефана-Больцмана, согласно которому полная энергия теплового излучения Е(Т) является функцией четвертой степени от кТ .
Уравнение, связывающее квадрат скорость звука в идеальном газе с 0 2 линейной зависимостью с кТ .
Уравнение для среднего квадратического напряжения шумов на электрическом сопротивлении V 2 , также линейно зависящего от кТ .

Установки для реализации вышеперечисленных методов определения кТ называются приборами абсолютной термометрии или первичной термометрии.

Таким образом, в определении значений температуры в кельвинах, а не в джоулях много условностей. Основное то, что сам коэффициент пропорциональности k между температурными и энергетическими единицами не является постоянным. Он зависит от точности термодинамических измерений, достижимой на настоящий момент. Такой подход не очень удобен для первичных термометров, особенно работающих в диапазоне температур, далеком от тройной точки. Их показания будут зависеть от изменений в значении постоянной Больцмана.

Каждое изменение практической международной температурной шкалы - результат научных исследований метрологических центров всего мира. Введение новой редакции температурной шкалы сказывается на градуировках всех средств измерения температуры.

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер паропроницаемости и скорости переноса пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

Исходная величина

Преобразованная величина

кельвин градус Цельсия градус Фаренгейта градус Ранкина градус Реомюра Планковская температура

Подробнее о температуре

Общие сведения

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Термодинамическое определение

История термодинамического подхода

Слово «температура» возникло в те времена, когда люди считали, что в более нагретых телах содержится большее количество особого вещества - теплорода , чем в менее нагретых. Поэтому температура воспринималась как крепость смеси вещества тела и теплорода. По этой причине единицы измерения крепости спиртных напитков и температуры называются одинаково - градусами.

Определение температуры в статистической физике

Средства измерения температуры часто проградуированы по относительным шкалам - Цельсия или Фаренгейта.

На практике для измерения температуры также используют

Самым точным практическим термометром является платиновый термометр сопротивления . Разработаны новейшие методы измерения температуры, основанные на измерении параметров лазерного излучения .

Единицы и шкала измерения температуры

Из того, что температура - это кинетическая энергия молекул, ясно, что наиболее естественно измерять её в энергетических единицах (то есть в системе СИ в джоулях). Однако измерение температуры началось задолго до создания молекулярно-кинетической теории, поэтому практические шкалы измеряют температуру в условных единицах - градусах.

Абсолютная температура. Шкала температур Кельвина

Понятие абсолютной температуры было введено У. Томсоном (Кельвином) , в связи с чем шкалу абсолютной температуры называют шкалой Кельвина или термодинамической температурной шкалой. Единица абсолютной температуры - кельвин (К).

Абсолютная шкала температуры называется так, потому что мера основного состояния нижнего предела температуры - абсолютный ноль , то есть наиболее низкая возможная температура, при которой в принципе невозможно извлечь из вещества тепловую энергию.

Абсолютный ноль определён как 0 K, что равно −273.15 °C.

Шкала температур Кельвина - это шкала, в которой начало отсчёта ведётся от абсолютного нуля .

Важное значение имеет разработка на основе термодинамической шкалы Кельвина Международных практических шкал, основанных на реперных точках - фазовых переходах чистых веществ, определенных методами первичной термометрии. Первой международной температурной шкалой являлась принятая в 1927 г. МТШ-27. С 1927 г. шкала несколько раз переопределялась (МТШ-48, МПТШ-68, МТШ-90): менялись реперные температуры, методы интерполяции, но принцип остался тот же - основой шкалы является набор фазовых переходов чистых веществ с определенными значениями термодинамических температур и интерполяционные приборы, градуированные в этих точках. В настоящее время действует шкала МТШ-90. Основной документ (Положение о шкале) устанавливает определение Кельвина, значения температур фазовых переходов (реперных точек) и методы интерполяции.

Используемые в быту температурные шкалы - как Цельсия , так и Фаренгейта (используемая, в основном, в США), - не являются абсолютными и поэтому неудобны при проведении экспериментов в условиях, когда температура опускается ниже точки замерзания воды, из-за чего температуру приходится выражать отрицательным числом. Для таких случаев были введены абсолютные шкалы температур.

Одна из них называется шкалой Ранкина , а другая - абсолютной термодинамической шкалой (шкалой Кельвина); температуры по ним измеряются, соответственно, в градусах Ранкина (°Ra) и кельвинах (К). Обе шкалы начинаются при температуре абсолютного нуля. Различаются они тем, что цена одного деления по шкале Кельвина равна цене деления шкалы Цельсия, а цена деления шкалы Ранкина эквивалентна цене деления термометров со шкалой Фаренгейта. Температуре замерзания воды при стандартном атмосферном давлении соответствуют 273,15 K, 0 °C, 32 °F.

Масштаб шкалы Кельвина привязан к тройной точке воды (273,16 К), при этом от неё зависит постоянная Больцмана. Это создаёт проблемы с точностью интерпретации измерений высоких температур. Сейчас МБМВ рассматривает возможность перехода к новому определению кельвина и фиксированию постоянной Больцмана, вместо привязки к температуре тройной точки. .

Шкала Цельсия

В технике, медицине, метеорологии и в быту используется шкала Цельсия , в которой температура тройной точки воды равна 0,008 °C, и, следовательно, точка замерзания воды при давлении в 1 атм равна 0 °C. В настоящее время шкалу Цельсия определяют через шкалу Кельвина: цена одного деления в шкале Цельсия равна цене деления шкалы Кельвина, t(°С) = Т(К) - 273,15. Таким образом, точка кипения воды, изначально выбранная Цельсием, как реперная точка, равная 100 °C, утратила свое значение, и по современным оценкам температура кипения воды при нормальном атмосферном давлении составляет около 99,975 °C.Шкала Цельсия практически очень удобна, поскольку вода очень распространена на нашей планете и на ней основана наша жизнь. Ноль Цельсия - особая точка для метеорологии , поскольку связана с замерзанием атмосферной воды. Шкала предложена Андерсом Цельсием в 1742 г.

Шкала Фаренгейта

В Англии и, в особенности, в США используется шкала Фаренгейта. Ноль градусов Цельсия - это 32 градуса Фаренгейта, а 100 градусов Цельсия - 212 градуса Фаренгейта.

В настоящее время принято следующее определение шкалы Фаренгейта: это температурная шкала, 1 градус которой (1 °F) равен 1/180 разности температур кипения воды и таяния льда при атмосферном давлении, а точка таяния льда имеет температуру +32 °F. Температура по шкале Фаренгейта связана с температурой по шкале Цельсия (t °С) соотношением t °С = 5/9 (t °F - 32), t °F = 9/5 t °С + 32. Предложена Г. Фаренгейтом в 1724 году.

Шкала Реомюра

Переходы из разных шкал

Сравнение температурных шкал

Сравнение температурных шкал
Описание Кельвин Цельсий Фаренгейт Ранкин Делиль Ньютон Реомюр Рёмер
Абсолютный ноль 0 −273,15 −459,67 0 559,725 −90,14 −218,52 −135,90
Температура таяния смеси Фаренгейта (соль и лёд в равных количествах) 255,37 −17,78 0 459,67 176,67 −5,87 −14,22 −1,83
Температура замерзания воды (Нормальные условия) 273,15 0 32 491,67 150 0 0 7,5
Средняя температура человеческого тела ¹ 310,0 36,6 98,2 557,9 94,5 12,21 29,6 26,925
Температура кипения воды (Нормальные условия) 373,15 100 212 671,67 0 33 80 60
Плавление титана 1941 1668 3034 3494 −2352 550 1334 883
Поверхность Солнца 5800 5526 9980 10440 −8140 1823 4421 2909

¹ Нормальная средняя температура человеческого тела - 36,6 °C ±0,7 °C, или 98,2 °F ±1,3 °F. Приводимое обычно значение 98,6 °F - это точное преобразование в шкалу Фаренгейта принятого в Германии в XIX веке значения 37 °C. Однако это значение не входит в диапазон нормальной средней температуры тела человека, поскольку температура разных частей тела разная .

Некоторые значения в этой таблице являются округлёнными.

Характеристика фазовых переходов

Для описания точек фазовых переходов различных веществ используют следующие значения температуры:

  • Температура отжига
  • Температура спекания
  • Температура синтеза
  • Температура воздушных масс
  • Температура почвы
  • Гомологическая температура
  • Температура Дебая (Характеристическая температура)

См. также

Примечания

Литература

Термодинамическое определение

История термодинамического подхода

Слово «температура» возникло в те времена, когда люди считали, что в более нагретых телах содержится большее количество особого вещества - теплорода , чем в менее нагретых. Поэтому температура воспринималась как крепость смеси вещества тела и теплорода. По этой причине единицы измерения крепости спиртных напитков и температуры называются одинаково - градусами.

Определение температуры в статистической физике

Средства измерения температуры часто проградуированы по относительным шкалам - Цельсия или Фаренгейта.

На практике для измерения температуры также используют

Самым точным практическим термометром является платиновый термометр сопротивления . Разработаны новейшие методы измерения температуры, основанные на измерении параметров лазерного излучения .

Единицы и шкала измерения температуры

Из того, что температура - это кинетическая энергия молекул, ясно, что наиболее естественно измерять её в энергетических единицах (то есть в системе СИ в джоулях). Однако измерение температуры началось задолго до создания молекулярно-кинетической теории, поэтому практические шкалы измеряют температуру в условных единицах - градусах.

Абсолютная температура. Шкала температур Кельвина

Понятие абсолютной температуры было введено У. Томсоном (Кельвином) , в связи с чем шкалу абсолютной температуры называют шкалой Кельвина или термодинамической температурной шкалой. Единица абсолютной температуры - кельвин (К).

Абсолютная шкала температуры называется так, потому что мера основного состояния нижнего предела температуры - абсолютный ноль , то есть наиболее низкая возможная температура, при которой в принципе невозможно извлечь из вещества тепловую энергию.

Абсолютный ноль определён как 0 K, что равно −273.15 °C.

Шкала температур Кельвина - это шкала, в которой начало отсчёта ведётся от абсолютного нуля .

Важное значение имеет разработка на основе термодинамической шкалы Кельвина Международных практических шкал, основанных на реперных точках - фазовых переходах чистых веществ, определенных методами первичной термометрии. Первой международной температурной шкалой являлась принятая в 1927 г. МТШ-27. С 1927 г. шкала несколько раз переопределялась (МТШ-48, МПТШ-68, МТШ-90): менялись реперные температуры, методы интерполяции, но принцип остался тот же - основой шкалы является набор фазовых переходов чистых веществ с определенными значениями термодинамических температур и интерполяционные приборы, градуированные в этих точках. В настоящее время действует шкала МТШ-90. Основной документ (Положение о шкале) устанавливает определение Кельвина, значения температур фазовых переходов (реперных точек) и методы интерполяции.

Используемые в быту температурные шкалы - как Цельсия , так и Фаренгейта (используемая, в основном, в США), - не являются абсолютными и поэтому неудобны при проведении экспериментов в условиях, когда температура опускается ниже точки замерзания воды, из-за чего температуру приходится выражать отрицательным числом. Для таких случаев были введены абсолютные шкалы температур.

Одна из них называется шкалой Ранкина , а другая - абсолютной термодинамической шкалой (шкалой Кельвина); температуры по ним измеряются, соответственно, в градусах Ранкина (°Ra) и кельвинах (К). Обе шкалы начинаются при температуре абсолютного нуля. Различаются они тем, что цена одного деления по шкале Кельвина равна цене деления шкалы Цельсия, а цена деления шкалы Ранкина эквивалентна цене деления термометров со шкалой Фаренгейта. Температуре замерзания воды при стандартном атмосферном давлении соответствуют 273,15 K, 0 °C, 32 °F.

Масштаб шкалы Кельвина привязан к тройной точке воды (273,16 К), при этом от неё зависит постоянная Больцмана. Это создаёт проблемы с точностью интерпретации измерений высоких температур. Сейчас МБМВ рассматривает возможность перехода к новому определению кельвина и фиксированию постоянной Больцмана, вместо привязки к температуре тройной точки. .

Шкала Цельсия

В технике, медицине, метеорологии и в быту используется шкала Цельсия , в которой температура тройной точки воды равна 0,008 °C, и, следовательно, точка замерзания воды при давлении в 1 атм равна 0 °C. В настоящее время шкалу Цельсия определяют через шкалу Кельвина: цена одного деления в шкале Цельсия равна цене деления шкалы Кельвина, t(°С) = Т(К) - 273,15. Таким образом, точка кипения воды, изначально выбранная Цельсием, как реперная точка, равная 100 °C, утратила свое значение, и по современным оценкам температура кипения воды при нормальном атмосферном давлении составляет около 99,975 °C.Шкала Цельсия практически очень удобна, поскольку вода очень распространена на нашей планете и на ней основана наша жизнь. Ноль Цельсия - особая точка для метеорологии , поскольку связана с замерзанием атмосферной воды. Шкала предложена Андерсом Цельсием в 1742 г.

Шкала Фаренгейта

В Англии и, в особенности, в США используется шкала Фаренгейта. Ноль градусов Цельсия - это 32 градуса Фаренгейта, а 100 градусов Цельсия - 212 градуса Фаренгейта.

В настоящее время принято следующее определение шкалы Фаренгейта: это температурная шкала, 1 градус которой (1 °F) равен 1/180 разности температур кипения воды и таяния льда при атмосферном давлении, а точка таяния льда имеет температуру +32 °F. Температура по шкале Фаренгейта связана с температурой по шкале Цельсия (t °С) соотношением t °С = 5/9 (t °F - 32), t °F = 9/5 t °С + 32. Предложена Г. Фаренгейтом в 1724 году.

Шкала Реомюра

Переходы из разных шкал

Сравнение температурных шкал

Сравнение температурных шкал
Описание Кельвин Цельсий Фаренгейт Ранкин Делиль Ньютон Реомюр Рёмер
Абсолютный ноль 0 −273,15 −459,67 0 559,725 −90,14 −218,52 −135,90
Температура таяния смеси Фаренгейта (соль и лёд в равных количествах) 255,37 −17,78 0 459,67 176,67 −5,87 −14,22 −1,83
Температура замерзания воды (Нормальные условия) 273,15 0 32 491,67 150 0 0 7,5
Средняя температура человеческого тела ¹ 310,0 36,6 98,2 557,9 94,5 12,21 29,6 26,925
Температура кипения воды (Нормальные условия) 373,15 100 212 671,67 0 33 80 60
Плавление титана 1941 1668 3034 3494 −2352 550 1334 883
Поверхность Солнца 5800 5526 9980 10440 −8140 1823 4421 2909

¹ Нормальная средняя температура человеческого тела - 36,6 °C ±0,7 °C, или 98,2 °F ±1,3 °F. Приводимое обычно значение 98,6 °F - это точное преобразование в шкалу Фаренгейта принятого в Германии в XIX веке значения 37 °C. Однако это значение не входит в диапазон нормальной средней температуры тела человека, поскольку температура разных частей тела разная .

Некоторые значения в этой таблице являются округлёнными.

Характеристика фазовых переходов

Для описания точек фазовых переходов различных веществ используют следующие значения температуры:

  • Температура отжига
  • Температура спекания
  • Температура синтеза
  • Температура воздушных масс
  • Температура почвы
  • Гомологическая температура
  • Температура Дебая (Характеристическая температура)

См. также

Примечания

Литература

Существует несколько различных единиц измерения температуры.

Наиболее известными являются следующие:

Градус Цельсия - применяется в Международной системе единиц (СИ) наряду с кельвином.

Градус Цельсия назван в честь шведского учёного Андерса Цельсия, предложившего в 1742 году новую шкалу для измерения температуры.

Первоначальное определение градуса Цельсия зависело от определения стандартного атмосферного давления, потому что и температура кипения воды и температура таяния льда зависят от давления. Это не очень удобно для стандартизации единицы измерения. Поэтому после принятия кельвина K, в качестве основной единицы измерения температуры, определение градуса Цельсия было пересмотрено.

Согласно современному определению, градус Цельсия равен одному кельвину K, а ноль шкалы Цельсия установлен таким образом, что температура тройной точки воды равна 0,01 °C. В итоге, шкалы Цельсия и Кельвина сдвинуты на 273,15:

В 1665 году голландский физик Христиан Гюйгенс вместе с английским физиком Робертом Гуком впервые предложили использовать в качестве отсчетных точек температурной шкалы точки таяния льда и кипения воды.

В 1742 году шведский астроном, геолог и метеоролог Андерс Цельсий (1701-1744) на основе этой идеи разработал новую температурную шкалу. Первоначально в ней 0° (нулём) была точка кипения воды, а 100° - температура замерзания воды (точка плавления льда). Позже, уже после смерти Цельсия, его современники и соотечественники ботаник Карл Линней и астроном Мортен Штремер использовали эту шкалу в перевёрнутом виде (за 0° стали принимать температуру таяния льда, а за 100° - кипения воды). В таком виде шкала и используется до нашего времени.

По одним сведениям, Цельсий сам перевернул свою шкалу по совету Штремера. По другим сведениям, шкалу перевернул Карл Линней в 1745 году. А по третьим - шкалу перевернул преемник Цельсия Мортен Штремер, и в XVIII веке такой термометр был широко распространён под названием «шведский термометр», а в самой Швеции - под именем Штремера, но известнейший шведский химик Йёнс Якоб Берце́лиус в своем труде «Руководство по химии» назвал шкалу «Цельсиевой» и с тех пор стоградусная шкала стала носить имя Андерса Цельсия.

Градус Фаренгейта.

Назван в честь немецкого учёного Габриеля Фаренгейта, предложившего в 1724 году шкалу для измерения температуры.

На шкале Фаренгейта точка таяния льда равна +32 °F, а точка кипения воды +212 °F (при нормальном атмосферном давлении). При этом один градус Фаренгейта равен 1/180 разности этих температур. Диапазон 0…+100 °F по шкале Фаренгейта примерно соответствует диапазону −18…+38 °C по шкале Цельсия. Ноль на этой шкале определяется по температуре замерзания смеси воды, соли и нашатыря (1:1:1), а за 96 °F принята нормальная температура человеческого тела.

Кельвин (до 1968 года градус Кельвина) - единица термодинамической температуры в Международной системе единиц (СИ), одна из семи основных единиц СИ. Предложена в 1848 году. 1 кельвин равен 1/273,16 части термодинамической температуры тройной точки воды. Начало шкалы (0 К) совпадает с абсолютным нулём.

Пересчёт в градусы Цельсия: °С = K−273,15 (температура тройной точки воды - 0,01 °C).

Единица названа в честь английского физика Уильяма Томсона, которому было пожаловано звание лорд Кельвин Ларгский из Айршира. В свою очередь, это звание пошло от реки Кельвин (River Kelvin), протекающей через территорию университета в Глазго.

Кельвин

Градус Цельсия

Градус Фаренгейта

Абсолютный ноль

Температура кипения жидкого азота

Сублимация (переход из твёрдого состояния в газообразное) сухого льда

Точка пересечения шкал Цельсия и Фаренгейта

Температура плавления льда

Тройная точка воды

Нормальная температура человеческого тела

Температура кипения воды при давлении в 1 атмосферу (101,325 кПа)

Градус Реомюра - единица измерения температуры, в которой температура замерзания и кипения воды приняты за 0 и 80 градусов, соответственно. Предложен в 1730 году Р. А. Реомюром. Шкала Реомюра практически вышла из употребления.

Градус Рёмера - неиспользуемая ныне единица температуры.

Температурная шкала Рёмера была создана в 1701 году датским астрономом Оле Кристенсеном Рёмером. Она стала прообразом шкалы Фаренгейта, который посещал Рёмера в 1708 году.

За ноль градусов берётся температура замерзания солёной воды. Вторая реперная точка - температура человеческого тела (30 градусов по измерениям Рёмера, то есть 42 °C). Тогда температура замерзания пресной воды получается как 7,5 градусов (1/8 шкалы), а температура кипения воды - 60 градусов. Таким образом, шкала Рёмера - 60-градусная. Такой выбор, по-видимому, объясняется тем, что Рёмер прежде всего астроном, а число 60 было краеугольным камнем астрономии со времён Вавилона.

Градус Ранкина – единица температуры в абсолютной температурной шкале, названа по имени шотландского физика Уильяма Ранкина (1820-1872). Используется в англоязычных странах для инженерных термодинамических расчётов.

Шкала Ранкина начинается при температуре абсолютного нуля, точка замерзания воды соответствует 491,67°Ra, точка кипения воды 671,67°Ra. Число градусов между точками замерзания и кипения воды по шкале Фаренгейта и Ранкина одинаково и равно 180.

Соотношение между кельвином и градусом Ранкина: 1 K = 1,8 °Ra, градусы Фаренгейта переводятся в градусы Ранкина по формуле °Ra = °F + 459,67.

Градус Делиля - ныне неупотребляемая единица измерения температуры. Была изобретена французским астрономом Жозефом Николя Делилем (1688-1768). Шкала Делиля схожа с температурной шкалой Реомюра. Использовалась в России до XVIII века.

Петр Первый пригласил французского астронома Жозефа Николя Делиля в Россию, учреждая Академию Наук. В 1732 году Делиль создал термометр, использующий ртуть в качестве рабочей жидкости. В качестве нуля была выбрана температура кипения воды. За один градус было принято такое изменение температуры, которое приводило к уменьшению объема ртути на одну стотысячную.

Таким образом, температура таяния льда составила 2400 градусов. Однако позже столь дробная шкала показалась избыточной, и уже зимой 1738 года коллега Делиля по петербургской академии, медик Йозиас Вайтбрехт (1702-1747), уменьшил число ступеней от температуры кипения до температуры замерзания воды до 150.

«Перевернутость» этой шкалы (как и изначального варианта шкалы Цельсия) по сравнению с принятыми в настоящее время обычно объясняют чисто техническими трудностями, связанными с градуировкой термометров.

Шкала Делиля получила достаточно широкое распространение в России, и его термометры использовались около 100 лет. Этой шкалой пользовались многие российские академики, в том числе Михаил Ломоносов, который, однако «перевернул» её, расположив ноль в точке замерзания, а 150 градусов - в точке кипения воды.

Градус Гука - историческая единица температуры. Шкала Гука считается самой первой температурной шкалой с фиксированным нулём.

Прообразом для созданной Гуком шкалы стал попавший к нему в 1661 термометр из Флоренции. В изданной через год «Микрографии» Гука встречается описание разработанной им шкалы. Гук определил один градус как изменение объёма спирта на 1/500, т. е. один градус Гука равен примерно 2,4 °C.

В 1663 году члены Королевского общества согласились использовать термометр Гука в качестве стандартного и сравнивать с ним показания других термометров. Голландский физик Христиан Гюйгенс в 1665 г. вместе с Гуком предложил использовать температуры таяния льда и кипения воды для создания шкалы температур. Это была первая шкала с фиксированным нулём и отрицательными значениями.

Градус Дальтона – историческая единица температуры. Он не имеет определённого значения (в единицах традиционных температурных шкал, таких как шкала Кельвина, Цельсия или Фаренгейта), поскольку шкала Дальтона - логарифмическая.

Шкала Дальтона была разработана Джоном Дальтоном для проведения измерений при высоких температурах, поскольку обычные термометры с равномерной шкалой давали ошибку из-за неравномерного расширения термометрической жидкости.

Нуль шкалы Дальтона соответствует нулю Цельсия. Отличительной чертой шкалы Дальтона является то, что в ней абсолютный нуль равен − ∞°Da, т. е. он является недостижимой величиной (что на самом деле так, согласно теореме Нернста).

Градус Ньютона - не используемая ныне единица температуры.

Температурная шкала Ньютона была разработана Исааком Ньютоном в 1701 году для проведения теплофизических исследований и стала, вероятно, прообразом шкалы Цельсия.

В качестве термометрической жидкости Ньютон использовал льняное масло. За ноль градусов Ньютон взял температуру замерзания пресной воды, а температуру человеческого тела он обозначил как 12 градусов. Таким образом, температура кипения воды стала равна 33 градусам.

Лейденский градус - историческая единица температуры, использовавшаяся в начале XX века для измерения криогенных температур ниже −183 °C.

Эта шкала происходит из Лейдена, где с 1897 года находилась лаборатория Камерлинг-Оннеса. В 1957 году Х. ван Дийк и М. Дюро ввели шкалу L55.

За ноль градусов бралась температура кипения стандартного жидкого водорода (−253 °C), состоящего на 75 % из ортоводорода и на 25 % из параводорода. Вторая реперная точка - температура кипения жидкого кислорода (−193 °C).

Планковская температура , названная в честь немецкого ученого-физика Макса Планка, единица температуры, обозначаемая T P , в Планковской системе единиц. Это одна из планковских единиц, которая представляет фундаментальный предел в квантовой механике. Современная физическая теория не способна описать что-либо более горячее из-за отсутствия в ней разработанной квантовой теории гравитации. Выше планковской температуры энергия частиц становится настолько большой, что гравитационные силы между ними становятся сравнимы с остальными фундаментальными взаимодействиями. Это температура Вселенной в первый момент (Планковское время) Большого взрыва в соответствии с текущими представлениями космологии.