Действия над вероятностями. Правило умножения вероятностей независимых событий

Приведенные к настоящему моменту в открытом банке задач ЕГЭ по математике (mathege.ru), решение которых основано на одной лишь формуле, представляющей собой классическое определение вероятности.

Понять формулу проще всего на примерах.
Пример 1. В корзине 9 красных шаров и 3 синих. Шары различаются только цветом. Наугад (не глядя) достаём один из них. Какова вероятность того, что выбранный таким образом шар окажется синего цвета?

Комментарий. В задачах по теории вероятности происходит нечто (в данном случае наше действие по вытаскиванию шара), что может иметь разный результат - исход. Нужно заметить, что на результат можно смотреть по-разному. "Мы вытащили какой-то шар" - тоже результат. "Мы вытащили синий шар" - результат. "Мы вытащили именно вот этот шар из всех возможных шаров" - такой наименее обобщенный взгляд на результат называется элементарным исходом. Именно элементарные исходы имеются в виду в формуле для вычисления вероятности.

Решение. Теперь вычислим вероятность выбора синего шара.
Событие А: "выбранный шар оказался синего цвета"
Общее число всех возможных исходов: 9+3=12 (количество всех шаров, которые мы могли бы вытащить)
Число благоприятных для события А исходов: 3 (количество таких исходов, при которых событие А произошло, - то есть, количество синих шаров)
P(A)=3/12=1/4=0,25
Ответ: 0,25

Посчитаем для той же задачи вероятность выбора красного шара.
Общее число возможных исходов останется тем же, 12. Число благоприятных исходов: 9. Искомая вероятность: 9/12=3/4=0,75

Вероятность любого события всегда лежит в пределах от 0 до 1.
Иногда в повседневной речи (но не в теории вероятности!) вероятность событий оценивают в процентах. Переход между математической и разговорной оценкой осуществляется путем умножения (или деления) на 100%.
Итак,
При этом вероятность равна нулю у событий, которые не могут произойти - невероятны. Например, в нашем примере это была бы вероятность вытащить из корзины зеленый шар. (Число благоприятных исходов равно 0, Р(А)=0/12=0, если считать по формуле)
Вероятность 1 имеют события, которые абсолютно точно произойдут, без вариантов. Например, вероятность того, что «выбранный шар окажется или красным или синим» - для нашей задачи. (Число благоприятных исходов: 12, Р(А)=12/12=1)

Мы рассмотрели классический пример, иллюстрирующий определение вероятности. Все подобные задачи ЕГЭ по теории вероятности решаются применением данной формулы.
На месте красных и синих шаров могут быть яблоки и груши, мальчики и девочки, выученные и невыученные билеты, билеты, содержащие и не содержащие вопрос по какой-то теме (прототипы , ), бракованные и качественные сумки или садовые насосы (прототипы , ) – принцип остается тем же.

Немного отличаются формулировкой задачи теории вероятности ЕГЭ, где нужно вычислить вероятность выпадения какого-то события на определенный день. ( , ) Как и в предыдущих задачах нужно определить, что является элементарным исходом, после чего применить ту же формулу.

Пример 2. Конференция длится три дня. В первый и второй день выступают по 15 докладчиков, в третий день – 20. Какова вероятность того, что доклад профессора М. выпадет на третий день, если порядок докладов определяется жеребьевкой?

Что здесь является элементарным исходом? – Присвоение докладу профессора какого-то одного из всех возможных порядковых номеров для выступления. В жеребьевке участвует 15+15+20=50 человек. Таким образом, доклад профессора М. может получить один из 50 номеров. Значит, и элементарных исходов всего 50.
А какие исходы благоприятные? – Те, при которых окажется, что профессор будет выступать в третий день. То есть, последние 20 номеров.
По формуле вероятность P(A)= 20/50=2/5=4/10=0,4
Ответ: 0,4

Жеребьевка здесь представляет собой установление случайного соответствия между людьми и упорядоченными местами. В примере 2 установление соответствия рассматривалось с точки зрения того, какое из мест мог бы занять конкретный человек. Можно к той же ситуации подходить с другой стороны: кто из людей с какой вероятностью мог бы попасть на конкретное место (прототипы , , , ):

Пример 3. В жеребьевке участвуют 5 немцев, 8 французов и 3 эстонца. Какова вероятность того, что первым (/вторым/седьмым/последним – не важно) будет выступать француз.

Количество элементарных исходов – количество всех возможных людей, которые могли бы по жеребьевке попасть на данное место. 5+8+3=16 человек.
Благоприятные исходы – французы. 8 человек.
Искомая вероятность: 8/16=1/2=0,5
Ответ: 0,5

Немного отличается прототип . Остались задачи про монеты () и игральные кости (), несколько более творческие. Решение этих задач можно посмотреть на страницах прототипов.

Приведем несколько примеров на бросание монеты или кубика.

Пример 4. Когда подбрасываем монету, какова вероятность выпадения решки?
Исходов 2 – орел или решка. (считается, что монета никогда не падает на ребро) Благоприятный исход – решка, 1.
Вероятность 1/2=0,5
Ответ: 0,5.

Пример 5. А если подбрасываем монету два раза? Какова вероятность того, что оба раза выпадет орел?
Главное определить, какие элементарные исходы будем рассматривать при подбрасывании двух монет. После подбрасывания двух монет может получиться один из следующих результатов:
1) PP – оба раза выпала решка
2) PO – первый раз решка, второй раз орел
3) OP – первый раз орел, второй раз решка
4) OO – оба раза выпал орел
Других вариантов нет. Значит, элементарных исходов 4. Благоприятный из них только первый, 1.
Вероятность: 1/4=0,25
Ответ: 0,25

Какова вероятность того, что из двух подбрасываний монеты один раз выпадет решка?
Количество элементарных исходов то же, 4. Благоприятные исходы – второй и третий, 2.
Вероятность выпадения одной решки: 2/4=0,5

В таких задачах может пригодиться ещё одна формула.
Если при одном бросании монеты возможных вариантов результата у нас 2, то для двух бросаний результатов будет 2·2=2 2 =4 (как в примере 5), для трех бросаний 2·2·2=2 3 =8, для четырех: 2·2·2·2=2 4 =16, … для N бросаний возможных результатов будет 2·2·...·2=2 N .

Так, можно найти вероятность выпадения 5 решек из 5 бросаний монеты.
Общее число элементарных исходов: 2 5 =32.
Благоприятных исходов: 1. (РРРРР – все 5 раз решка)
Вероятность: 1/32=0,03125

То же верно и для игральной кости. При одном бросании возможных результатов здесь 6. Значит, для двух бросаний: 6·6=36, для трех 6·6·6=216, и т. д.

Пример 6. Бросаем игральную кость. Какова вероятность, что выпадет четное число?

Всего исходов: 6, по числу граней.
Благоприятных: 3 исхода. (2, 4, 6)
Вероятность: 3/6=0,5

Пример 7. Бросаем две игральные кости. Какова вероятность, что в сумме выпадет 10? (округлить до сотых)

Для одного кубика 6 возможных исходов. Значит, для двух, по вышеупомянутому правилу, 6·6=36.
Какие исходы будут благоприятными для того, чтоб в сумме выпало 10?
10 надо разложить на сумму двух чисел от 1 до 6. Это можно сделать двумя способами: 10=6+4 и 10=5+5. Значит, для кубиков возможны варианты:
(6 на первом и 4 на втором)
(4 на первом и 6 на втором)
(5 на первом и 5 на втором)
Итого, 3 варианта. Искомая вероятность: 3/36=1/12=0,08
Ответ: 0,08

Другие типы задач B6 будут рассмотрены в одной из следующих статей «Как решать».

Ответы к контрольной работе по теории вероятности помогут студентам первых курсов, изучающих математические дисциплины. Задания охватывают много теоретического материала, а обоснование их решения пригодится каждому студенту.

Задача 1. Куб все грани которого закрашены, распилен на 1000 кубиков одинаковых размеров. Определить вероятность того что кубик вытянутый наугад будет иметь:

  • а) одну закрашеную грань;
  • б) две закрашеные грани.

Вычисления: Если куб распилить на кубики одинакового размера то все грани будут поделены на 100 квадратов. (Примерно как на рисунке)
Дальше по условию кубик должен иметь одну закрашенную грань - это значит что кубики должны принадлежать внешней поверхности но не лежать на ребрах куба (2 закрашеные поверхности) и не на углах - имеют три закрашеные поверхности.
Следовательно, искомое количество равно произведению 6 граней на количество кубиков в квадрате размером 8*8.
6*8*8=384 – кубики с 1 закрашеной поверхностью.
Вероятность равна количеству благоприятных событий к общему их количеству P=384/1000=0,384.
б) Две закрашеные грани имеют кубики по ребрам без самих вершин куба. На одном ребре будет 8 таких кубиков. Всего в кубе 12 ребер, поэтому две закрашенные грани имеют
8*12=96 кубиков .
А вероятность вытянуть их среди 1000 всех равная
P=96/1000=0,096.
На этом задание решено и переходим к следующему.

Задача 2. На одинаковых карточках написаны буквы А, А, А, Н, Н, С . Какова вероятность того, что случайно разместив карточки в ряд, получим слово АНАНАС?
Вычисления: Нужно рассуждать всегда от того, что известно. Дано 3 буквы А, 2-Н, и 1 - С, всего их 6. Начнем выбирать буквы для слова "ананас" . Первой идет буква А, которую мы можем выбрать 3 способами из 6, потому что есть 3 буквы А среди 6 известных. Поэтому вероятность вытянуть первой А равна
P 1 =3/6=1/2.
Вторая буква Н, но не следует забывать, что после того как вытащили А остается 5 букв для выбора. Поэтому вероятность вытянуть под 2 номером Н равна
P 2 =2/5.
Следующую А вероятность вытянуть среди 4, что осталось
P 3 =2/4.
Далее Н можно извлечь из вероятностью
P 4 =1/3.
Чем ближе к концу тем больше вероятность, и уже А можем извлечь при
P 5 =1/2.
После этого остается одна карточка С, поэтому вероятность ее вытащить равна 100 процентам или
P 6 =1.
Вероятность составить слово АНАНАС равна произведению вероятностей
P=3/6*2/5*2/4*1/3*1/2*1=1/60=0,016(6).
На этом и базируются подобные задачи по теории вероятностей.

Задача 3. Из партии изделий товаровед наугад выбирает образцы. Вероятность того что наугад взятое изделие окажется высшего сорта равна 0,8. Найти вероятность того, что среди 3 отобранных изделий будет два изделия высшего сорта?
Вычисления: Данный пример на применение формулы Бернулли .
p=0,8; q=1-0,8=0,2.
Вероятность вычисляем по формуле

Если объяснять не на языке формул, то нужно составить комбинации из трех событий, два из которых благоприятны, а одно нет. Это можно записать суммой произведений

Оба варианта являются равносильными, только первый можем применить во всех задачах, а второй в подобных к рассмотреной.

Задача 4. Из пяти стрелков двое попадают в цель с вероятностью 0,6 и трое с вероятностью 0,4 . Что вероятнее: наугад выбранный стрелок попадает в цель или нет?
Вычисления: По формуле полной вероятности определяем вероятность, что стрелок попадет.
P=2/5*0,6+3/5*0,4=0,24+0,24=0,48.
Вероятность меньше P<0,5 , следовательно вероятнее что наугад выбранный стрелок не попадет в цель.
Вероятность не попадания составляет

или
P=2/5*(1-0,6)+3/5*(1-0,4)=0,16+0,36=0,52.

Задача 5. C 20 студентов, пришедших на экзамен, 10 подготовлены отлично (знают все вопросы), 7 хорошо (знают по 35 вопросов), а 3 плохо (10 вопросов). В программе 40 вопросов. Наугад вызванный студент ответил на три вопроса билета. Какова вероятность того, что он подготовлен на

  • а) отлично;
  • б) плохо.

Вычисления: Суть задачи заключается в том что студент ответил на три вопроса билета, то есть на все что были заданы, а вот какова вероятность их вытянуть мы сейчас вычислим.
Найдем вероятность что студент ответил на три вопроса правильно. Это будет отношение количества студентов ко всей группе умноженное на вероятность вытянуть билеты которые они знают среди всех возможных

Теперь найдем вероятность что студент принадлежит группе которая подготовлена "на отлично". Это равносильно доле первого слагаемого предварительной вероятности, к самой вероятности

Вероятность, что студент принадлежит группе которая плохо подготовилась достаточно мала и равна 0,00216 .

На этом задание выполнено. Хорошо его разберите и запомните как вычислять, поскольку на контрольных и тестах оно распространено.

Задача 6. Монету бросают 5 раз. Найти вероятность того что герб выпадет менее 3 раз?
Вычисления: Вероятность вытянуть герб или решку равносильна и равна 0,5. Менее 3 раз означает, что герб может выпасть либо 0, либо 1, либо 2 раза. "Или" всегда в вероятности в операциях сказывается добавлением.
Вероятности находим по формуле Бернулли

Поскольку p=q=0,5 , то вероятность равна

Вероятность равна 0,5 .

Задача 7. При штамповке металлических клемм получается в среднем 90% стандартных. Найти вероятность того что среди 900 клемм стандартными будут не менее 790 и не более 820 клемм.

Вычисления: Вычисления необходимо проводить

Необходимость в действиях над вероятностями наступает тогда, когда известны вероятности некоторых событий, а вычислить нужно вероятности других событий, которые связаны с данными событиями.

Сложение вероятностей используется тогда, когда нужно вычислить вероятность объединения или логической суммы случайных событий.

Сумму событий A и B обозначают A + B или A B . Суммой двух событий называется событие, которое наступает тогда и только тогда, когда наступает хотя бы одно из событий. Это означает, что A + B – событие, которое наступает тогда и только тогда, когда при наблюдении произошло событие A или событие B , или одновременно A и B .

Если события A и B взаимно несовместны и их вероятности даны, то вероятность того, что в результате одного испытания произойдёт одно из этих событий, рассчитывают, используя сложение вероятностей.

Теорема сложения вероятностей. Вероятность того, что произойдёт одно из двух взаимно несовместных событий, равна сумме вероятностей этих событий:

Например, на охоте произведены два выстрела. Событие А – попадание в утку с первого выстрела, событие В – попадание со второго выстрела, событие (А + В ) – попадание с первого или второго выстрела или с двух выстрелов. Итак, если два события А и В – несовместные события, то А + В – наступление хотя бы одного из этих событий или двух событий.

Пример 1. В ящике 30 мячиков одинаковых размеров: 10 красных, 5 синих и 15 белых. Вычислить вероятность того, что не глядя будет взят цветной (не белый) мячик.

Решение. Примем, что событие А – «взят красный мячик», а событие В – «взят синий мячик». Тогда событие - «взят цветной (не белый) мячик». Найдём вероятность события А :

и события В :

События А и В – взаимно несовместные, так как если взят один мячик, то нельзя взять мячики разных цветов. Поэтому используем сложение вероятностей:

Теорема сложения вероятностей для нескольких несовместных событий. Если события составляют полное множество событий, то сумма их вероятностей равна 1:

Сумма вероятностей противоположных событий также равна 1:

Противоположные события образуют полное множество событий, а вероятность полного множества событий равна 1.

Вероятности противоположных событий обычно обозначают малыми буквами p и q . В частности,

из чего следуют следующие формулы вероятности противоположных событий:

Пример 2. Цель в тире разделена на 3 зоны. Вероятность того что некий стрелок выстрелит в цель в первой зоне равна 0,15, во второй зоне – 0,23, в третьей зоне – 0,17. Найти вероятность того, что стрелок попадет в цель и вероятность того, что стрелок попадёт мимо цели.

Решение: Найдём вероятность того, что стрелок попадёт в цель:

Найдём вероятность того, что стрелок попадёт мимо цели:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей - на странице "Различные задачи на сложение и умножение вероятностей" .

Сложение вероятностей взаимно совместных событий

Два случайных события называются совместными, если наступление одного события не исключает наступления второго события в том же самом наблюдении. Например, при бросании игральной кости событием А считается выпадение числа 4, а событием В – выпадение чётного числа. Поскольку число 4 является чётным числом, эти два события совместимы. В практике встречаются задачи по расчёту вероятностей наступления одного из взаимно совместных событий.

Теорема сложения вероятностей для совместных событий. Вероятность того, что наступит одно из совместных событий, равна сумме вероятностей этих событий, из которой вычтена вероятность общего наступления обоих событий, то есть произведение вероятностей. Формула вероятностей совместных событий имеет следующий вид:

Поскольку события А и В совместимы, событие А + В наступает, если наступает одно из трёх возможных событий: или АВ . Согласно теореме сложения несовместных событий, вычисляем так:

Событие А наступит, если наступит одно из двух несовместных событий: или АВ . Однако вероятность наступления одного события из нескольких несовместных событий равна сумме вероятностей всех этих событий:

Аналогично:

Подставляя выражения (6) и (7) в выражение (5), получаем формулу вероятности для совместных событий:

При использовании формулы (8) следует учитывать, что события А и В могут быть:

  • взаимно независимыми;
  • взаимно зависимыми.

Формула вероятности для взаимно независимых событий:

Формула вероятности для взаимно зависимых событий:

Если события А и В несовместны, то их совпадение является невозможным случаем и, таким образом, P (AB ) = 0. Четвёртая формула вероятности для несовместных событий такова:

Пример 3. На автогонках при заезде на первой автомашине вероятность победить , при заезде на второй автомашине . Найти:

  • вероятность того, что победят обе автомашины;
  • вероятность того, что победит хотя бы одна автомашина;

1) Вероятность того, что победит первая автомашина, не зависит от результата второй автомашины, поэтому события А (победит первая автомашина) и В (победит вторая автомашина) – независимые события. Найдём вероятность того, что победят обе машины:

2) Найдём вероятность того, что победит одна из двух автомашин:

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей - на странице "Различные задачи на сложение и умножение вероятностей" .

Решить задачу на сложение вероятностей самостоятельно, а затем посмотреть решение

Пример 4. Бросаются две монеты. Событие A - выпадение герба на первой монете. Событие B - выпадение герба на второй монете. Найти вероятность события C = A + B .

Умножение вероятностей

Умножение вероятностей используют, когда следует вычислить вероятность логического произведения событий.

При этом случайные события должны быть независимыми. Два события называются взаимно независимыми, если наступление одного события не влияет на вероятность наступления второго события.

Теорема умножения вероятностей для независимых событий. Вероятность одновременного наступления двух независимых событий А и В равна произведению вероятностей этих событий и вычисляется по формуле:

Пример 5. Монету бросают три раза подряд. Найти вероятность того, что все три раза выпадет герб.

Решение. Вероятность того, что при первом бросании монеты выпадет герб , во второй раз , в третий раз . Найдём вероятность того, что все три раза выпадет герб:

Решить задачи на умножение вероятностей самостоятельно, а затем посмотреть решение

Пример 6. Имеется коробка с девятью новыми теннисными мячами. Для игры берут три мяча, после игры их кладут обратно. При выборе мячей игранные от неигранных не отличают. Какова вероятность того, что после трёх игр в коробке не останется неигранных мячей?

Пример 7. 32 буквы русского алфавита написаны на карточках разрезной азбуки. Пять карточек вынимаются наугад одна за другой и укладываются на стол в порядке появления. Найти вероятность того, что из букв получится слово "конец".

Пример 8. Из полной колоды карт (52 листа) вынимаются сразу четыре карты. Найти вероятность того, что все эти четыре карты будут разных мастей.

Пример 9. Та же задача, что в примере 8, но каждая карта после вынимания возвращается в колоду.

Задачи посложнее, в которых нужно применять и сложение и умножение вероятностей, а также вычислять произведение нескольких событий - на странице "Различные задачи на сложение и умножение вероятностей" .

Вероятность того, что произойдёт хотя бы одно из взаимно независимых событий , можно вычислить путём вычитания из 1 произведения вероятностей противоположных событий , то есть по формуле:

Пример 10. Грузы доставляют тремя видами транспорта: речным, железнодорожным и автотранспортом. Вероятность того, что груз будет доставлен речным транспортом, составляет 0,82, железнодорожным транспортом 0,87, автотранспортом 0,90. Найти вероятность того, что груз будет доставлен хотя бы одним из трёх видов транспорта.

Важные замечания!
1. Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь:
2. Прежде чем на начнешь читать статью, обрати внимание на наш навигатор по самым полезным ресурса для

Что такое вероятность?

Столкнувшись с этим термином первый раз, я бы не понял, что это такое. Поэтому попытаюсь объяснить доступно.

Вероятность - это шанс того, что произойдет нужное нам событие.

Например, ты решил зайти к знакомому, помнишь подъезд и даже этаж на котором он живет. А вот номер и расположение квартиры забыл. И вот стоишь ты на лестничной клетке, а перед тобой двери на выбор.

Каков шанс (вероятность) того, что если ты позвонишь в первую дверь, тебе откроет твой друг? Всего квартиры, а друг живет только за одной из них. С равным шансом мы можем выбрать любую дверь.

Но каков этот шанс?

Дверей, нужная дверь. Вероятность угадать, позвонив в первую дверь: . То есть один раз из трех ты точно угадаешь.

Мы хотим узнать, позвонив раз, как часто мы будем угадывать дверь? Давай рассмотри все варианты:

  1. Ты позвонил в дверь
  2. Ты позвонил в дверь
  3. Ты позвонил в дверь

А теперь рассмотрим все варианты, где может находиться друг:

а. За 1ой дверью
б. За 2ой дверью
в. За 3ей дверью

Сопоставим все варианты в виде таблицы. Галочкой обозначены варианты, когда твой выбор совпадает с местоположением друга, крестиком - когда не совпадает.

Как видишь всего возможно вариантов местоположения друга и твоего выбора, в какую дверь звонить.

А благоприятных исходов всего . То есть раза из ты угадаешь, позвонив в дверь раз, т.е. .

Это и есть вероятность - отношение благоприятного исхода (когда твой выбор совпал с местоположение друга) к количеству возможных событий.

Определение - это и есть формула. Вероятность принято обозначать p, поэтому:

Такую формулу писать не очень удобно, поэтому примем за - количество благоприятных исходов, а за - общее количество исходов.

Вероятность можно записывать в процентах, для этого нужно умножить получившийся результат на:

Наверное, тебе бросилось в глаза слово «исходы». Поскольку математики называют различные действия (у нас такое действие - это звонок в дверь) экспериментами, то результатом таких экспериментов принято называть исход.

Ну а исходы бывают благоприятные и неблагоприятные.

Давай вернемся к нашему примеру. Допустим, мы позвонили в одну из дверей, но нам открыл незнакомый человек. Мы не угадали. Какова вероятность, что если позвоним в одну из оставшихся дверей, нам откроет наш друг?

Если ты подумал, что, то это ошибка. Давай разбираться.

У нас осталось две двери. Таким образом, у нас есть возможные шаги:

1) Позвонить в 1-ую дверь
2) Позвонить во 2-ую дверь

Друг, при всем этом, точно находится за одной из них (ведь за той, в которую мы звонили, его не оказалось):

а) Друг за 1-ой дверью
б) Друг за 2-ой дверью

Давай снова нарисуем таблицу:

Как видишь, всего есть варианта, из которых - благоприятны. То есть вероятность равна.

А почему не?

Рассмотренная нами ситуация - пример зависимых событий. Первое событие - это первый звонок в дверь, второе событие - это второй звонок в дверь.

А зависимыми они называются потому что влияют на следующие действия. Ведь если бы после первого звонка в дверь нам открыл друг, то какова была бы вероятность того, что он находится за одной из двух других? Правильно, .

Но если есть зависимые события, то должны быть и независимые ? Верно, бывают.

Хрестоматийный пример - бросание монетки.

  1. Бросаем монетку раз. Какова вероятность того, что выпадет, например, орел? Правильно - , ведь вариантов всего (либо орел, либо решка, пренебрежем вероятностью монетки встать на ребро), а устраивает нас только.
  2. Но выпала решка. Ладно, бросаем еще раз. Какова сейчас вероятность выпадения орла? Ничего не изменилось, все так же. Сколько вариантов? Два. А сколько нас устраивает? Один.

И пусть хоть тысячу раз подряд будет выпадать решка. Вероятность выпадения орла на раз будет все также. Вариантов всегда, а благоприятных - .

Отличить зависимые события от независимых легко:

  1. Если эксперимент проводится раз (раз бросают монетку, 1 раз звонят в дверь и т.д.), то события всегда независимые.
  2. Если эксперимент проводится несколько раз (монетку бросают раз, в дверь звонят несколько раз), то первое событие всегда независимое. А дальше, если количество благоприятных или количество всех исходов меняется, то события зависимые, а если нет - независимые.

Давай немного потренируемся определять вероятность.

Пример 1.

Монетку бросают два раза. Какова вероятность того, что два раза подряд выпадет орел?

Решение:

Рассмотрим все возможные варианты:

  1. Орел-орел
  2. Орел-решка
  3. Решка-орел
  4. Решка-решка

Как видишь, всего варианта. Из них нас устраивает только. То есть вероятность:

Если в условии просят просто найти вероятность, то ответ нужно давать в виде десятичной дроби. Если было бы указано, что ответ нужно дать в процентах, тогда мы умножили бы на.

Ответ:

Пример 2.

В коробке конфет все конфеты упакованы в одинаковую обертку. Однако из конфет - с орехами, с коньяком, с вишней, с карамелью и с нугой.

Какова вероятность, взяв одну конфету, достать конфету с орехами. Ответ дайте в процентах.

Решение:

Сколько всего возможных исходов? .

То есть, взяв одну конфету, она будет одной из, имеющихся в коробке.

А сколько благоприятных исходов?

Потому что в коробке только конфет с орехами.

Ответ:

Пример 3.

В коробке шаров. из них белые, - черные.

  1. Какова вероятность вытащить белый шар?
  2. Мы добавили в коробку еще черных шаров. Какова теперь вероятность вытащить белый шар?

Решение:

а) В коробке всего шаров. Из них белых.

Вероятность равна:

б) Теперь шаров в коробке стало. А белых осталось столько же - .

Ответ:

Полная вероятность

Вероятность всех возможных событий равна ().

Допустим, в ящике красных и зеленых шаров. Какова вероятность вытащить красный шар? Зеленый шар? Красный или зеленый шар?

Вероятность вытащить красный шар

Зеленый шар:

Красный или зеленый шар:

Как видишь, сумма всех возможных событий равна (). Понимание этого момента поможет тебе решить многие задачи.

Пример 4.

В ящике лежит фломастеров: зеленых, красных, синих, желтых, черный.

Какова вероятность вытащить НЕ красный фломастер?

Решение:

Давай посчитаем количество благоприятных исходов.

НЕ красный фломастер, это значит зеленый, синий, желтый или черный.

Вероятность того, что событие не произойдет, равна минус вероятность того, что событие произойдет.

Правило умножения вероятностей независимых событий

Что такое независимые события ты уже знаешь.

А если нужно найти вероятность того, что два (или больше) независимых события произойдут подряд?

Допустим мы хотим знать, какова вероятность того, что бросая монетку раза, мы два раза увидим орла?

Мы уже считали - .

А если бросаем монетку раза? Какова вероятность увидеть орла раза подряд?

Всего возможных вариантов:

  1. Орел-орел-орел
  2. Орел-орел-решка
  3. Орел-решка-орел
  4. Орел-решка-решка
  5. Решка-орел-орел
  6. Решка-орел-решка
  7. Решка-решка-орел
  8. Решка-решка-решка

Не знаю как ты, но я раза ошибся, составляя этот список. Ух! А подходит нам только вариант (первый).

Для 5 бросков можешь составить список возможных исходов сам. Но математики не столь трудолюбивы, как ты.

Поэтому они сначала заметили, а потом доказали, что вероятность определенной последовательности независимых событий каждый раз уменьшается на вероятность одного события.

Другими словами,

Рассмотрим на примере все той же, злосчастной, монетки.

Вероятность выпадения орла в испытании? . Теперь мы бросаем монетку раз.

Какова вероятность выпадения раз подряд орла?

Это правило работает не только, если нас просят найти вероятность того, что произойдет одно и то же событие несколько раз подряд.

Если бы мы хотели найти последовательность РЕШКА-ОРЕЛ-РЕШКА, при бросках подряд, мы поступили бы также.

Вероятность выпадения решка - , орла - .

Вероятность выпадения последовательности РЕШКА-ОРЕЛ-РЕШКА-РЕШКА:

Можешь проверить сам, составив таблицу.

Правило сложения вероятностей несовместных событий.

Так стоп! Новое определение.

Давай разбираться. Возьмем нашу изношенную монетку и бросим её раза.
Возможные варианты:

  1. Орел-орел-орел
  2. Орел-орел-решка
  3. Орел-решка-орел
  4. Орел-решка-решка
  5. Решка-орел-орел
  6. Решка-орел-решка
  7. Решка-решка-орел
  8. Решка-решка-решка

Так вот несовместные события, это определенная, заданная последовательность событий. - это несовместные события.

Если мы хотим определить, какова вероятность двух (или больше) несовместных событий то мы складываем вероятности этих событий.

Нужно понять, что выпадение орла или решки - это два независимых события.

Если мы хотим определить, какова вероятность выпадения последовательности) (или любой другой), то мы пользуемся правилом умножения вероятностей.
Какова вероятность выпадения при первом броске орла, а при втором и третьем решки?

Но если мы хотим узнать, какова вероятность выпадения одной из нескольких последовательностей, например, когда орел выпадет ровно раз, т.е. варианты и, то мы должны сложить вероятности этих последовательностей.

Всего вариантов, нам подходит.

То же самое мы можем получить, сложив вероятности появления каждой последовательности:

Таким образом, мы складываем вероятности, когда хотим определить вероятность некоторых, несовместных, последовательностей событий.

Есть отличное правило, помогающее не запутаться, когда умножать, а когда складывать:

Возвратимся к примеру, когда мы подбросили монетку раза, и хотим узнать вероятность увидеть орла раз.
Что должно произойти?

Должны выпасть:
(орел И решка И решка) ИЛИ (решка И орел И решка) ИЛИ (решка И решка И орел).
Вот и получается:

Давай рассмотрим несколько примеров.

Пример 5.

В коробке лежит карандашей. красных, зеленых, оранжевых и желтых и черных. Какова вероятность вытащить красный или зеленый карандаши?

Решение:

Пример 6.

Игральную кость бросают дважды, какова вероятность того, что в сумме выпадет 8 очков?

Решение.

Как мы можем получить очков?

(и) или (и) или (и) или (и) или (и).

Вероятность выпадения одной (любой) грани - .

Считаем вероятность:

Тренировка.

Думаю, теперь тебе стало понятно, когда нужно как считать вероятности, когда их складывать, а когда умножать. Не так ли? Давай немного потренируемся.

Задачи:

Возьмем карточную колоду, в которой карты, из них пик, червей, 13 треф и 13 бубен. От до туза каждой масти.

  1. Какова вероятность вытащить трефы подряд (первую вытащенную карту мы кладем обратно в колоду и перемешиваем)?
  2. Какова вероятность вытащить черную карту (пики или трефы)?
  3. Какова вероятность вытащить картинку (вальта, даму, короля или туза)?
  4. Какова вероятность вытащить две картинки подряд (первую вытащенную карту мы убираем из колоды)?
  5. Какова вероятность, взяв две карты, собрать комбинацию - (валет, дама или король) и туз Последовательность, в которой будут вытащены карты, не имеет значения.

Ответы:

Если ты смог сам решить все задачи, то ты большой молодец! Теперь задачи на теорию вероятностей в ЕГЭ ты будешь щелкать как орешки!

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. СРЕДНИЙ УРОВЕНЬ

Рассмотрим пример. Допустим, мы бросаем игральную кость. Что это за кость такая, знаешь? Так называют кубик с цифрами на гранях. Сколько граней, столько и цифр: от до скольки? До.

Итак, мы бросаем кость и хотим, чтобы выпало или. И нам выпадает.

В теории вероятностей говорят, что произошло благоприятное событие (не путай с благополучным).

Если бы выпало, событие тоже было бы благоприятным. Итого может произойти всего два благоприятных события.

А сколько неблагоприятных? Раз всего возможных событий, значит, неблагоприятных из них события (это если выпадет или).

Определение:

Вероятностью называется отношение количества благоприятных событий к количеству всех возможных событий . То есть вероятность показывает, какая доля из всех возможных событий приходится на благоприятные.

Обозначают вероятность латинской буквой (видимо, от английского слова probability - вероятность).

Принято измерять вероятность в процентах (см. темы и ) . Для этого значение вероятности нужно умножать на. В примере с игральной костью вероятность.

А в процентах: .

Примеры (реши сам):

  1. С какой вероятностью при бросании монетки выпадет орел? А с какой вероятностью выпадет решка?
  2. С какой вероятностью при бросании игральной кости выпадет четное число? А с какой - нечетное?
  3. В ящике простых, синих и красных карандашей. Наугад тянем один карандаш. Какова вероятность вытащить простой?

Решения:

  1. Сколько всего вариантов? Орел и решка - всего два. А сколько из них благоприятных? Только один - орел. Значит, вероятность

    С решкой то же самое: .

  2. Всего вариантов: (сколько сторон у кубика, столько и различных вариантов). Благоприятных из них: (это все четные числа:).
    Вероятность. С нечетными, естественно, то же самое.
  3. Всего: . Благоприятных: . Вероятность: .

Полная вероятность

Все карандаши в ящике зеленые. Какова вероятность вытащить красный карандаш? Шансов нет: вероятность (ведь благоприятных событий -).

Такое событие называется невозможным .

А какова вероятность вытащить зеленый карандаш? Благоприятных событий ровно столько же, сколько событий всего (все события - благоприятные). Значит, вероятность равна или.

Такое событие называется достоверным .

Если в ящике зеленых и красных карандашей, какова вероятность вытащить зеленый или красный? Опять же. Заметим такую вещь: вероятность вытащить зеленый равна, а красный - .

В сумме эти вероятности равны ровно. То есть, сумма вероятностей всех возможных событий равна или.

Пример:

В коробке карандашей, среди них синих, красных, зеленых, простых, желтый, а остальные - оранжевые. Какова вероятность не вытащить зеленый?

Решение:

Помним, что все вероятности в сумме дают. А вероятность вытащить зеленый равна. Значит, вероятность не вытащить зеленый равна.

Запомни этот прием: вероятность того, что событие не произойдет равна минус вероятность того, что событие произойдет.

Независимые события и правило умножения

Ты кидаешь монетку раза, и хочешь, чтобы оба раза выпал орел. Какова вероятность этого?

Давай переберем все возможные варианты и определим, сколько их:

Орел-Орел, Решка-Орел, Орел-Решка, Решка-Решка. Какие еще?

Всего варианта. Из них нам подходит только один: Орел-Орел. Итого, вероятность равна.

Хорошо. А теперь кидаем монетку раза. Посчитай сам. Получилось? (ответ).

Ты мог заметить, что с добавлением каждого следующего броска вероятность уменьшается в раза. Общее правило называется правилом умножения :

Вероятности независимых событий переменожаются.

Что такое независимые события? Все логично: это те, которые не зависят друг от друга. Например, когда мы бросаем монетку несколько раз, каждый раз производится новый бросок, результат которого не зависит от всех предыдущих бросков. С таким же успехом мы можем бросать одновременно две разные монетки.

Еще примеры:

  1. Игральную кость бросают дважды. Какова вероятность, что оба раза выпадет?
  2. Монетку бросают раза. Какова вероятность, что в первый раз выпадет орел, а потом два раза решка?
  3. Игрок бросает две кости. Какова вероятность, что сумма чисел на них будет равна?

Ответы:

  1. События независимы, значит, работает правило умножения: .
  2. Вероятность орла равна. Вероятность решки - тоже. Перемножаем:
  3. 12 может получиться только, если выпадут две -ки: .

Несовместные события и правило сложения

Несовместными называются события, которые дополняют друг друга до полной вероятности. Из названия видно, что они не могут произойти одновременно. Например, если бросаем монетку, может выпасть либо орел, либо решка.

Пример.

В коробке карандашей, среди них синих, красных, зеленых, простых, желтый, а остальные - оранжевые. Какова вероятность вытащить зеленый или красный?

Решение .

Вероятность вытащить зеленый карандаш равна. Красный - .

Благоприятных событий всего: зеленых + красных. Значит, вероятность вытащить зеленый или красный равна.

Эту же вероятность можно представить в таком виде: .

Это и есть правило сложения: вероятности несовместных событий складываются.

Задачи смешанного типа

Пример.

Монетку бросают два раза. Какова вероятность того, что результат бросков будет разный?

Решение .

Имеется в виду, что если первым выпал орел, второй должна быть решка, и наоборот. Получается, что здесь две пары независимых событий, и эти пары друг с другом несовместны. Как бы не запутаться, где умножать, а где складывать.

Есть простое правило для таких ситуаций. Попробуй описать, что должно произойти, соединяя события союзами «И» или «ИЛИ». Например, в данном случае:

Должны выпасть (орел и решка) или (решка и орел).

Там где стоит союз «и», будет умножение, а там где «или» - сложение:

Попробуй сам:

  1. С какой вероятностью при двух бросаниях монетки оба раза выпадет одно и та же сторона?
  2. Игральную кость бросают дважды. Какова вероятность, что в сумме выпадет очков?

Решения:

Еще пример:

Бросаем монетку раза. Какова вероятность, что хотя-бы один раз выпадет орел?

Решение:

ТЕОРИЯ ВЕРОЯТНОСТЕЙ. КОРОТКО О ГЛАВНОМ

Вероятность - это отношение количества благоприятных событий к количеству всех возможных событий.

Независимые события

Два события независимы если при наступлении одного вероятность наступления другого не изменяется.

Полная вероятность

Вероятность всех возможных событий равна ().

Вероятность того, что событие не произойдет, равна минус вероятность того, что событие произойдет.

Правило умножения вероятностей независимых событий

Вероятность определенной последовательности независимых событий, равна произведению вероятностей каждого из событий

Несовместные события

Несовместными называются события, которые никак не могут произойти одновременно в результате эксперимента. Ряд несовместных событий образуют полную группу событий.

Вероятности несовместных событий складываются.

Описав что должно произойти, используя союзы «И» или «ИЛИ», вместо «И» ставим знак умножения, а вместо «ИЛИ» — сложения.

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 499 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

А.А. Халафян

ТЕОРИЯ ВЕРОЯТНОСТЕЙ

И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

тексты лекций

Краснодар 2008

Статистическое определение вероятности

Существует большой класс событий, вероятности которых не могут быть вычислены с помощью классического определения. В первую очередь это события с неравновозможными исходами (например, игральная кость «нечестная», монета сплющена и т.д.). В таких случаях может помочь статистическое определение вероятности, основанное на подсчете частоты наступления события в испытаниях.

Определение 2. Статистической вероятностьюнаступления события А называется относительная частота появления этого события в n произведенных испытаниях , т.е.

(А ) = W(A ) = m/n ,

где (А ) статистическое определение вероятности; W(A ) относительная частота; n количество произведенных испытаний; m число испытаний, в которых событие А появилось. Заметим, что статистическая вероятность является опытной, экспериментальной характеристикой.

Причем при n → ∞, (А ) → P(А ), так, например, в опытах Бюффона (XVIII в.) относительная частота появления герба при 4040 подбрасываниях монеты, оказалось 0,5069, в опытах Пирсона (XIX в.) при 23000 подбрасываниях 0,5005.

Геометрическое определение вероятности

Еще один недостаток классического определения, ограничивающий его применение, является то, что оно предполагает конечное число возможных исходов. В некоторых случаях этот недостаток можно устранить, используя геометрическое определение вероятности. Пусть, например, плоская фигура g составляет часть плоской фигуры G (рис.3).

На фигуру G наудачу бросается точка. Это означает, что все точки области G «равноправны», в отношении попадания туда брошенной случайной точки. Полагая, что вероятность события А – попадание брошенной точки на g пропорциональна площади этой фигуры S g и не зависит ни от ее расположения относительно области G , ни от формы g , найдем

Р (А ) = S g /S G

где S G – площадь области G . Но так как области g и G могут быть одномерны- ми, двухмерными, трехмерными и многомерными, то, обозначив меру области черезmeas , можно дать более общее определение геометрической вероятности

P = measg / measG .

Доказательство.

Р (В/А ) = Р (В ÇА )/Р (А ) = Р (А ÇВ )/Р (А ) = {P (a/b )Р (В )}/Р (А ) = {Р (А )Р (В )}/Р (А ) = Р (В ).

Из определения 4 вытекают формулы умножения вероятностей для зависимых и независимых событий.

Следствие 1. Вероятность совместного появления нескольких событий равна произведению вероятности одного из них на условные вероятности всех остальных, причем вероятность каждого последующего события вычисляется в предположении, что все предыдущие события уже появились:



P (A 1 A 2 … A n ) = P (A 1 )P A1 (A 2 )P A1A2 (A 3 )… P A1A2… An-1 (A n ).

Определение 6 . События A 1, A 2, …, A n независимы в совокупности, если независимы любые два из них и независимы любое из этих событий и любые комбинации (произведения) остальных событий .

Следствие 2. Вероятность совместного появления нескольких событий, независимых в совокупности, равна произведению вероятностей этих событий:

P (A 1 A 2 … A n ) = P (A 1)P (A 2)… P (A n).

Доказательство.

P (A 1 A 2 … A n) = P (A 1 ·A 2 … A n) = P (A 1)P (A 2 … A n).=…= P (A 1)P (A 2)… P (A n ).

Определение 7 . Событие А 1 ,А 2 ,… А n образуют полную группу событий, если они попарно несовместны (А i А j = Ø, для любого i ≠ j )и в совокупности образуют Ω, т.е . .

Теорема 2. Если события А 1, A 2 ,… А n образуют полную группу событий, Р (А i ) > 0 (так как не будет определено P (B /A i )), то вероятность некоторого события B Î S определяется, как сумма произведений безусловных вероятностей наступления события А i на условные вероятности наступления события B , т.е.

. (1)

Доказательство. Так как события А i попарно несовместны, то их пересечение с событием B также попарно несовместны, т.е. B∩А i и B∩А j – несовместны при i ¹ j. Используя свойство дистрибутивности ((ÈА i В = È(А i ÇВ )), событие B можно представить как . Воспользуемся аксиомой сложения 3 и формулой умножения вероятностей, получим

.

Формула (1) называется формула полной вероятности.

Из формулы полной вероятности легко получить формулу Байеса, при дополнительном предположении, что P (B )>0

,

где k = 1, 2, …, n .

Доказательство. P(А k /B) = P(А k ∩ B)/P(B)

Вероятности событий P (А i ), i =1, 2, …, n называются априорными вероятностями, т.е. вероятностями событий до выполнения опыта, а условные вероятности этих событий P (А k /B ), называются апостериорными вероятностями, т.е. уточненными в результате опыта, исходом которого послужило появление события В .



Задача. В торговую фирму поступили сотовые телефоны последних моделей от трех производителей Alcatel , Siemens , Motorola в соотношении 1: 4: 5. Практика показала, что телефоны, поступившие от 1-го, 2-го, 3-го производителя, не потребуют ремонта в течение гарантийного срока соответственно в 98 %, 88 % и 92 % случаев. Найти вероятность того, что поступивший в продажу телефон не потребует ремонта в течение гарантийного срока, проданный телефон потребовал ремонта в течение гарантийного срока, от какого производителя вероятнее всего поступил телефон.

Пример 1.

Пример 2 .

Определение 1. Случайной величиной вероятностного пространства { , S, P} называется любая функция X (w), определенная для wÎΩ, и такая, что для всех действительных х () множество { w: X (w) < x}принадлежит полю S. Другими словами для любого такого события w определена вероятность P (X (w) < x ) = P (X < x ).

Случайные величины будем обозначать прописными латинскими буквами X , Y , Z , …, а значения случайных величин – строчными латинскими буквами x , y , z ...

Определение 2 . Случайная величина X называется дискретной, если она принимает значения только из некоторого дискретного множества. Другими словами, существует конечное или счетное число значений x 1 , x 2 , …, таких, что P (X = x i) = р i ³ 0, i = 1, 2…, причем å p i = 1.

Если известны значения случайной величины и соответствующие им вероятности, то говорят, что определен закон распределения дискретной случайной величины.

Если составлена таблица, в верхней части которой располагаются значения случайных величин, а в нижней части соответствующие им вероятности, то получим ряд распределения случайной величины, который задает закон распределения дискретной случайной величины.

Пример 3. Составим ряд распределения выпадения герба при 2 подбрасываниях монеты. Возможные исходы – ГГ, ГР, РГ, РР. Из возможных исходов видно, что герб может выпасть 0, 1 и 2 раза, с соответствующими вероятностями – ¼, ½, ¼. Тогда ряд распределения примет вид

Определение 3. Функцией распределения случайной величины X называется функция F (x ), зависящая от х Î R и принимающая значение, равное вероятности события w, что X < x , т.е.,F (x ) = P {w: X (w) < x } = P (X < x ).

Из определения следует, что любая случайная величина имеет функцию распределения.

Равномерное распределение

Определение 1. Случайная величина Х , принимающая значения 1, 2, …, n, имеет равномерное распределение, если P m = P (Х = m ) = 1/n ,

m = 1, …, n.

Очевидно, что .

Рассмотрим следующую задачу.В урне имеется N шаров, из них M шаров белого цвета. Наудачу извлекается n шаров. Найти вероятность того, что среди извлечённых будет m белых шаров.

Нетрудно видеть, что .

Распределение Пуассона

Определение 4. Случайная величина Х имеет распределение Пуассона с параметром l, если , m = 0, 1, …

Покажем, что Σp m = 1. .

Биномиальное распределение

Определение 5. Случайная величина X имеет биномиальное распределение, если , m = 0, 1, …, n ,

где n – число испытаний по схеме Бернулли, m – число успехов, р – вероятность успеха в единичном исходе, q = 1–p .

Распределение Бернулли

Определение 6. Случайная величина Х имеет распределение Бернулли, если P (Х = m ) = P m = p m q n - m , m = 0, 1, …, n .

При больших m и n становится проблематичным вычисление по формуле Бернулли. Поэтому в ряде случаев удается заменить формулу Бернулли подходящей приближенной асимптотической формулой. Так если n – велико, а р мало, то .

Теорема Пуассона. Если n ® ¥, а p ® 0, так что np ® l, то .

Доказательство . Обозначим l n = np , по условию теоремы , тогда

При n ® ¥, l n m ® l m ,

Отсюда получаем утверждение теоремы. Р n (m ) ® при n ® ¥.

Формула Пуассона хорошо приближает формулу Бернулли, если npq £ 9. Если же произведение npq велико, то для вычисления Р n (m) используют локальную теорему Муавра–Лапласа.

Локальная теорема Муавра – Лапласа. Пусть p Î(0;1) постоянно, величина равномерно ограничена, т.е. $с, |x m |<с . Тогда

,

где b(n;m) – бесконечно малая величина, причем .

Из условий теоремы следует, что ,

где , .

Для вычисления Р n (m) по формуле, приведенной рнее, используют таблицы функции

.

Задача 1 . В магазин одежды один за другим входят трое посетителей. По оценкам менеджера, вероятность того, что вошедший посетитель совершит покупку, равна 0,3. Составить ряд числа посетителей, совершивших покупку.

Решение.

x i
р i 0,343 0,441 0,189 0,027

Задача 2 . Вероятность поломки произвольного компьютера равна 0,01. Построить ряд распределения числа вышедших из строя компьютеров с общим числом 25.

Решение.

Задача 3 . Автомобили поступают в торговый салон партиями по 10 шт. В салоне подвергаются контролю качества и безопасности только 5 из 10 поступивших автомобилей. Обычно 2 из 10 поступивших машин не удовлетворяют стандартам качества и безопасности. Чему равна вероятность, что хотя бы одна из 5 проверяемых машин будет забракована.

Решение . Р = Р (1) + Р (2) = + =0,5556 + 0,2222 = 0,7778

Доказательство.

Задача 1 . Вероятность того, что случайно выбранный прибор нуждается в дополнительной настройке, равна 0,05. Если при выборочной проверке партии приборов обнаруживается, что не менее 6 % отобранных приборов нуждаются в регулировке, то вся партия возвращается для доработки. Определить вероятность того, что партия будет возвращена, если для контроля из партии выбрано 500 приборов.

Решение. Партия будет возвращена, если число отобранных приборов, нуждающихся в настройке, будет больше 6%, т.е. m 1 = 500 × 6/100 = 30. Далее: p = 0,05: q = 0,95; np = 25; 4,87. За успех считаем, если прибор требует дополнительной настройки.

Применим интегральную теорему Муавра–Лапласа.

Задача 2. Определить, сколько надо отобрать изделий, чтобы с вероятностью 0,95 можно было утверждать, что относительная частота бракованных изделий будет отличаться от вероятности их появления не более чем на 0,01.

Решение. Для решения задачи выберем в качестве математической модели схему Бернулли и воспользуемся формулой (4). Надо найти такое n , чтобы выполнялось равенство (4), если e = 0,01, b = 0,95, вероятность р неизвестна.

Ф (х b) = (1 + 0,95) / 2 = 0,975. По таблице приложения найдем, что х b = 1,96. Тогда по формуле (4) найдем n = ¼ × 1,96 2 /0,01 2 = 9600.

Равномерное распределение

Определение 5. Непрерывная случайная величина Х, принимающая значение на отрезке , имеет равномерное распределение, если плотность распределения имеет вид

. (1)

Нетрудно убедиться, что ,

.

Если случайная величина равномерно распределена, то вероятность того, что она примет значение из заданного интервала не зависит от положения интервала на числовой прямой и пропорциональна длине этого интервала

.

Покажем, что функция распределения Х имеет вид

. (2)

Пусть х Î (–¥,a ), тогда F (x ) = .

Пусть х Î [a ,b ], тогда F (x ) = .

Пусть х Î (b ,+¥], тогда F (x ) = = 0 + .

Найдем медиану x 0,5 . Имеем F (x 0,5) = 0,5, следовательно

Итак, медиана равномерного распределения совпадает с серединой отрезка . На рис.1 приведен график плотности р (х ) и функции распределения F (x )

для равномерного распределения.

Нормальное распределение

Определение 7. Непрерывная случайная величина имеет нормальное распределение, с двумя параметрами a, s, если

, s>0. (5)

Тот факт, что случайная величина имеет нормальное распределение, будем кратко записывать в виде Х ~ N (a ;s ).

Покажем, что p (x ) – плотность

(показано в лекции 6).

График плотности нормального распределения (рис. 3) называют нормальной кривой (кривой Гаусса).

Плотность распределения симметрична относительно прямой х = a . Если х ® ¥, то р (х ) ® 0. При уменьшении s график «стягивается» к оси симметрии х = a .

Нормальное распределение играет особую роль в теории вероятностей и ее приложениях. Это связано с тем, что в соответствии с центральной предельной теоремой теории вероятностей при выполнении определенных условий сумма большого числа случайных величин имеет «примерно» нормальное распределение.

Так как – плотность нормального закона распределения с параметрами а = 0 и s =1, то функция = Ф (х ), с помощью которой вычисляется вероятность , является функцией распределения нормального распределения с параметрами а = 0 и s =1.

Функцию распределения случайной величины Х с произвольными параметрами а , s можно выразить через Ф (х ) – функцию распределения нормальной случайной величины с параметрами а = 0 и s =1.

Пусть Х ~ N (a ;s), тогда

. (6)

Сделаем замену переменных под знаком интеграла , получим

=

F (x ) = . (7)

В практических приложениях теории вероятностей часто требуется найти вероятность того, что случайная величина примет значение из заданного отрезка . В соответствии с формулой (7) эту вероятность можно найти по табличным значениям функции Лапласа

Найдем медиану нормальной случайной величины Х ~ N (a ;s ). Так как плотность распределения р(х) симметрична относительно оси х = а , то

р (х < a ) = p (x > a ) = 0,5.

Следовательно, медиана нормальной случайной величины совпадает с параметром а :

Х 0,5 = а.

Задача 1. Поезда в метро идут с интервалом в 2 мин. Пассажир выходит на платформу в некоторый момент времени. Время Х, в течение которого ему придется ждать поезд, представляет собой случайную величину, распределенную с равномерной плотностью на участке (0, 2) мин. Найти вероятность того, что пассажиру придется ждать ближайший поезд не более 0,5 мин.

Решение . Очевидно, что p(x) = 1/2. Тогда, Р 0,5 = Р( 1,5 2) = = 0,25

Задача 2. Волжский автомобильный завод запускает в производство новый двигатель. Предполагается, что средняя длина пробега автомобиля с новым двигателем – 160 тыс. км, со стандартным отклонением – σ = 30 тыс.км. Чему равна вероятность, что до первого ремонта число км. пробега автомобиля будет находиться в пределах от 100 тыс. км. до 180 тыс. км.

Решение. Р(100000< X < 180000) = Ф(2/3)–Ф(–2) = 0,2454 + 0,4772 = 0,7226.

Свойства дисперсии

1.Дисперсия постоянной C равна 0,DC = 0, С = const .

Доказательство . DC = M (С MC ) 2 = М (С С ) = 0.

2. D (CX ) = С 2 DX .

Доказательство. D (CX ) = M (CX ) 2 – M 2 (CX ) = C 2 MX 2 – C 2 (MX ) 2 = C 2 (MX 2 – M 2 X ) = С 2 DX .

3. Если X и Y независимые случайные величины , то

Доказательство .

4. Если Х 1 , Х 2 , … не зависимы, то .

Это свойство можно доказать методом индукции, используя свойство 3.

Доказательство . D(X – Y) = DX + D(–Y) = DX + (–1) 2 D(Y) = DX + D(Y).

6.

Доказательство . D(C+X) = M(X+C–M(X+C)) 2 = M(X+C–MX–MC) 2 = M(X+C–MX–C) 2 = M(X–MX) 2 = DX.

Пусть – независимые случайные величины, причем , .

Составим новую случайную величину , найдем математическое ожидание и дисперсию Y .

; .

То есть при n ®¥ математическое ожидание среднего арифметического n независимых одинаково распределенных случайных величин остается неизменным, равным математическому ожиданию а, в то время как дисперсия стремится к нулю.

Это свойство статистической устойчивости среднего арифметического лежит в основе закона больших чисел.

Нормальное распределение

Пусть X имеет нормальное распределение. Раннее, в лекции 11 (пример 2) было показано, что если

То Y ~ N(0,1).

Отсюда , и тогда , поэтому найдем сначала DY .

Следовательно

DX = D (sY +a ) = s 2 DY = s 2 , s x = s. (2)

Распределение Пуассона

Как известно

Следовательно,

Равномерное распределение

Известно, что .

Ранее мы показали, что , воспользуемся формулой .

Доказательство.

Последний интеграл в цепочке равенств равен 0, так как из условия задачи следует, что p(MX+t) – четная функция относительно t (p(MX+t) = p(MX-t) ), а t 2 k +1 – нечетная функция.

Так как плотности нормального и равномерного законов распределений симметричны относительно х = МХ , то все центральные моменты нечетного порядка равны 0.

Теорема 2. Если X ~N (a ,s), то .

Чем больше моментов случайной величины известно, тем более детальное представление о законе распределения мы имеем. В теории вероятностей и математической статистике наиболее часто используются две числовые характеристики, основанные на центральных моментах 3-го и 4-го порядков. Это коэффициент асимметрии и эксцесс случайной величины.

Определение 3. Коэффициентом асимметрии случайной величины Х называется число b = .

Коэффициент асимметрии является центральным и начальным моментом нормированной случайной величины Y , где . Справедливость этого утверждения следует из следующих соотношений:

Асимметрия случайной величины Х равна асимметрии случайной величины Y = αХ + β

c точностью до знака α, . Это следует из того, что нормирование случайных величин aХ + b и Х приводит к одной и той же случайной величине Y с точностью до знака

Если распределение вероятностей несимметрично, причем «длинная часть» графика расположена справа от центра группирования, то β(х ) > 0; если же «длинная часть» графика расположена слева, то β(х ) < 0. Для нормального и равномерного распределений β = 0.

В качестве характеристики большей или меньшей степени «сглаженности» кривой плотности или многоугольника распределения по сравнению с нормальной плотностью используется понятие эксцесса.

Определение 4. Эксцессом случайной величины Х называется величина

Эксцесс случайной величины Х равен разности начального и центрального моментов 4-го порядка нормированной случайной величины и числа3, т.е. . Покажем это:

Эксцесс случайной величины Х равен эксцессу случайной величины

Y = αХ + β.

Найдем эксцесс нормальной случайной величины Х.

Если Х ~N (a ,s), то ~ (0,1).

Таким образом, эксцесс нормально распределенной случайной величины равен 0. Если плотность распределения одномодальна и более «островершинна», чем плотность нормального распределения с той же дисперсией, то g(Х ) > 0, если при тех же условиях менее «островершинна», то g(Х ) < 0.

Закон больших чисел

Закон больших чисел устанавливает условия сходимости среднего арифметического случайных величин к среднему арифметическому математических ожиданий.

Определение 1 . Последовательность случайных величин называется сходящейся по вероятности p к числу b, если

.

Перейдем в этом неравенстве к пределу при и получим

.

Интервальная оценка

Если получена точечная оценка неизвестного параметра по выборке, то говорить о полученной оценке как об истинном параметре довольно рискованно. В некоторых случаях, целесообразнее, получив разброс оценки параметра, говорить об интервальной оценке истинного значения параметра. В качестве иллюстрации сказанного рассмотрим построение доверительного интервала для математического ожидания нормального распределения.

Мы показали, что наилучшая оценка (абсолютно корректная) для математического ожидания МХ = Q, поэтому является абсолютно корректной оценкой также и для параметра a = нормального распределенияР, где t – значение аргумента функции Лапласа, при котором Ф (t ) = , e = .

1. Колемаев В.А., Староверов О.В., Турундаевский В.Б. Теория вероятностей и мате-

матическая статистика. М.: Высшая Школа, 1991.

2. Елисеева И.И., Князевский В.С., Ниворожкина Л.И., Морозова З.А. Теория статистики с основами теории вероятностей. М.: Юнити, 2001.

3. Секей Г. Парадоксы в теории вероятностей и математической статистике. М.: Мир, 1990.

4. Кремер Н.Ш. Теория вероятностей и математическая статистика. М.: Юнити, 2001

5. Смирнов Н.В. Дунин-Барковский И.В. Курс теории вероятностей и математической статистики для технических приложений. М.: Наука,1969.

6. Статистические методы построения эмпирических формул. М.: Высшая Школа, 1988.


ЛЕКЦИЯ 1. ТЕОРИИ ВЕРОЯТНОСТЕЙ. ИСТОРИЯ ВОЗНИКНОВЕНИЯ. КЛАССИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ВЕРОЯТНОСТИ.. 3

ЛЕКЦИЯ 2. ТЕОРЕМЫ СЛОЖЕНИЯ И УМНОЖЕНИЯ ВЕРОЯТНОСТЕЙ. СТАТИСТИЧЕСКОЕ, ГЕОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ВЕРОЯТНОСТИ.. 8

ЛЕКЦИЯ 3. АКСИОМАТИЧЕСКОЕ ПОСТРОЕНИЕ ТЕОРИИ ВЕРОЯТНОСТЕЙ. АКСИОМАТИКА КОЛМОГОРОВА.. 14

ЛЕКЦИЯ 4. СЛУЧАЙНАЯ ВЕЛИЧИНА. ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ.. 17

ЛЕКЦИЯ 5. РАСПРЕДЕЛЕНИЯ ДИСКРЕТНЫХ СЛУЧАЙНЫХ ВЕЛИЧИН.. 21

ЛЕКЦИЯ 6. ИНТЕГРАЛЬНАЯ ТЕОРЕМА МУАВРА–ЛАПЛАСА, ТЕОРЕМА БЕРНУЛЛИ.. 26

ЛЕКЦИЯ 7. НЕПРЕРЫВНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ... 29

ЛЕКЦИЯ 8. ПОНЯТИЕ МНОГОМЕРНОЙ СЛУЧАЙНОЙ ВЕЛИЧИНЫ... 35

ЛЕКЦИЯ 9. ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ МНОГОМЕРНОЙ СЛУЧАЙНОЙ ВЕЛИЧИНЫ... 39

ЛЕКЦИЯ 10. СВОЙСТВА ПЛОТНОСТИ ВЕРОЯТНОСТЕЙ ДВУМЕРНОЙ СЛУЧАЙНОЙ ВЕЛИЧИНЫ 43

ЛЕКЦИЯ 11. ФУНКЦИИ ОТ СЛУЧАЙНЫХ ВЕЛИЧИН.. 48

ЛЕКЦИЯ 12. ТЕОРЕМА О ПЛОТНОСТИ СУММЫ ДВУХ СЛУЧАЙНЫХ ВЕЛИЧИН.. 52

ЛЕКЦИЯ 13. РАСПРЕДЕЛЕНИЯ СТЬЮДЕНТА, ФИШЕРА.ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫ