Виды термодинамических систем. Понятие термодинамической системы

Введение. 2

Термодинамика. Общее понятие. 3

Понятие термодинамической системы.. 4

Виды термодинамических систем.. 6

Термодинамические процессы.. 7

Обратимые и необратимые процессы.. 7

Внутренняя энергия системы.. 10

Нулевое начало термодинамики.. 11

Первое начало термодинамики.. 12

Второе начало термодинамики.. 14

Третье начало термодинамики.. 16

Следствия. 17

Недостижимость абсолютного нуля температур. 17

Поведение термодинамических коэффициентов. 17

Введение

Мы постоянно сталкиваемся не только с механическим движением, но и с тепловыми явлениями, которые связаны с изменением температуры тела или переходом веществ в различное агрегатное состояние - жидкое, газообразное или твердое.

Тепловые процессы имеют огромное значение для существования жизни на Земле, поскольку белок способен к жизнедеятельности только в определенном интервале температур. Жизнь на Земле зависит от температуры окружающей среды.

Люди добились относительной независимости от окружающей среды после того, как научились добывать огонь. Это было одним из величайших открытий на заре человечества.

Термодинамика представляет собой науку о тепловых явлениях, в которых не учитывается молекулярное строение тел. Законы термодинамики и их применение будут рассмотрены в этом реферате.

Термодинамика. Общее понятие

Начала термодинамики - совокупность постулатов, лежащих в основе термодинамики. Эти положения были установлены в результате научных исследований и были доказаны экспериментально. В качестве постулатов они принимаются для того, чтобы термодинамику можно было построить аксиоматически.

Необходимость начал термодинамики связана с тем, что термодинамика описывает макроскопические параметры систем без конкретных предположений относительно их микроскопического устройства. Вопросами внутреннего устройства занимается статистическая физика.

Начала термодинамики независимы, то есть ни одно из них не может быть выведено из других начал.

Перечень начал термодинамики

· Первое начало термодинамики представляет собой закон сохранения энергии в применении к термодинамическим системам.

· Второе начало термодинамики накладывает ограничения на направление термодинамических процессов, запрещая самопроизвольную передачу тепла от менее нагретых тел к более нагретым. Также формулируется как закон возрастания энтропии.

· Третье начало термодинамики говорит о том, как энтропия ведет себя вблизи абсолютного нуля температур.

· Нулевым (или общим) началом термодинамики иногда называют принцип, согласно которому замкнутая система независимо от начального состояния, в конце концов, приходит к состоянию термодинамического равновесия и самостоятельно выйти из него не может.



Понятие термодинамической системы

Термодинамической системой называется всякая физическая система, состоящая из большого числа частиц-атомов и молекул, которые совершают бесконечное тепловое движение и, взаимодействуют друг с другом, обмениваются энергиями. Такими термодинамическими системами, и притом простейшими, являются газы, молекулы которых совершают беспорядочное поступательное и вращательное движение и при столкновениях обмениваются кинетическими энергиями. Термодинамическими системами являются также твердые и жидкие вещества.

Молекулы твердых тел совершают беспорядочные колебания вокруг своих положений равновесия, обмен энергиями между молекулами происходит благодаря их непрерывному взаимодействию, вследствие чего смещение одной молекулы от своего положения равновесия немедленно отражается на расположении и скорости движения соседних молекул. Так как средняя энергия теплового движения молекул связана с температурой, то температура является важнейшей физической величиной, характеризующей различные состояния термодинамических систем. Кроме температуры состояние таких систем определяется также и объемом, которые они занимают, и внешним давлением или внешними силами, действующими на систему.

Важным свойством термодинамических систем является существование у них равновесных состояний, в которых они могут пребывать сколько угодно долго. Если на термодинамическую систему, находящуюся в одном из равновесных состояний, оказать некоторое внешнее воздействие и затем прекратить его, то система самопроизвольно переходит в новое равновесное состояние. Однако следует подчеркнуть, что тенденция к переходу в равновесное состояние действует всегда и непрерывно, даже вне того времени, когда система подвергается внешнему воздействию.

Эта тенденция или, точнее, постоянное существование процессов, ведущих к достижению равновесного состояния, является важнейшей особенностью термодинамических систем.

Состояния изолированной термодинамической системы, которые, несмотря на отсутствие внешних воздействий, не сохраняются в течение конечных промежутков времени, называется неравновесными. Система, первоначально находящаяся в неравновесном состоянии, с течением времени переходит в равновесное состояние. Время перехода из неравновесного состояния в равновесное называется временем релаксации. Обратный переход из равновесного состояния в неравновесное может быть осуществлен при помощи внешних воздействий на систему.

Неравновесным является, в частности, состояние системы с различными температурами в различных местах, выравнивание t 0 в газах, твердых и жидких телах есть переход этих тел в равновесное состояние с одинаковой t 0 в пределах объема тела. Другой пример неравновесного состояния можно привести, рассматривая двухфазные системы, состоящие из жидкости и ее пара. Если над поверхностью жидкости, находящейся в закрытом сосуде, имеется ненасыщенный пар, то состояние системы неравновесное: число молекул, вылетающих в единицу времени из жидкости, больше чем число молекул, возвращающихся за это же время из пара в жидкость. Вследствие этого с течением времени число молекул в парообразном состоянии увеличивается до тех пор, пока не установится равновесное состояние.

Переход от равновесного состояния в равновесное в большинстве случаев происходит непрерывно, причем скорость этого перехода можно при помощи соответственного внешнего воздействия плавно регулировать, сделав процесс релаксации либо очень быстрым, либо очень медленным. Так, например, путем механического перемешивания можно заметно повысить скорость выравнивания температуры в жидкостях или газах, охлаждая жидкость, можно сделать очень медленным процесс диффузии растворенного в ней вещества.

Термодинамика - наука, которая изучает тепловые явления, происходящие в телах, не связывая их с молекулярным строением вещества.

В термодинамике считается, что все тепловые процессы в телах характеризуются только лишь макроскопическими параметрами - давлением, объёмом и температурой. А так как их невозможно применить к отдельно взятым молекулам или атомам, то, в отличие от молекулярно-кинетической теории, в термодинамике молекулярное строение вещества в тепловых процессах не учитывается.

Все понятия термодинамики сформулированы как обобщение фактов, наблюдаемых в ходе экспериментов. Из-за этого её называют феноменологической (описательной) теорией тепла.

Термодинамические системы

Термодинамика описывает тепловые процессы, происходящие в макроскопических системах. Такие системы состоят из огромного количества частиц - молекул и атомов, и называются термодинамическими.

Термодинамической системой можно считать любой объект, который можно увидеть невооружённым глазом или с помощью микроскопов, телескопов и других оптических приборов. Главное, чтобы размеры системы в пространстве и время её существования позволяли провести измерения её параметров - температуры, давления, массы, химического состава элементов и др., с помощью приборов, не реагирующих на воздействие отдельных молекул (манометров, термометров и др.).

Для химиков термодинамическкой системой является смесь химических веществ, взаимодействующих между собой в процессе химической реакции. Астрофизики назовут такой системой небесное тело. Смесь горючего с воздухом в автомобильном двигателе, земной шар, наше тело, пишущая ручка, тетрадь, станок и др. - это также термодинамические системы.

Каждая термодинамическая система отделена от окружающей среды границами. Они могут быть реальными - стеклянные стенки пробирки с химическим веществом, корпус цилиндра в двигателе и т.п. А могут быть и условными, когда, например, изучают образование облака в атмосфере.

Если такая система не обменивается с внешней средой ни энергией, ни веществом, то её называют изолированной или замкнутой .

Если же система обменивается с внешней средой энергией, но не обменивается веществом, то она называется закрытой .

Открытая система обменивается с внешней средой и энергией, и веществом.

Термодинамическое равновесие

Это понятие также введено в термодинамику, как обобщение результатов экспериментов.

Термодинамическим равновесием называют такое состояние системы, при котором все её макроскопические величины - температура, давление, объём и энтропия - не изменяются во времени, если система является изолированной. В такое состояние может самопроизвольно перейти любая замкнутая термодинамическая система, если остаются постоянными все внешние параметры.

Самый простой пример системы в состоянии термодинамического равновесия - термос с горячим чаем. Температура в нём одинакова в любой точке жидкости. Хотя термос можно назвать изолированной системой лишь приблизительно.

Любая замкнутая термодинамическая система самопроизвольно стремится перейти в термодинамическое равновесие, если не меняются внешние параметры.

Термодинамический процесс

Если меняется хотя бы один из макроскопических параметров, то говорят, что в системе происходит термодинамический процесс . Такой процесс может возникнуть, если изменяются внешние параметры или система начинает получать или передавать энергию. В результате она переходит в другое состояние.

Вспомним пример с чаем в термосе. Если мы опустим в чай кусочек льда и закроем термос, то сразу же появится разница в температурах в разных частях жидкости. Жидкость в термосе будет стремиться к выравниванию температур. Из областей с более высокой температурой тепло будет передаваться туда, где температура ниже. То есть, будет происходить термодинамический процесс. В конце концов, температура чая в термосе снова станет одинаковой. Но она уже будет отличаться от первоначальной температуры. Состояние системы изменилось, так как изменилась её температура.

Термодинамический процесс происходит, когда ночью остывает песок, нагретый на пляже в жаркий день. К утру его температура понижается. Но как только взойдёт солнце, процесс нагревания начнётся снова.

Внутренняя энергия

Одно из главных понятий термодинамики - внутренняя энергия .

Все макроскопические тела обладают внутренней энергией, которая является суммой кинетических и потенциальных энергий всех частиц (атомов и молекул), из которых состоит тело. Эти частицы взаимодействуют только между собой и не взаимодействуют с частицами окружающей среды. Внутренняя энергия зависит от кинетической и потенциальной энергии частиц и не зависит от положения самого тела.

U = E k +E p

Внутренняя энергия изменяется с изменением температуры. Молекулярно-кинетическая теория объясняет это изменением скорости движения частиц вещества. Если температура тела растёт, то растёт и скорость движения частиц, расстояние между ними становится больше. Следовательно, увеличивается их кинетическая и потенциальная энергия. При понижении температуры происходит обратный процесс.

Для термодинамики важнее не величина внутренней энергии, а её изменение. А изменить внутреннюю энергию можно с помощью процесса теплопередачи или совершая механическую работу.

Изменение внутренней энергии механической работой

Бенджамин Румфорд

Внутреннюю энергию тела можно изменить, совершив над ней механическую работу. Если работа совершается над телом, то механическая энергия превращается во внутреннюю энергию. А если работу совершает тело, то его внутренняя энергия превращается в механическую.

Почти до конца XIX века считалось, что существует невесомое вещество - теплород, которое передаёт тепло от тела к телу. Чем больше теплорода втекает в тело, тем теплее оно будет, и наоборот.

Однако в 1798 г. англо-американский учёный граф Бенджамин Румфорд стал сомневаться в теории теплорода. Причиной тому были нагревания стволов пушек при сверлении. Он предположил, что причиной нагревания является механическая работа, которая совершается во время трения сверла о ствол.

И Румфорд провёл эксперимент. Чтобы увеличить силу трение, взяли тупое сверло, а сам ствол поместили в бочку с водой. К концу третьего часа сверления вода в бочке закипела. Это означало, что ствол получил тепло при совершении механической работы над ним.

Теплопередача

Теплопередачей называют физический процесс передачи тепловой энергии (теплоты) от одного тела к другому либо при непосредственном контакте, либо через разделяющую перегородку. Как правило, теплота передаётся от более тёплого тела к более холодному. Это процесс заканчивается, когда система приходит в состояние термодинамического равновесия.

Энергия, которую получает или отдаёт тело при теплопередаче, называется количеством теплоты .

По способу передачи теплоты теплообмен можно разделить на 3 вида: теплопроводность, конвенция, тепловое излучение.

Теплопроводность

Если между телами или частями тел существует температурная разница, то между ними будет происходить процесс теплопередачи. Теплопроводностью называют процесс переноса внутренней энергии от более нагретого тела (или его части) к менее нагретому телу (или его части).

К примеру, нагрев на огне один конец стального прута, через некоторое время мы почувствуем, что и другой его конец также становится тёплым.

Стеклянную палочку, один конец которой раскалён, мы легко держим за другой конец, не обжигаясь. Но если мы попробуем проделать такой же эксперимент с железным прутом, у нас ничего не получится.

Разные вещества по-разному проводят тепло. Каждое из них имеет свой коэффициент теплопроводности , или удельной проводимости , численно равный количеству теплоты, которая проходит через образец толщиной 1 м, площадью 1 м 2 за 1 секунду. За единицу температуры принимают 1 К.

Лучше всего проводят тепло металлы. Это их свойство мы используем в быту, готовя пищу в металлических кастрюлях или на сковородках. А вот их ручки не должны нагреваться. Поэтому их делают из материалов с плохой теплопроводностью.

Теплопроводность жидкостей меньше. А газы обладают слабой теплопроводностью.

Мех животных также плохо проводит тепло. Благодаря этому они не перегреваются в жаркую погоду и не замерзают в холодную.

Конвенция

При конвенции теплота передаётся струями и потоками газа или жидкости. В твёрдых телах конвенции нет.

Как возникает конвенция в жидкости? Когда мы ставим на огонь чайник с водой, нижний слой жидкости нагревается, его плотность уменьшается, он движется вверх. Его место занимает более холодный слой воды. Через какое-то время он тоже нагреется и тоже поменяется местами с более холодным слоем. И т.д.

Подобный процесс происходит и в газах. Не случайно батареи отопления размещают в нижней части комнаты. Ведь нагретый воздух всегда поднимается в верхнюю часть комнаты. А нижний, холодный, наоборот, опускается. Затем он нагревается также и вновь поднимается, а верхний слой за это время остывает и опускается.

Конвенция бывает естественная и принудительная.

Естественная конвенция постоянно происходит в атмосфере. В результате этого происходят постоянные перемещения тёплых воздушных масс вверх, а холодных - вниз. В результате возникает ветер, облака и другие природные явления.

Когда естественной конвенции недостаточно, применяю принудительную конвенцию. Например, потоки тёплого воздуха перемещают в комнате с помощью лопастей вентилятора.

Тепловое излучение

Солнце нагревает Землю. При этом не происходит ни теплопередачи, ни конвенции. Так почему же тела получают тепло?

Дело в том, что Солнце является источником теплового излучения.

Тепловое излучение - это электромагнитное излучение, возникающее за счёт внутренней энергии тела. Все окружающие нас тела излучают тепловую энергию. Это может быть видимое световое излучение настольной лампы, или источники невидимых ультрафиолетовых, инфракрасных или гамма-лучей.

Но тела не только излучают тепло. Они его также и поглощают. Одни в большей степени, другие в меньшей. Причём тёмные тела и нагреваются, и охлаждаются быстрее, чем светлые. В жаркую погоду мы стараемся надеть светлую одежду, потому что она поглощает меньше тепла, чем одежда тёмных тонов. Автомобиль тёмного цвета нагревается на солнце гораздо быстрее, чем стоящий с ним рядом автомобиль, имеющий светлую окраску.

Это свойство веществ по-разному поглощать и излучать тепло используется при создании систем ночного видения, систем самонаведения ракет на цель и др.

Термодинамической системой называется всякая физическая система, состоящая из большого числа частиц - атомов и молекул, которые совершают бесконечное тепловое движение и, взаимодействуя между собой, обмениваются энергиями. Такими термодинамическими системами, и притом простейшими, являются газы, молекулы которых совершают беспорядочное поступательное и вращательное движения и при столкновениях обмениваются кинетическими энергиями. Термодинамическими системами являются также твердые

и жидкие вещества. Молекулы твердых тел совершают беспорядочные колебания вокруг своих положений равновесия; обмен энергиями между молекулами происходит благодаря их непрерывному взаимодействию, вследствие чего смещение одной молекулы от своего положения равновесия немедленно отражается на расположении и скорости движения средних молекул. Так как средняя энергия теплового движения молекул, согласно формулам (1.7) и (1.8), связана с температурой, то температура является важнейшей физической величиной, характеризующей различные состояния термодинамических систем. Кроме температуры состояния таких систем определяются также и объемом, который они занимают, и внешним давлением или внешними силами, действующими на систему.

Важным свойством термодинамических систем является существование у них равновесиях состояний, в которых они могут пребывать сколь угодно долго. Если на термодинамическую систему, находящуюся в одном из равновесных состояний, оказать некоторое внешнее воздействие и затем прекратить его, то система самопроизвольно переходит в новое равновесное состояние. Однако следует подчеркнуть, что тенденция к переходу в равновесное состояние действует всегда и непрерывно, даже в течение того времени, когда система подвергается внешнему воздействию. Эта тенденция или, точнее, постоянное существование процессов, ведущих к достижению равновесных состояний, является важнейшей особенностью термодинамических систем.

Для газа, заключенного в некотором сосуде, равновесным является состояние, в котором температура, давление и плотность (или число молекул в единице объема) в пределах объема газа везде одинаковы. Если в каком-нибудь месте этого объема вызвать местное нагревание или сжатие, то в системе начнется процесс выравнивания температуры и давления; этот процесс будет происходить и в течение того времени, пока имеется внешнее воздействие, однако только после прекращения этого воздействия процесс выравнивания приведет систему к новому равновесному состоянию.

Состояния изолированных термодинамических систем, которые, несмотря на отсутствие внешних воздействий, не сохраняются в течение конечных промежутков времени, называются неравновесными. Система, первоначально находящаяся в неравновесном состоянии, с течением времени переходит в равновесное состояние. Время перехода из неравновесного состояния в равновесное называется временем релаксации. Обратный переход из равновесного состояния в неравновесное может быть осуществлен при помощивнешних воздействий на систему. Неравновесным является, в частности, состояние системы с различными температурами в различных местах; выравнивание температуры в газах, твердых и жидких телах есть переход этих тел в равновесное состояние с одинаковой температурой в пределах объема тела. Другой пример неравновесного состояния можно привести, рассматривая двухфазные системы, состоящие из жидкости и ее пара. Если над поверхностью жидкости, находящейся в закрытом сосуде, имеется ненасыщенный пар, то состояние системы неравновесное: число молекул вылетающих в единицу времени из жидкости, больше, чем число

молекул возвращающихся за это же время из пара в жидкость. Вследствие этого с течением времени число молекул в парообразном состоянии увеличивается (т. е. увеличивается плотность пара) до тех пор, пока не установится равновесное состояние с

Переход от неравновесного состояния в равновесное в большинстве случаев происходит непрерывно, причем скорость этого перехода можно при помощи соответствующего внешнего воздействия плавно регулировать, сделав процесс релаксации либо очень быстрым, либо очень медленным. Так, например, путем механического перемешивания можно заметно повысить скорость выравнивания температуры в жидкостях или газах; охлаждая жидкость, можно сделать очень медленным процесс диффузии растворенного, в ней вещества, и т. п.

Для некоторых систем существуют такие состояния, называемые метастабильными, в которых эти системы могут находиться относительно долгое время, но как только на систему будет оказано внешнее воздействие определенного характера, происходит самопроизвольный скачкообразный переход к равновесному состоянию. В этих случаях внешнее воздействие лишь открывает возможность к переходу в равновесное состояние. Например, достаточно чистая вода при медленном подводе тепла может быть нагрета до температуры на несколько градусов выше температуры кипения. Это состояние воды является метастабильным; если встряхнуть такую воду (или внести небольшое число пылинок - центров образования пузырьков пара), она со взрывом закипает и ее температура скачком понижается до температуры кипения. Таким образом, метастабильное состояние характеризуется тем, что при выводе из этого состояния система не только не возвращается к ней, но, наоборот, еще более отходит от нее, скачком переходя в существующее для этой системы равновесное состояние.

Термодинамическая система – совокупность макроскопических тел, которые могут взаимо-действовать между собой и с другими телами (внешней средой) – обмениваться с ними энергией и веществом. Обмен энергией и веществом может происходить как внутри самой системы между ее частями, так и между системой и внешней средой. В зависимости от возможных способов изоляции системы от внешней среды различают несколько видов термодинамических систем.

Открытой системой называется термодинамическая система, которая может обмениваться веществом и энергией с внешней средой. Типичными примерами таких систем могут служить все живые организмы, а также жидкость, масса которой непрерывно уменьшается вследствие испарения или кипения.

Термодинамическая система называется закрытой , если она не может обмениваться с внешней средой ни энергией, ни веществом. Замкнутой системой будем называть термодина-мическую систему, изолированную в механическом отношении, т.е. не способную к обмену энергией с внешней средой путем совершения работы. Примером такой системы может служить газ, заключенный в сосуд постоянного объема. Термодинамическая система называется адиабатной , если она не может обмениваться с другими системами энергией путем теплообмена.

Термодинамическими параметрами (параметрами состояния) называются физические величины, служащие для характеристики состояния термодинамической системы.

Примерами термодинамических параметров являются давление, объем, температура, концентрация. Различают два типа термодинамических параметров: экстенсивные и интенсивные . Первые пропорциональны количеству вещества в данной термодинамической системе, вторые не зависят от количества вещества в системе. Простейшим экстенсивным параметром является объем V системы. Величину v , равную отношению объема системы к ее массе, называют удельным объе-мом системы. Простейшими интенсивными параметрами являются давление р и температура Т .

Давлением называется физическая величина

где dFn – модуль нормальной силы, действующей на малый участок поверхности тела пло-
щадью dS .

Если давление и удельный объем имеют ясный и простой физический смысл, то гораздо более сложным и менее наглядным является понятие температуры. Заметим прежде всего, что понятие температуры, строго говоря, имеет смысл только для равновесных состояний системы.

Равновесное состояние термодинамической системы – состояние системы, при котором все параметры имеют определенные значения и в котором система может оставаться сколько угодно долго. Температура во всех частях термодинамической системы, находящейся в равно-весном состоянии, одинакова.

При теплообмене между двумя телами с различной температурой происходит передача теплоты от тела с большей температурой к телу с меньшей температурой. Этот процесс прекра-щается, когда температуры обоих тел выравниваются.

Температура системы, находящейся в равновесном состоянии, служит мерой интенсивности теплового движения атомов, молекул и других частиц, образующих систему. В системе частиц, описываемых законами классической статистической физики и находящихся в равновесном состоянии, средняя кинетическая энергия теплового движения частиц прямо пропорциональна термодинамической температуре системы. Поэтому иногда говорят, что температура характе-ризует степень нагретости тела.

При измерении температуры, которое можно производить только косвенным путем, исполь-зуется зависимость от температуры целого ряда физических свойств тела, поддающихся прямому или косвенному измерению. Например, при изменении температуры тела изменяются его длина и объем, плотность, упругие свойства, электрическое сопротивление и т.д. Изменение любого из этих свойств является основой для измерений температуры. Для этого необходимо, чтобы для одного (выбранного) тела, называемого термометрическим телом, была известна функциональная зависимость данного свойства от температуры. Для практических измерений температуры применяются температурные шкалы, установленные с помощью термометрических тел. В Международной стоградусной температурной шкале температура выражается в градусах Цельсия (°С) [А. Цельсий (1701–1744) – шведский ученый] и обозначается t , причем принимается, что при нормальном давлении 1,01325 × 10 5 Па температуры плавления льда и кипения воды равны, соответственно, 0 и 100 °С. В термодинамической температурной шкале температура выражается в Кельвинах (К) [У. Томсон, лорд Кельвин (1821–1907) – английский физик], обозначается Т и называется термодинамической температурой. Связь между термодинамической температурой Т и температурой по стоградусной шкале имеет вид T = t + 273,15.

Температура T = 0 К (по стоградусной шкале t = –273,15 °С) называется абсолютным нулем температуры, или нулем по термодинамической шкале температур.

Параметры состояния системы разделяются на внешние и внутренние. Внешними парамет-рами системы называются физические величины, зависящие от положения в пространстве и различных свойств (например электрических зарядов) тел, которые являются внешними по отношению к данной системе. Например, для газа таким параметром является объем V сосуда,
в котором находится газ, ибо объем зависит от расположения внешних тел – стенок сосуда. Атмосферное давление является внешним параметром для жидкости в открытом сосуде. Внутренними параметрами системы называются физические величины, зависящие как от положения внешних по отношению к системе тел, так и от координат и скоростей частиц, образующих данную систему. Например, внутренними параметрами газа являются его давление и энергия, которые зависят от координат и скоростей движущихся молекул и от плотности газа.

Под термодинамическим процессом понимают всякое изменение состояния рассматривае-мой термодинамической системы, характеризующееся изменением ее термодинамических параметров. Термодинамический процесс называется равновесным , если в этом процессе система проходит непрерывный ряд бесконечно близких термодинамически равновесных состояний. Реальные процессы изменения состояния системы всегда происходят с конечной скоростью и поэтому не могут быть равновесными. Очевидно, однако, что реальный процесс изменения состояния системы будет тем ближе к равновесному, чем медленнее он совершается, поэтому такие процессы называют квазистатическими .

Примерами простейших термодинамических процессов могут служить следующие процессы:

а) изотермический процесс, при котором температура системы не изменяется (T = const);

б) изохорный процесс, происходящий при постоянном объеме системы (V = const);

в) изобарный процесс, происходящий при постоянном давлении в системе (p = const);

г) адиабатный процесс, происходящий без теплообмена между системой и внешней средой.

Термодинамическая система – это часть материального мира, отделенная от окружающей среды реальными или воображаемыми границами и являющаяся объектом исследования термодинамики. Окружающая среда значительно больше по объему, и поэтому изменения в ней незначительны по сравнению с изменением состояния системы. В отличие от механических систем, которые состоят из одного или нескольких тел, термодинамическая система содержит очень большое число частиц, что порождает совершенно новые свойства и требует иных подходов к описанию состояния и поведения таких систем. Термодинамическая система представляет собой макроскопический объект .

Классификация термодинамических систем

1. По составу

Термодинамическая система состоит из компонентов. Компонент - это вещество, которое может быть выделено из системы и существовать вне ее, т.е. компоненты – это независимые вещества.

Однокомпонентные.

Двухкомпонентные, или бинарные.

Трехкомпонентные – тройные.

Многокомпонентные.

2. По фазовому составу – гомогенные и гетерогенные

Гомогенные системы имеют одинаковые макроскопические свойства в любой точке системы, прежде всего температуру, давление, концентрацию, а также многие другие, например, показатель преломления, диэлектрическую проницаемость, кристаллическую структуру и др. Гомогенные системы состоят из одной фазы.

Фаза – это однородная часть системы, отделенная от других фаз поверхностью раздела и характеризующаяся своим уравнением состояния. Фаза и агрегатное состояние – перекрывающиеся, но не идентичные понятия. Агрегатных состояний только 4, фаз может быть гораздо больше.

Гетерогенные системы состоят минимум из двух фаз.

3. По типам связей с окружающей средой (по возможностям обмена с окружающей средой).

Изолированная система не обменивается с окружающей ни энергией, ни веществом. Это идеализированная система, которую, в принципе нельзя экспериментально изучать.

Закрытая система может обмениваться с окружающей средой энергией, но не обменивается веществом.



Открытая система обменивается и энергией, и веществом

Состояние ТДС

Состояние ТДС – это совокупность всех ее измеримых макроскопических свойств, имеющих, следовательно, количественное выражение. Макроскопический характер свойств означает, что их можно приписать только к системе в целом, а не отдельным частицам, которые составляют ТДС (Т, р, V, c, U, n k). Количественные характеристики состояния связаны между собой. Поэтому существует минимальный набор характеристик системы, называемых параметрами , задание которых позволяет полностью описать свойства системы. Количество этих параметров зависит от типа системы. В простейшем случае для закрытой гомогенной газовой системы в состоянии равновесия достаточно задать только 2 параметра. Для открытой системы кроме этих 2 характеристик системы требуется задать число молей каждого компонента.

Термодинамические переменные подразделяются:

- внешние , которые определяются свойствами и координатами системы в окружающей среде и зависят от контактов системы с окружением, например, масса и количество компонентов, напряженность электрического поля, число таких переменных ограничено;

- внутренние, которые характеризуют свойства системы, например, плотность, внутренняя энергия, число таких параметров неограниченно;

- экстенсивные, которые прямо пропорциональны массе системы или числу частиц, например, объем, энергия, энтропия, теплоемкость;

-интенсивные, которые не зависят от массы системы, например, температура, давление.

Параметры ТДС связаны между собой соотношением, которое носит название уравнение состояние системы. Общий вид его f (p,V, T) = 0. Одна из важнейших задач ФХ – найти уравнение состояния любой системы. Пока точное уравнение состояния известно лишь для идеальных газов (уравнение Клапейрона - Менделеева).

pV = nRT, (1.1)

где R – универсальная газовая постоянная = 8.314 Дж/(моль.К) .

[p] = Па, 1атм = 1,013*10 5 Па = 760 мм рт.ст.,

[V] = м 3 , [T] = К, [n] = моль, N = 6.02*1023 моль-1. Реальные газы лишь приближенно описываются данным уравнением, и чем выше давление и ниже температура, тем больше отклонение от данного уравнения состояния.

Различают равновесное и неравновесное состояния ТДС.

Классическая термодинамика обычно ограничивается рассмотрением равновесных состояний ТДС. Равновесие - это такое состояние, к которому самопроизвольно приходит ТДС, и в котором она может существовать бесконечно долго в отсутствие внешних воздействий. Для определения равновесного состояния всегда требуется меньшее количество параметров, чем для неравновесных систем.

Равновесное состояние подразделяют на:

- устойчивое (стабильное) состояние, при котором всякое бесконечно малое воздействие вызывает только бесконечно малое изменение состояния, а при устранении этого воздействия система возвращается в исходное состояние;

- метастабильное состояние, при котором некоторые конечные воздействия вызывают конечные изменения состояния, которые не исчезают при устранения этих воздействий.

Изменение состояния ТДС связанное с изменением хотя бы одной из ее термодинамических переменных, называют термодинамическим процессом . Особенностью описания термодинамических процессов является то, что они характеризуются не скоростями изменения свойств, а величинами изменений. Процесс в термодинамике – это последовательность состояний системы, ведущая от начального набора термодинамических параметров к - конечному. Различают следующие термодинамические процессы:

- самопроизвольные , для осуществления которых не надо затрачивать энергию;

- несамопроизвольные , происходящие только при затрате энергии;

- необратимые (или неравновесные) – когда в результате процесса невозможно возвратить систему к первоначальному состоянию.

-обратимые – это идеализированные процессы, которые проходят в прямом и обратном направлении через одни и те же промежуточные состояния, и после завершения цикла ни в системе, ни в окружающей среде не наблюдается никаких изменений.

Функции состояния – это характеристики системы, которые зависят только от параметров состояния, но не зависят от способа его достижения.

Функции состояния характеризуются следующими свойствами:

Бесконечно малое изменение функции f является полным дифференциалом df;

Изменение функции при переходе из состояния 1 в состояние 2 определяется только этими состояниями ∫ df = f 2 – f 1

В результате любого циклического процесса функция состояния не изменяется, т.е. равна нулю.

Теплота и работа – способы обмена энергией между ТДС и окружающей средой. Теплота и работа характеристики процесса, они не являются функциями состояния.

Работа - форма обмена энергией на макроскопическом уровне, когда происходят направленное перемещение объекта. Работа считается положительной, если ее совершает система против внешних сил.

Теплота – форма обмена энергией на микроскопическом уровне, т.е. в форме изменения хаотического движения молекул. Принято считать положительной теплоту, полученную системой, и работу, совершенную над ней, т.е. действует “эгоистический принцип”.

Наиболее часто используемыми единицами измерения энергии и работы, в частности, в термодинамике являются джоуль (Дж) в системе СИ и внесистемная единица – калория (1 кал = 4,18 Дж).

В зависимости от характера объекта различают разные виды работы:

1. Механическая - перемещение тела

dА мех = - F ех dl. (2.1)

Работа – скалярное произведение 2-х векторов силы и перемещения, т.е.

|dА мех | = F dl cos α. Если направление внешней силы противоположно перемещению, совершаемому внутренними силами, то cos α < 0.

2. Работа расширения (чаще всего рассматривается расширение газа)

dА = - р dV (1.7)

Однако нужно иметь в виду, что это выражение справедливо только для обратимого протекания процесса.

3. Электрическая – перемещение электрических зарядов

dА эл = -jdq, (2.2)

где j - электрический потенциал.

4. Поверхностная – изменение площади поверхности,

dА поверхн. = -sdS, (2.3)

где s - поверхностное натяжение.

5. Общее выражение для работы

dА = - Ydx, (2.4)

Y – обобщенная сила, dx - обобщенная координата, таким образом работа может рассматриваться как произведение интенсивного фактора на изменение экстенсивного.

6. Все виды работы, кроме работы расширения, называются полезной работой (dА’ ). dА = рdV + dА’ (2.5)

7. По аналогии можно ввести понятие химической работы, когда направленно перемещается k -ое химическое вещество, n k – экстенсивное свойство, при этом интенсивный параметр m k называется химическим потенциалом k -ого вещества

dА хим = -Sm k dn k . (2.6)