Нитрат свинца. Химические свойства, применение

Лекция 17

Второй закон термодинамики

Вопросы

    Тепловые двигатели и холодильные машины. Цикл Карно.

    Энтропия, второй закон термодинамики.

3. Реальные газы. Уравнение Ван-дер-Ваальса.

Изотермы реальных газов. Фазовая диаграмма.

4. Внутренняя энергия реального газа.

Эффект Джоуля – Томсона.

1. Тепловые двигатели и холодильные машины. Цикл Карно

Циклом называется круговой процесс, при котором система, пройдя через ряд состояний, возвращается в исходное положение.

Прямой цикл

КПД двигателя

Обратный цикл

холодильныйкоэф-нт

отопительныйкоэф-нт

Цикл Карно – это цикл идеального двигателя, в котором тепло подводится и отводится в изотермических условиях при температурах нагревателяТ 1 и холодильникаТ 2 , переход отТ 1 кТ 2 и обратно осуществляется в адиабатных условиях.

А ц = А 12 + А 23 + А 34 + А 41 (1)

, (2)

, (3)

, (4)

. (5)


. (6)



(7)

Теоремы Карно:

    Коэффициент полезного действия тепловой машины, работающей при данных значениях температур нагревателя и холодильника, не может быть больше, чем коэффициент полезного действия машины, работающей по обратимому циклу Карно при тех же значениях температур нагревателя и холодильника.

    Коэффициент полезного действия тепловой машины, работающей по циклу Карно, не зависит от рода рабочего тела, а зависит только от температур нагревателя и холодильника.

Зависимость КПД цикла Карно от температуры нагревателя (t 2 = 0 o C )

t 1 , o C

t , %

;


, (8)

теорема Карно послужила основанием для установления термоди­нами­чес­кой шкалы температур , такая термодинамическая шкала не связана со свойствами какого-то определенного термометрического тела.

  1. Энтропия, второй закон термодинамики

Энтропией называется отношение теплоты, подводимой к термодина­мической системе в некотором процессе, к абсолютной температуре этого тела.

(9)

Эта функция была впервые введена С.Карно под названием приведенной теплоты , затем названа Клаузиусом (1865 г.).

, (10)

тепло подводится,

тепло отводится.

Изменение энтропии в частных случаях политропного процесса

1.


изобарный процесс.

(11)

2 .




изотермический процесс

1-й закон термодинамики:


(12)

3. Адиабатный процесс.



процесс изоэнтропный (13)

4. Изохорный процесс.

Второй закон термодинамики устанавливаетнаправление протекания тепловых процессов.

Формулировка немецкого физика Р. Клаузиус а : невозможен процесс, единственным результатом которого была бы передача энергии путем теплообмена от тела с низкой температурой к телу с более высокой температурой.

Формулировка английского физика У. Кельвин а : в циклически действующей тепловой машине невозможен процесс, единственным результатом которого было бы преобразование в механическую работу всего количества теплоты, полученного от единственного теплового резервуара.

Вероятностная формулировка австрийского физика Л.Больцмана : Он предложил рассматривать энтропию как меру статистического беспорядка замкнутой термодинамической системе. Всякое состояние системы c большим беспорядком характеризуется большим беспорядком. Термодинамическая вероятность W состояния системы – это число способов , которыми может быть реализовано данное состояние макроскопической системы, или число микросостояний , осуществляющих данное макросостояние. По определению термодинамическая вероятность W >> 1.

S = k ln W , (14)

где k = 1,38·10 –23 Дж/К – постоянная Больцмана.

Таким образом, энтропия определяется логарифмом числа микросостояний, с помощью которых может быть реализовано макросостояние. Следовательно, энтропия может рассматриваться как мера вероятности состояния термодинамической системы.

Все самопроизвольно протекающие процессы в замкнутой системе, приближающие систему к состоянию равновесия и сопровождающиеся ростом энтропии, направлены в сторону увеличения вероятности состояния.

(15)

т.е. энтропия замкнутой системы может либо возрастать (в случае необратимых процессов), либо оставаться постоянной (в случае обратимых процессов).

Так как энтропия возрастает только в неравновесном процессе, то ее увеличение происходит до тех пор, пока система не достигнет равновесного состояния. Следовательно, равновесное состояние соответ­ству­ет максимуму энтропии. С этой точки зрения энтропия является мерой близости системы к состоянию равновесия, т.е. к состоянию с мини­маль­ной потенциальной энергией.

3. Реальные газы. Уравнение Ван-дер-Ваальса. Изотермы реальных газов. Фазовая диаграмма

Поведение реального газа отличается от поведения идеального газа. Так, радиус молекул большинства газов порядка 10 -10 м (1Ǻ), следовательно, объем молекул порядка 410  30 м 3 . В 1 м 3 газа при нормальных условиях содержится 2,710 25 молекул. Таким образом, собственный объем молекул в 1 м 3 при нормальных условиях будет порядка 1,210  4 м 3 , т.е. около 0,0001 от объема, занятого газом.

Любое вещество в зависимости от параметров состояния может находиться в различных агрегатных состояниях :твердом, жидком, газообразном, плазменном .

Нидерландский физик Ван-дер-Ваальс ввел две поправки в уравнение Менделеева-Клапейрона:

1. Учет собственного объема молекулы

Объем одной молекулы: ;

Недоступный объем пары молекул (в расчете на одну молекулу):

учетверенный объем молекулы.

Недоступный объем на все N A молекул одного киломоля:


внутреннее давление; а – постоянная Ван-дер-Ваальса, характери­зую­щая силы межмолекулярного притяжения.

Уравнение Ван-дер-Ваальса для одного моля газа (уравнение состояния реальных газов):

. (16)

Уравнение Ван-дер-Ваальса для произвольной массы газа



. (17)

При фиксированных значениях давления и температуры уравнение (16) имеет три корня относительно V (V 1 , V 2 , V 3)

(V V 1 )(V V 2)(V V 3 ) = 0.

Определение второго закона термодинамики (2 формулировки):

Формулировка Кельвина и Планка Не существует циклического процесса, который извлекает количество теплоты из резервуара при определенной температуре и полностью превращает эту теплоту в работу. (Невозможно построить периодически действующую машину, которая не производит ничего другого, кроме поднятия груза и охлаждения резервуара теплоты)

Формулировка Клаузиуса Не существует процесса, единственным результатом которого является передача количества теплоты от менее нагретого тела к более нагретому. (Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара)

Оба определения второго закона термодинамики опираются на первый закон термодинамики, утверждающий, что энергия убывает.

Второй закон связан с понятием энтропии (S ).

Энтропия порождается всеми процессами, она связана с потерей системы способности совершать работу. Рост энтропии - стихийный процесс. Если объем и энергия системы постоянны, то любое измение в системе увеличивает энтропию. Если же объем или энергия системы меняются, энтропия системы уменьшается. Однако, энтропия вселенной при этом не уменьшается.

Для того, чтобы энергию можно было использовать, в системе должны быть области с высоким и низким уровнями энергии. Полезная работа производится в результате передачи энергии от области с высоким уровнем энергии к области с низким уровнем энергии.

  • 100% энергии не может быть преобразовано в работу
  • Энтропия может вырабатываться, но не может быть уничтожена

Формулировки второго закона термодинамики

Если в замкнутой системе происходит процесс, то энтропия этой системы не убывает. В виде формулы второй закон термодинамики записывают как:

\[\int^{(1)}_{(2)\ L}{\dfrac{\delta Q}{T}=\int^{(1)}_{(2)}{dS}}=S_1-S_2\le 0 \qquad (1),\]

где S – энтропия; L – путь по которому система переходит из одного состояния в другое.

В данной формулировке второго начала термодинамики следует обратить внимание на то, что рассматриваемая система должна быть замкнутой. В незамкнутой системе энтропия может вести себя как угодно (и убывать, и возрастать, и оставаться постоянной). Заметим, что энтропия не изменяется в замкнутой системе при обратимых процессах.

Рост энтропии в замкнутой системе при необратимых процессах - это переход термодинамической системы из состояний с меньшей вероятностью в состояния с большей вероятностью. Известная формула Больцмана дает статистическое толкование второго закона термодинамики:

где k – постоянная Больцмана; w – термодинамическая вероятность (количество способов при помощи которых, может реализовываться рассматриваемое макросостояние системы). Так, второй закон термодинамики является статистическим законом, который связан с описанием закономерностей теплового (хаотического) движения молекул, которые составляют термодинамическую систему.

Эффективность теплового двигателя

Эффективность теплового двигателя, действующего между двумя энергетическими уровнями, определена в пересчете на абсолютные температуры

\[ \eta = \dfrac{T_h - T_c}{T_h} = \frac{1 - T_c }{T_h} \]

где: η - эффективность, T h - верхняя граница температуры (K), T c - нижняя граница температуры (K)

Для того, чтобы достичь максимальной эффективности T c должна быть на столько низкой, на сколько это возможно. Чтобы эффект был 100% -м, T c должна равнятся 0 по шкале Kельвина. Практически это невозможно, поэтому эффективность всегда меньше 1 (менее 100%).

  • Изменение энтропии > 0 Необратимый процесс
  • Изменение энтропии = 0 Двусторонний процесс (обратимый)
  • Изменение энтропии < 0 Невозможный процесс (неосуществимый)

Энтропия определяет относительную способность одной системы влиять на другую. Когда энергия двигается к нижнему энергетическому уровню, где уменьшается возможность влияния на окружающую среду, энтропия увеличивается.

Определение энтропии

Энтропия определяется как:

\[ S = \dfrac{H}{T} \]

где: S = энтропия (кДж/кг*К), H - энтальпия> (кДж/кг), T = абсолютная температура (K)

Изменение энтропии системы вызвано изменением содержания темпла в ней. Изменение энтропии равно изменению темпла системы деленной на среднюю абсолютную температуру (T a ):

\[ dS = \frac{dH}{T_a} \]

Сумма значений (H / T) для каждого полного цикла Карно равна 0 . Это происходит из-за того, что каждому положительному H противостоит отрицательное значение H .

Тепловой цикл Карно

Цикл Карно— идеальный термодинамический цикл.

В тепловом двигателе, газ (реверсивно) нагревается (reversibly heated), а затем охлаждается. Модель цика следующая:

Положение 1 -- (изотермическое расширение) → Положение 2 -- (адиабатическое расширение) → Положение 3 --(изотермическое сжатие) → Положение 4 --(адиабатическое сжатие) → Положение 1

Положение 1 - Положение 2: Изотермическое расширение Изотермическое расширение. В начале процесса рабочее тело имеет температуру T h , то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты Q H . При этом объём рабочего тела увеличивается. Q H =∫Tds=T h (S 2 -S 1) =T h ΔS

Положение 2 - Положение 3: Адиабатическое расширение Адиабатическое (изоэнтропическое) расширение. Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника.

Положение 3 - Положение 4: Изотермическое сжатие Изотермическое сжатие. Рабочее тело, имеющее к тому времени температуру T c , приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты Q c . Q c =T c (S 2 -S 1)=T c ΔS

Положение 4 - Положение 1: Адиабатическое сжатие Адиабатическое (изоэнтропическое) сжатие. Рабочее тело отсоединяется от холодильника и сжимается без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя.

При изотермических процессах температура остаётся постоянной, при адиабатических отсутствует теплообмен, а значит, сохраняется энтропия.

Поэтому цикл Карно удобно представить в координатах T и S (температура и энтропия).

Законы термодинамики были определены эмперическим путем (эксперементально). Второй закон термодинамики - это обощение экспериментов, связанных с энтропией. Известно, что dS системы плюс dS окружающей среды равно или больше 0.

Энтропия адиабатически изолированной системы не меняется!

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!


Первый закон термодинамики представляет собой закон сохранения энергии применительно к термодинамическим процессам: энергия не исчезает в никуда и не возникает из ничего, а лишь переходит из одного вида в другой в эквивалентных количествах. Примером может послужить переход теплоты (тепловой энергии) в механическую энергию, и наоборот.

Если к М кг газа, занимающего объем V (м 3) при температуре Т подвести при постоянном давлении некоторое количество теплоты dQ , то в результате этого температура газа повысится на dT , а объем – на dV . Повышение температуры связано с увеличением кинетической энергии движения молекул dK .
Увеличение объема сопровождается увеличением расстояния между молекулами и, как следствие, уменьшением потенциальной энергии dH взаимодействия между ними. Кроме того, увеличив объем, газ совершает работу dA по преодолению внешних сил.
Если, кроме указанных, никаких иных процессов в рабочем теле не происходит, то на основании закона сохранения энергии можно записать:

dQ = dK + dH + dA .

Сумма dK + dH представляет собой изменение внутренней энергии dU молекул системы в результате подвода теплоты.
Тогда формулу сохранения энергии для термодинамического процесса можно записать в виде:

dQ = dU + dA или dQ = dU + pdV .

Это уравнение представляет собой математическое выражение первого закона термодинамики : количество теплоты dQ , подводимое к системе газа, затрачивается на изменение ее внутренней энергии dU и совершение внешней работы dA .

Условно считают, что при dQ > 0 теплота сообщается рабочему телу, а при dQ < 0 теплота отнимается от тела. При dA > 0 система совершает работу (газ расширяется) , а при dA < 0 работа совершается над системой (газ сжимается) .

Для идеального газа, между молекулами которого нет взаимодействия, изменение внутренней энергии dU полностью определяется изменением кинетической энергии движения (т. е. увеличением скорости молекул) , а изменение объема характеризует работу газа по преодолению внешних сил.

Первый закон термодинамики имеет еще одну формулировку: энергия изолированной термодинамической системы остается неизменной независимо от того, какие процессы в ней протекают .
Невозможно построить вечный двигатель первого рода, т. е. периодически действующую машину, которая совершала бы работу без затраты энергии.



Второй закон термодинамики

Первый закон термодинамики описывает количественные соотношения между параметрами термодинамической системы, имеющими место в процессах преобразования тепловой энергии в механическую и наоборот, но не устанавливает условия, при которых эти процессы возможны. Эти условия, необходимые для преобразования одного вида энергии в другой, раскрывает второй закон термодинамики.

Существует несколько формулировок этого закона, и каждая из них имеет одинаковое смысловое содержание. Здесь приведены наиболее часто упоминающиеся формулировки второго закона термодинамики.

1. Для превращения теплоты в механическую работу необходимо иметь источник теплоты и холодильник, температура которого ниже температуры источника, т. е. необходим температурный перепад.

2. Нельзя осуществить тепловой двигатель, единственным результатом действия которого было бы превращение теплоты какого-либо тела в работу без того, чтобы часть теплоты не передавалась другим телам.
Из этой формулировки можно сделать вывод, что невозможно построить вечный двигатель, совершающий работу благодаря лишь одному источнику теплоты, поскольку любой, даже самый колоссальный источник теплоты в виде материального тела не способен отдать тепловой энергии больше, чем ему позволяет энтальпия (часть полной энергии тела, которую можно превратить в теплоту, охладив тело до температуры абсолютного нуля) .

3. Теплота не может сама по себе переходить от менее нагретого тела к более нагретому без затраты внешней работы.

Как видите, второй закон термодинамики не имеет в своей основе формулярнго содержания, а лишь описывает условия, при которых возможны те или иные термодинамические явления и процессы, подтверждая, по сути, общий закон сохранения энергии.

OG2100000 Номер ООН 1469 Безопасность Токсичность Приводятся данные для стандартных условий (25 °C, 100 кПа) , если не указано иного.

Нитрат свинца(II) (динитрат свинца ) - неорганическое химическое соединение с химической формулой Pb (NO 3) 2 . В обычном состоянии - бесцветные кристаллы или белый порошок. Хорошо растворим в воде.

История

Исторически первое промышленное применение нитрата свинца (II) - это использование его в качестве сырья при производстве свинцовых пигментов, таких, как «хром желтый» (хромат свинца(II)), «хром оранжевый» (гидроксид-хромат свинца(II)) и аналогичных соединений свинца. Эти пигменты использовались для крашения текстильных изделий .

Процесс производства был и остается химически простым - растворение свинца в aqua fortis (азотная кислота), а затем очистка осадка. Тем не менее, производство оставалось мелким на протяжении многих веков, а о промышленном производстве в качестве сырья для производства других соединений свинца не сообщалось до 1835 . В XIX веке динитрат свинца стали производить на коммерческой основе в Европе и Соединенных Штатах.

Физические свойства

Нитрат свинца хорошо растворяется в воде (52,2 г/100 г воды) с поглощением тепла, плохо растворяется в этиловом и метиловом спиртах, ацетоне .

Кристаллическая структура

Кристаллическая структура твердого динитрата свинца была определена с помощью нейтронной дифракции . Нитрат свинца образует бесцветные диамагнитные кристаллы, плотность 4,530 г/см³, кубическая сингония , пространственная группа Pa3, а = 0,784 нм, Z=4. Каждый атом свинца окружён двенадцатью атомами кислорода (длина связи 0,281 нм). Все длины N-O связей одинаковы - 0,127 нм.

Интерес исследователей к кристаллической структуре нитрата свинца был основан на предположении свободного вращения нитратных групп в кристаллической решетке при высоких температурах, но это не подтвердилось .

Кроме кубической разновидности нитрата свинца была получена моноклинная форма, которая плохо растворима в воде даже при нагревании.

Получение

Динитрат свинца не встречается в природе. Промышленные и лабораторные методы его получения сводятся к растворению в разбавленной азотной кислоте свинца, его оксида или гидроксида:

\mathsf{3Pb + 8HNO_3 \longrightarrow 3Pb(NO_3)_2 + 2NO\uparrow + 4H_2O} \mathsf{PbO + 2HNO_3 \longrightarrow Pb(NO_3)_2 + H_2O} \mathsf{Pb(OH)_2 + 2HNO_3 \longrightarrow Pb(NO_3)_2 + 2H_2O}

кислоту берут с избытком для подавления гидролиза и снижения растворимости нитрата свинца.

При очистке азотной кислотой отходов, содержащих свинец, например, при обработке свинцово -висмутных отходов на заводах, образуется динитрат свинца как побочный продукт . Эти соединения используются в процессе цианирования золота .

Химические свойства

Динитрат свинца хорошо растворяется в воде, давая бесцветный раствор . Растворимость сильно увеличивается при нагревании:

\mathsf{Pb^{2+} + 2I^- \longrightarrow PbI_2\downarrow }

Аналогичная реакция обмена проходит и в твердой фазе. Например, при смешении бесцветных йодида калия и динитрата свинца, и сильного измельчения, например, перетиранием в ступе , происходит реакция:

\mathsf{Pb(NO_3)_2 + 2KI \longrightarrow PbI_2 + 2KNO_3 }

Цвет полученной смеси будет зависеть от относительного количества использованных реагентов и степени измельчения.

При растворении нитрата свинца в пиридине или жидком аммиаке образуются продукты присоединения, например Pb(NO 3) 2 ·4C 5 H 5 N и Pb(NO 3) 2 ·n NH 3 , где n=1, 3, 6.

При нагревании кристаллов динитрата свинца они начинают разлагаться на оксид свинца , кислород и диоксид азота , процесс сопровождается характерным треском. Этот эффект называется декрепитация :

\mathsf{2Pb(NO_3)_2 \longrightarrow 2PbO + 4NO_2 + O_2 }

Благодаря этому свойству нитрат свинца иногда используется в пиротехнике .

Применение

Динитрат свинца используется в качестве исходного сырья при производстве большинства других соединений свинца.

В связи с опасным характером данного соединения, в промышленной сфере отдается предпочтение в использовании альтернативных соединений. Практически полностью отказались от использования свинца в красках . Другие исторические применения данного вещества в спичках и фейерверках, также уменьшились или прекратились.

Примерно с 2000 года нитрат свинца(II) начал использоваться при цианировании золота . Для улучшения выщелачивания в процессе цианирования золота добавляется динитрат свинца, при этом используется очень ограниченное его количество (от 10 до 100 мг динитрата свинца на килограмм золота) .

Меры предосторожности

Динитрат свинца токсичен, является окислителем и классифицируется (как и все неорганические соединения свинца) вероятно канцерогенное вещество для человека (категория 2А) со стороны Международного агентства по изучению рака . Следовательно, он должен обрабатываться и храниться с соблюдением соответствующих мер предосторожности для того, чтобы предотвратить вдыхание, приём внутрь или контакт с кожей. Из-за опасного характера и ограниченного применения вещество должно находиться под постоянным контролем. ПДК = 0,01 мг/м³.

При приеме внутрь может привести к острому отравлению, так же как и другие растворимые соединения свинца .

Отравления приводят к раку почек и глиомы у подопытных животных и рака почек, рака мозга и рака легких у людей, хотя исследования работников, подвергающихся воздействию свинца, часто осложнялись одновременным воздействием мышьяка . Свинец известен как заменитель цинка в ряде ферментов , в том числе дегидратазы δ-аминолевулиновой кислоты (англ. δ-aminolevulinic acid dehydratase ) в биосинтезе гема , который важен для правильного метаболизма ДНК , следовательно может вызывать ущерб плоду матери .

См. также

Напишите отзыв о статье "Нитрат свинца(II)"

Примечания

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер паропроницаемости и скорости переноса пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

Химическая формула

Молярная масса Pb(NO 3) 2 , нитрат свинца, нитрат свинца (II) 331.2098 г/моль

207,2+(14,0067+15,9994·3)·2

Массовые доли элементов в соединении

Использование калькулятора молярной массы

  • Химические формулы нужно вводить с учетом регистра
  • Индексы вводятся как обычные числа
  • Точка на средней линии (знак умножения), применяемая, например, в формулах кристаллогидратов, заменяется обычной точкой.
  • Пример: вместо CuSO₄·5H₂O в конвертере для удобства ввода используется написание CuSO4.5H2O .

Калькулятор молярной массы

Моль

Все вещества состоят из атомов и молекул. В химии важно точно измерять массу веществ, вступающих в реакцию и получающихся в результате нее. По определению моль - это количество вещества, которое содержит столько же структурных элементов (атомов, молекул, ионов, электронов и других частиц или их групп), сколько содержится атомов в 12 граммах изотопа углерода с относительной атомной массой 12. Это число называется постоянной или числом Авогадро и равно 6,02214129(27)×10²³ моль⁻¹.

Число Авогадро N A = 6.02214129(27)×10²³ моль⁻¹

Другими словами моль - это количество вещества, равное по массе сумме атомных масс атомов и молекул вещества, умноженное на число Авогадро. Единица количества вещества моль является одной из семи основных единиц системы СИ и обозначается моль. Поскольку название единицы и ее условное обозначение совпадают, следует отметить, что условное обозначение не склоняется, в отличие от названия единицы, которую можно склонять по обычным правилам русского языка. По определению один моль чистого углерода-12 равен точно 12 г.

Молярная масса

Молярная масса - физическое свойство вещества, определяемое как отношение массы этого вещества к количеству вещества в молях. Говоря иначе, это масса одного моля вещества. В системе СИ единицей молярной массы является килограмм/моль (кг/моль). Однако химики привыкли пользоваться более удобной единицей г/моль.

молярная масса = г/моль

Молярная масса элементов и соединений

Соединения - вещества, состоящие из различных атомов, которые химически связаны друг с другом. Например, приведенные ниже вещества, которые можно найти на кухне у любой хозяйки, являются химическими соединениями:

  • соль (хлорид натрия) NaCl
  • сахар (сахароза) C₁₂H₂₂O₁₁
  • уксус (раствор уксусной кислоты) CH₃COOH

Молярная масса химических элементов в граммах на моль численно совпадает с массой атомов элемента, выраженных в атомных единицах массы (или дальтонах). Молярная масса соединений равна сумме молярных масс элементов, из которых состоит соединение, с учетом количества атомов в соединении. Например, молярная масса воды (H₂O) приблизительно равна 2 × 2 + 16 = 18 г/моль.

Молекулярная масса

Молекулярная масса (старое название - молекулярный вес) - это масса молекулы, рассчитанная как сумма масс каждого атома, входящего в состав молекулы, умноженных на количество атомов в этой молекуле. Молекулярная масса представляет собой безразмерную физическую величину, численно равную молярной массе. То есть, молекулярная масса отличается от молярной массы размерностью. Несмотря на то, что молекулярная масса является безразмерной величиной, она все же имеет величину, называемую атомной единицей массы (а.е.м.) или дальтоном (Да), и приблизительно равную массе одного протона или нейтрона. Атомная единица массы также численно равна 1 г/моль.

Расчет молярной массы

Молярную массу рассчитывают так:

  • определяют атомные массы элементов по таблице Менделеева;
  • Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.