Как решать графическим способом уравнения. Графическое решение уравнений — Гипермаркет знаний

Одним из способов решения уравнений является графический способ. Он основан на построении графиков функции и определения точек их пересечения. Рассмотрим графический способ решения квадратного уравнения a*x^2+b*x+c=0.

Первый способ решения

Преобразуем уравнение a*x^2+b*x+c=0 к виду a*x^2 =-b*x-c. Строим графики двух функций y= a*x^2 (парабола) и y=-b*x-c (прямая). Ищем точки пересечения. Абсциссы точек пересечения и будут являться решением уравнения.

Покажем на примере: решить уравнение x^2-2*x-3=0.

Преобразуем его в x^2 =2*x+3. Строим в одной системе координат графики функции y= x^2 и y=2*x+3.

Графики пересекаются в двух точках. Их абсциссы будут являться корнями нашего уравнения.

Решение по формуле

Для убедительности проверим это решение аналитическим путем. Решим квадратное уравнение по формуле:

D = 4-4*1*(-3) = 16.

X1= (2+4)/2*1 = 3.

X2 = (2-4)/2*1 = -1.

Значит, решения совпадают.

Графический способ решения уравнений имеет и свой недостаток, с помощью него не всегда можно получить точное решение уравнения. Попробуем решить уравнение x^2=3+x.

Построим в одной системе координат параболу y=x^2 и прямую y=3+x.

Опять получили похожий рисунок. Прямая и парабола пересекаются в двух точках. Но точные значения абсцисс этих точек мы сказать не можем, только лишь приближенные: x≈-1,3 x≈2,3.

Если нас устраивают ответы такой точности, то можно воспользоваться этим методом, но такое бывает редко. Обычно нужны точные решения. Поэтому графический способ используют редко, и в основном для проверки уже имеющихся решений.

Нужна помощь в учебе?



Предыдущая тема:

На этом видеоуроке к изучению предлагается тема «Функция y=x 2 . Графическое решение уравнений». В ходе этого занятия учащиеся смогут познакомиться с новым способом решения уравнений - графическим, который основан на знании свойств графиков функций. Учитель покажет, как можно решить графическим способом функцию y=x 2 .

Тема: Функция

Урок: Функция . Графическое решение уравнений

Графическое решение уравнений основано на знании графиков функций и их свойств. Перечислим функции, графики которых мы знаем:

1) , графиком является прямая линия, параллельная оси абсцисс, проходящая через точку на оси ординат. Рассмотрим пример: у=1:

При различных значениях мы получаем семейство прямых параллельных оси абсцисс.

2) Функция прямой пропорциональности график данной функции - это прямая, проходящая через начало координат. Рассмотрим пример:

Данные графики мы уже строили в предыдущих уроках, напомним, что для построения каждой прямой нужно выбрать точку, удовлетворяющую ей, а второй точкой взять начало координат.

Напомним роль коэффициента k: при функция возрастает, угол между прямой и положительным направлением оси х острый; при функция убывает, угол между прямой и положительным направлением оси х тупой. Кроме того, между двумя параметрами k одного знака существует следующее соотношение: при положительных k чем он больше, тем быстрее функция возрастает, а при отрицательных - функция быстрее убывает при больших значениях k по модулю.

3) Линейная функция . При - получаем точку пересечения с осью ординат и все прямые такого вида проходят через точку (0; m). Кроме того, при функция возрастает, угол между прямой и положительным направлением оси х острый; при функция убывает, угол между прямой и положительным направлением оси х тупой. И конечно величина k влияет на скорость изменения значения функции.

4). Графиком данной функции является парабола.

Рассмотрим примеры.

Пример 1 - графически решить уравнение:

Функции подобного вида мы не знаем, поэтому нужно преобразить заданное уравнение, чтобы работать с известными функциями:

Мы получили в обоих частях уравнения знакомые функции:

Построим графики функций:

Графики имеют две точки пересечения: (-1; 1); (2; 4)

Проверим, правильно ли найдено решение, подставим координаты в уравнение:

Первая точка найдена правильно.

, , , , , ,

Вторая точка также найдена верно.

Итак, решениями уравнения являются и

Поступаем аналогично предыдущему примеру: преобразуем заданное уравнение до известных нам функций, построим их графики, найдем токи пересечения и отсюда укажем решения.

Получаем две функции:

Построим графики:

Данные графики не имеют точек пересечения, значит заданное уравнение не имеет решений

Вывод: в данном уроке мы провели обзор известных нам функций и их графиков, вспомнили их свойства и рассмотрели графический способ решения уравнений.

1. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 7. 6 издание. М.: Просвещение. 2010 г.

2. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7. М.: ВЕНТАНА-ГРАФ

3. Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др. Алгебра 7 .М.: Просвещение. 2006 г.

Задание 1: Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. Алгебра 7, № 494, ст.110;

Задание 2: Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. Алгебра 7, № 495, ст.110;

Задание 3: Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. Алгебра 7, № 496, ст.110;

Если Вы хотите научиться плавать, то смело входите в воду, а если хотите научиться решать задачи – решайте их.

Д. Пойа

Уравнение – это равенство, содержащее одно или несколько неизвестных, при условии, что ставится задача нахождения тех значений неизвестных, для которых оно истинно.

Решить уравнение – это значит найти все значения неизвестных, при которых оно обращается в верное числовое равенство, или установить, что таких значений нет.

Область допустимы значений уравнения (О.Д.З.) – это множество всех тех значений переменной (переменных), при которых определены все выражения, входящие в уравнение.

Многие уравнения, представленные в ЕГЭ, решаются стандартными методами. Но никто не запрещает использовать что-то необычное, даже в самых простых случаях.

Так, например, рассмотрим уравнение 3 x 2 = 6 / (2 – x) .

Решим его графически , а затем найдем увеличенное в шесть раз среднее арифметическое его корней.

Для этого рассмотрим функции y = 3 x 2 и y = 6 / (2 – x) и построим их графики.

Функция y = 3 – x 2 – квадратичная.

Перепишем данную функцию в виде y = -x 2 + 3. Ее графиком является парабола, ветви которой направлены вниз (т.к. a = -1 < 0).

Вершина параболы будет смещена по оси ординат на 3 единицы вверх. Таким образом, координата вершины (0; 3).

Чтобы найти координаты точек пересечения параболы с осью абсцисс, приравняем данную функцию к нулю и решим полученное уравнение:

Таким образом, в точках с координатами (√3; 0) и (-√3; 0) парабола пересекает ось абсцисс (рис. 1).

Графиком функции y = 6 / (2 – x) является гипербола.

График этой функции можно построить с помощью следующих преобразований:

1) y = 6 / x – обратная пропорциональность. График функции – гипербола. Ее можно построить по точкам, для этого составим таблицу значений для x и y:

x | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |

y | -1 | -2 | -3 | -6 | 6 | 3 | 2 | 1 |

2) y = 6 / (-x) – график функции, полученной в пункте 1, симметрично отображаем относительно оси ординат (рис. 3).

3) y = 6 / (-x + 2) – сдвигаем график, полученный в пункте 2, по оси абсцисс на две единицы вправо (рис. 4).

Теперь изобразим графики функций y = 3 x 2 и y = 6 / (2 – x) в одной системе координат (рис. 5).

По рисунку видно, что графики пересекаются в трех точках.

Важно понимать, что графический способ решения не позволяет найти точное значение корня. Итак, числа -1; 0; 3 (абсциссы точек пересечения графиков функций) являются пока только предполагаемыми корнями уравнения.

С помощью проверки убедимся, что числа -1; 0; 3 – действительно корни исходного уравнения:

Корень -1:

3 – 1 = 6 / (2 (-1));

3 – 0 = 6 / (2 0);

3 – 9 = 6 / (2 3);

Их среднее арифметическое:

(-1 + 0 + 3) / 3 = 2/3.

Увеличим его в шесть раз: 6 · 2/3 = 4.

Данное уравнение, конечно же, можно решить и более привычным способом – алгебраическим .

Итак, найти увеличенное в шесть раз среднее арифметическое корней уравнения 3 x 2 = 6 / (2 – x).

Начнем решение уравнения с поиска О.Д.З. В знаменателе дроби не должен получаться нуль, поэтому:

Чтобы решить уравнение, воспользуемся основным свойством пропорции, это позволит избавиться от дроби.

(3 x 2)(2 – x) = 6.

Раскроем скобки и приведем подобные слагаемые:

6 – 3x 2x 2 + x 3 = 6;

x 3 2x 2 – 3x = 0.

Вынесем общий множитель за скобки:

x(x 2 2x – 3) = 0.

Воспользуемся тем, что произведение равно нулю только тогда, когда хотя бы один из множителей равен нулю, поэтому имеем:

x = 0 или x 2 2x – 3 = 0.

Решим второе уравнение.

x 2 2x – 3 = 0. Оно квадратное, поэтому воспользуемся дискриминантом.

D = 4 4 · (-3) = 16;

x 1 = (2 + 4) / 2 = 3;

x 2 = (2 4) / 2 = -1.

Все три полученных корня удовлетворяют О.Д.З.

Поэтому найдем их среднее арифметическое и увеличим его в шесть раз:

6 · (-1 + 3 + 0) / 3 = 4.

На самом деле, графический способ решения уравнений применяется довольно редко. Это связано с тем, что графическое представление функций позволяет решать уравнения только приближенно. В основном этот метод используют в тех задачах, где важен поиск не самих корней уравнения – их численных значений, а только их количества.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Пусть имеется полное квадратное уравнение: A*x2+B*x+C=0, где A, B и C - любые числа, причем A не равно нулю. Это общий случай квадратного уравнения. Существует также приведенный вид, в котором A=1. Чтобы решить графически любое уравнение, нужно перенести в другую часть слагаемое с наибольшей степенью и приравнять обе части к какой-либо переменной.

После этого в левой части уравнения останется A*x2, а в правой - B*x-C (можно предположить, что B - отрицательное число, сути это не меняет). Получится уравнение A*x2=B*x-C=y. Для наглядности в этом случае обе части приравнены к переменной y.

Построение графиков и обработка результатов

Теперь можно записать два уравнения: y=A*x2 и y=B*x-C. Далее необходимо построить график каждой из этих функций. График y=A*x2 представляет собой параболу с вершиной в начале координат, ветви которой направлены вверх или вниз, в зависимости от знака числа A. Если оно отрицательно, ветви направлены вниз, если положительно - вверх.

График y=B*x-C представляет собой обычную прямую линию. Если C=0, прямая проходит через начало координат. В общем случае она отсекает от оси ординат отрезок, равный С. Угол наклона этой прямой относительно оси абсцисс определяется коэффициентом B. Он равен тангенсу наклона этого угла.

После того как графики построены, будет видно, что они пересекутся в двух точках. Координаты этих точек по оси абсцисс определяют корни квадратного уравнения. Для их точного определения нужно четко строить графики и правильно выбрать масштаб.

Другой способ графического решения

Существует еще один способ графического решения квадратного уравнения. Необязательно переносить B*x+C в другую часть уравнения. Можно сразу построить график функции y=A*x2+B*x+C. Такой график представляет собой параболу с вершиной в произвольной точке. Этот способ сложнее предыдущего, зато можно построить только один график, чтобы .

Сначала нужно определить вершину параболы с координатами x0 и y0. Ее абсцисса вычисляется по формуле x0=-B/2*a. Для определения ординаты нужно подставить полученное значение абсциссы в исходную функцию. Математически это утверждение записывается так: y0=y(x0).

Затем требуется найти две точки, симметричные оси параболы. В них исходная функция должна обращаться в ноль. После этого можно строить параболу. Точки ее пересечения с осью Х дадут два корня квадратного уравнения.

>>Математика: Графическое решение уравнений

Графическое решение уравнений

Подытожим наши знания о графиках функций. Мы с вами научились строить графики следующих функций:

у =b (прямую, параллельную оси х);

y = kx (прямую, проходящую через начало координат);

y - kx + m (прямую);

у = х 2 (параболу).

Знание этих графиков позволит нам в случае необходимости заменить аналитическую модель геометрической (графической), например, вместо модели у = х 2 (которая представляет собой равенство с двумя переменными х и у) рассматривать параболу в координатной плоскости. В частности, это иногда полезно для решения уравнений. Как это делается, обсудим на нескольких примерах.

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки