Как была измерена гравитационная постоянная. Гравитационная постоянная измерена новыми методами

Являясь одной из фундаментальных величин в физике, гравитационная постоянная впервые была упомянута в 18-м веке. Тогда же были предприняты первые попытки измерить ее значение, однако в силу несовершенства приборов и недостаточных знаний в данной области, сделать это удалось лишь в середине 19-го столетия. Позже полученный результат неоднократно корректировался (в последний раз это было сделано в 2013 году). Однако же следует отметить, что принципиального различия между первым (G = 6,67428(67)·10 −11 м³·с −2 ·кг −1 или Н·м²·кг −2) и последним (G = 6,67384(80)·10 −11 м³·с −2 ·кг −1 или Н·м²·кг −2) значениями не существует.

Применяя данный коэффициент для практических расчетов, следует понимать, что константа является таковой в глобальных вселенских понятиях (если не делать оговорок на физику элементарных частиц и прочие малоизученные науки). А это значит, что гравитационная постоянная Земли, Луны или Марса не будут отличаться друг от друга.

Эта величина является базовой константой в классической механике. Поэтому гравитационная постоянная участвует в самых различных расчетах. В частности, не обладая сведениями о более-менее точном значении данного параметра, ученые не смогли бы вычислять столь важный в космической отрасли коэффициент, как ускорение свободного падения (который для каждой планеты или прочего космического тела будет своим).

Однако же Ньютону, озвучившему в общем виде, гравитационная постоянная была известна лишь в теории. То есть он смог сформулировать один из важнейших физических постулатов, не обладая сведениями о величине, на которой он, по сути, основывается.

В отличие от прочих фундаментальных констант, о том, чему равна гравитационная постоянная, физика может сказать лишь с определенной долей точности. Ее значение периодически получают заново, причем каждый раз оно отличается от предыдущего. Большинство ученых полагает, что данный факт связан не с ее изменениями, а с более банальными причинами. Во-первых, это методы измерения (для вычисления этой константы проводят различные эксперименты), а во-вторых, точность приборов, которая постепенно возрастает, данные уточняются, и получается новый результат.

С учетом того, что гравитационная постоянная является величиной, измеряемой 10 в -11 степени (что для классической механики сверхмалое значение), в постоянном уточнении коэффициента нет ничего удивительного. Тем более что коррекции подвергается символ, начиная с 14 после запятой.

Однако же есть в современной волновой физике иная теория, которую выдвинули Фред Хойл и Дж. Нарликар еще в 70-е годы прошлого века. Согласно их предположениям, гравитационная постоянная уменьшается со временем, что влияет на многие иные показатели, считающиеся константами. Так, американским астрономом ван Фландерном был отмечен феномен незначительного ускорения Луны и прочих небесных тел. Руководствуясь данной теорией, следует предположить, что никаких глобальных погрешностей в ранних вычислениях не было, а разница в полученных результатах объясняется изменениями самого значения константы. Эта же теория говорит о непостоянстве некоторых других величин, таких как

ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ - коэффициент пропорциональности G в ф-ле, описывающей всемирного тяготения закон .

Числовое значение и размерность Г. п. зависят от выбора системы единиц измерения массы, длины и времени. Г. п. G, имеющую размерность L 3 M -1 T -2 , где длина L , масса M и время T выражены в единицах СИ, принято называть кавендишевой Г. п. Она определяется в лабораторном эксперименте. Все эксперименты можно условно разделить на две группы.

В первой группе экспериментов сила гравитац. взаимодействия сравнивается с упругой силой нити горизонтальных крутильных весов. Они представляют собой лёгкое коромысло, на концах к-рого укреплены равные пробные массы. На тонкой упругой нити коромысло подвешено в гравитац. поле эталонных масс. Величина гравитац. взаимодействия пробных и эталонных масс (а следовательно, и величина Г. п.) определяется либо по углу закручивания нити (статич. метод), либо по изменению частоты крутильных весов при перемещении эталонных масс (динамич. метод). Впервые Г. п. с помощью крутильных весов определил в 1798 Г. Кавендиш (H. Cavendish).

Во второй группе экспериментов сила гравитац. взаимодействия сравнивается с , для чего используются рычажные весы. Этим способом Г. п. была впервые определена Ф. Йолли (Ph. Jolly) в 1878.

Значение кавендишевой Г. п., включённое Междунар. астр. союзом в Систему астр. постоянных (САП) 1976, к-рым пользуются до настоящего времени, получено в 1942 П. Хейлом (P. Heyl) и П. Хржановским (P. Chrzanowski) в Национальном бюро мер и стандартов США. В СССР Г. п. впервые была определена в Государственном астр. ин-те им. П. К. Штернберга (ГАИШ) при МГУ.

Во всех совр. определениях кавендишевой Г. п. (табл.) были использованы крутильные весы. Помимо названных выше, применялись и др. режимы работы крутильных весов. Если эталонные массы вращаются вокруг оси крутильной нити с частотой, равной частоте собственных колебаний весов, то по резонансному изменению амплитуды крутильных колебаний можно судить о величине Г. п. (резонансный метод). Модификацией динамич. метода является ротационный метод, в к-ром платформа вместе с установленными на ней крутильными весами и эталонными массами вращается с пост. угл. скоростью.

Величина гравитационной постоянной 10 -11 м 3 /кг*с 2

Хейл, Хржановский (США), 1942

динамический

Роуз, Паркер, Бимс и др. (США), 1969

ротационный

Реннер (ВНР), 1970

ротационный

Фаси, Понтикис, Лукас (Франция), 1972

резонанс-

6,6714b0,0006

Сагитов, Милюков, Монахов и др. (СССР), 1978

динамический

6,6745b0,0008

Лютер, Таулер(США), 1982

динамический

6,6726b0,0005

Приведённые в табл. среднеквадратич. ошибки указывают на внутр. сходимость каждого результата. Нек-рое расхождение значений Г. п., полученных в разных экспериментах, связано с тем, что определение Г. п. требует абсолютных измерений и поэтому возможны систематич. ошибки в отд. результатах. Очевидно, достоверное значение Г. п. может быть получено только при учёте разл. определений.

Как в теории тяготения Ньютона, так и в общей теории относительности (ОТО) Эйнштейна Г. п. рассматривается как универсальная константа природы, не меняющаяся в пространстве и времени и независящая от физ. и хим. свойств среды и гравитирующих масс. Существуют варианты теории гравитации, предсказывающие переменность Г. п. (напр., теория Дирака, скалярно-тензорные теории гравитации). Нек-рые модели расширенной супергравитации (квантового обобщения ОТО) также предсказывают зависимость Г. п. от расстояния между взаимодействующими массами. Однако имеющиеся в настоящее время наблюдательные данные, а также специально поставленные лабораторные эксперименты пока не позволяют обнаружить изменения Г. п.

Лит.: Сагитов M. У., Постоянная тяготения и , M., 1969; Сагитов M. У. и др., Новое определение кавендишевой гравитационной постоянной, "ДАН СССР", 1979, т. 245, с. 567; Милюков В. К., Изменяется ли гравитационная постоянная ?, "Природа", 1986, № 6, с. 96.

История измерения

Гравитационная постоянная фигурирует в современной записи закона всемирного тяготения , однако отсутствовала в явном виде у Ньютона и в работах других ученых вплоть до начала XIX века. Гравитационная постоянная в нынешнем виде впервые была введена в закон всемирного тяготения, по-видимому, только после перехода к единой метрической системе мер. Возможно впервые это было сделано французским физиком Пуассоном в «Трактате по механике» (1809), по крайней мере никаких более ранних работ, в которых фигурировала бы гравитационная постоянная, историками не выявлено. В 1798 году Генри Кавендиш поставил эксперимент с целью определения средней плотности Земли с помощью крутильных весов , изобретённых Джоном Мичеллом (Philosophical Transactions 1798). Кавендиш сравнивал маятниковые колебания пробного тела под действием тяготения шаров известной массы и под действием тяготения Земли. Численное значение гравитационной постоянной было вычислено позже на основе значения средней плотности Земли. Точность измеренного значения G со времён Кавендиша увеличилась, но и его результат был уже достаточно близок к современному.

См. также

Примечания

Ссылки

  • Гравитационная постоянная - статья из Большой советской энциклопедии

Wikimedia Foundation . 2010 .

Смотреть что такое "Гравитационная постоянная" в других словарях:

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ - (тяготения постоянная) (γ, G) универсальная физ. постоянная, входящая в формулу (см.) … Большая политехническая энциклопедия

    - (обозначается G) коэффициент пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259.0,00085).10 11 Н.м²/кг² … Большой Энциклопедический словарь

    - (обозначение G), коэффициент закона ГРАВИТАЦИИ Ньютона. Равен 6,67259.10 11 Н.м2.кг 2 … Научно-технический энциклопедический словарь

    Фундаментальная физ. константа G, входящая в закон тяготения Ньютона F=GmM/r2, где m и М массы притягивающихся тел (матер. точек), r расстояние между ними, F сила притяжения, G= 6,6720(41)X10 11 Н м2 кг 2(на 1980). Наиболее точно значение Г. п.… … Физическая энциклопедия

    гравитационная постоянная - — Тематики нефтегазовая промышленность EN gravitational constant … Справочник технического переводчика

    гравитационная постоянная - gravitacijos konstanta statusas T sritis fizika atitikmenys: angl. gravitation constant; gravity constant vok. Gravitationskonstante, f rus. гравитационная постоянная, f; постоянная всемирного тяготения, f pranc. constante de la gravitation, f … Fizikos terminų žodynas

    - (обозначается G), коэффициент пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259 + 0,00085)·10 11 Н·м2/кг2. * * * ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ (обозначается G), коэффициент… … Энциклопедический словарь

    Тяготения постоянная, универс. физ. постоянная G, входящая в ф лу, выражающую ньютоновский закон тяготения: G = (6,672 59 ± 0,000 85)*10 11Н*м2/кг2 … Большой энциклопедический политехнический словарь

    Коэффициент пропорциональности G в формуле, выражающей закон тяготения Ньютона F = G mM / r2 , где F сила притяжения, М и m массы притягивающихся тел, r расстояние между телами. Другие обозначения Г. п.: γ или f (реже k2). Числовое… … Большая советская энциклопедия

    - (обозначается G), коэф. пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259±0,00085) х 10 11 Н х м2/кг2 … Естествознание. Энциклопедический словарь

Книги

  • Вселенная и физика без "темной энергии" (открытия, идеи, гипотезы). В 2 томах. Том 1 , О. Г. Смирнов. Книги посвящены проблемам физики и астрономии, существующим в науке десятки и сотни лет от Г. Галилея, И. Ньютона, А. Эйнштейна до наших дней. Мельчайшие частицы материи и планеты, звезды и…

(Gravitational constant – size not a constant)

Часть 1

Рис.1

В физике имеется только одна константа, связанная с гравитацией – это гравитационная постоянная (G). Эта постоянная получена экспериментально и не имеет связи с другими постоянными. В физике она считается фундаментальной.

Данной константе будет посвящено несколько статей, где я постараюсь показать несостоятельность ее постоянства и отсутствие фундамента под ней. Точнее сказать фундамент под ней есть, но несколько иной.

Каково значение постоянной гравитации и почему ее так тщательно измеряют? Чтобы разобраться, необходимо снова вернуться к закону всемирного тяготения. Почему физики приняли этот закон, мало того, они стали называть его «величайшим обобщением, достигнутым человеческим разумом» . Его формулировка проста: два тела действуют друг на друга с силой, которая обратно пропорциональна квадрату расстояния между ними и прямо пропорциональна произведению их масс.

G – гравитационная постоянная

Из этой простой формулы следует множество весьма нетривиальных выводов, но нет ответа на основополагающие вопросы: каким образом и за счет чего действует сила тяготения?

Этот закон ничего не говорит о механизме возникновения силы притяжения, тем не менее, им пользуются до сих пор и будут, очевидно, пользоваться еще не одно столетие.

Одни ученые его охаивают, другие боготворят. И те и другие без него не обходятся, т.к. лучше ничего не придумали и не открыли. Практики, при освоении Космоса, зная несовершенство данного закона, используют поправочные таблицы, которые пополняются новыми данными после каждого запуска космических аппаратов.

Теоретики пытаются исправить данный закон путем ввода поправок, дополнительных коэффициентов, ищут доказательство факта существования ошибки в размерности гравитационной константы G, но ничего не приживается, а формула Ньютона остается в первоначальном виде.

Учитывая то многообразие неоднозначностей, неточностей при расчетах по данной формуле, ее все же нужно исправлять.

Широко известно выражение Ньютона: «Gravity is Universal», т. е. тяготение всемирно. Данный закон описывает гравитационное взаимодействие между двумя телами, где бы они не находились во Вселенной; в этом считается суть его универсализма. Гравитационная постоянная G, входящая в уравнение, рассматривается как универсальная константа природы.

Константа G позволяет проводить удовлетворительные расчеты в земных условиях, по логике, она и должна отвечать за энергетическое взаимодействие, но что взять с константы.

Интересно мнение ученого (Костюшко В.Е), который ставил реальные опыты для понимания и раскрытия законов природы, фраза: «У природы нет ни физических законов, ни физических констант с придуманными человеком размерностями». «В случае с гравитационной константой в науке утвердилось мнение, что эта величина найдена и численно оценена. Однако до сих пор не установлен ее конкретный физический смысл и это, прежде всего, потому, что на самом деле, в результате некорректных действий, а точнее грубейших ошибок, была получена ничего не значащая и совершенно бессмысленная величина с абсурдной размерностью» .

Я бы не хотел ставить себя в позу такой категоричности, но нужно, наконец, понять смысл этой постоянной.

В настоящее время значение гравитационной постоянной утверждено комитетом по фундаментальным физическим константам: G=6,67408·10 -11 м³/(кг·с²) [КОДАТА 2014] . Несмотря на то, что данную константу тщательно измеряют, она не удовлетворяет требованиям науки. Все дело в том, что нет точной стыковки результатов между аналогичными измерениями, проводимыми в разных лабораториях мира.

Как отмечают Мельников и Пронин: «Исторически гравитация стала первой предметом научных исследований. Хотя прошло уже более 300 лет с момента появления закона тяготения, которым мы обязаны Ньютону, константа гравитационного взаимодействия остается наименее точно измеренной, по сравнению с остальными» .

Кроме того, остается открытым главный вопрос о самой природе гравитации и ее сущности. Как известно, сам закон всемирного тяготения Ньютона, проверен гораздо с большей точностью, чем точность константы G. Основное ограничение на точное определение гравитационных сил накладывает гравитационная константа, отсюда к ней такое пристальное внимание.

Одно дело уделять внимание, и совсем другое – точность совпадения результатов при измерении G. В двух самых точных измерениях ошибка может достигать порядка 1/10000. Но когда измерения проводились в разных точках планеты, то значения могли превышать экспериментальную ошибку на порядок и более!

Что же это за постоянная, когда такой огромный разброс показаний при ее измерениях? А может это совсем не постоянная, а измерение каких-то отвлеченных параметров. Или на измерения накладываются помехи, неизвестные исследователям? Вот здесь появляется новая почва для различных гипотез. Одни ученые ссылаются на магнитное поле Земли: «Взаимовлияние гравитационного и магнитного полей Земли приводит к тому, что земное тяготение будет сильнее в тех местах, где сильнее магнитное поле» . Последователи Дирака утверждают, что гравитационная постоянная изменяется с течением времени и т.д.

Одни вопросы снимают из-за недоказанности, а другие появляются и это закономерный процесс. Но такое безобразие не может продолжаться бесконечно, надеюсь, мое исследование поможет установить направление к истине.

Первым, кому приписывают первенство эксперимента в измерении постоянной гравитации, был английский химик Генри Кавендиш, который в 1798 году задался целью определить плотность Земли. Для такого тонкого эксперимента им были использованы крутильные весы, изобретенные Дж. Мичеллом (сейчас являются экспонатом в национальном музее Великобритании). Кавендиш сравнивал маятниковые колебания пробного тела под действием тяготения шаров известной массы в поле тяготения Земли.

Экспериментальные данные, как оказалось впоследствии, пригодились для определения G. Полученный Кавендишем результат – феноменальный, отличался всего на 1% от принятого сегодня. Надо отметить какое это было великое достижение в его эпоху. За два с лишним века наука эксперимента продвинулась всего на 1%? Это невероятно, но факт. Притом, если учесть флуктуации и невозможность их преодолеть, значение G присваивается искусственно, то получается, что мы вообще не продвинулись в точности измерений со времен Кавендиша!

Да! Никуда мы не продвинулись, наука находится в прострации – не понимая гравитации!

Почему наука за три с лишним столетия практически не продвинулось в точности измерения данной константы? Может все дело в инструменте, использованном Кавендишем. Крутильные весы – изобретение 16 века, остались на вооружении ученых и по сей день. Конечно это уже не те крутильные весы, посмотрите на фотографию, рис. 1. Несмотря на навороты современной механики и электроники, плюс вакуум, стабилизация температуры, результат практически не сдвинулся с места. Очевидно, что-то здесь не так.

Наши предки и современники предпринимали различные попытки измерений G в разных географических широтах и в самых невероятных местах: глубоких шахтах, ледяных пещерах, скважинах, на телебашнях. Были усовершенствованы конструкции крутильных весов. Новые измерения, с целью уточнения гравитационной постоянной, повторялись и поверялись. Ключевой эксперимент был поставлен в Лос-Аламосе в 1982-м году Г. Лютером (G. Luther) и У. Таулером (W. Towler). Их установка напоминала крутильные весы Кавендиша, с шарами из вольфрама. Результат этих измерений 6,6726(50)?10 -11 m 3 kg -1 s -2 (т.е. 6,6726±0,0005), был положен в основу, рекомендованных комитетом данных для науки и техники (CODATA) значений в 1986-м году .

Всё было спокойно до 1995 года, когда группа физиков в немецкой лаборатории PTB в Брауншвейге, используя модифицированную установку (весы плавали на поверхности ртути, с шарами большой массы), получили значение G на (0.6±0,008)% больше общепринятых . В результате в 1998 году погрешность измерения G была увеличена почти на порядок.

В настоящее время активно обсуждаются эксперименты по проверке закона всемирного тяготения, основанные на атомной интерферометрии, для измерения микроскопических пробных масс и очередного тестирования ньютоновского закона тяготения в микромире.

Предпринимались попытки применения других способов измерения G, но корреляция между измерениями практически не меняется. Этот феномен сегодня называют нарушением закона обратных квадратов либо «пятой силой». К пятой силе сейчас относят и некие частицы (поля) Хиггса – частицы Бога.

Кажется, божественную частицу удалось зафиксировать, а точнее сказать, вычислить, так сенсационно преподнесли Миру весть физики, участвовавшие в эксперименте на Большом адронном коллайдере (БАК) (LHC) .

На бозон Хиггса надейся, но сам не плошай!

Так что же это за таинственная постоянная, которая гуляет сама по себе, а без нее никуда?

Читаем продолжение статьи

История измерения

Гравитационная постоянная фигурирует в современной записи закона всемирного тяготения , однако отсутствовала в явном виде у Ньютона и в работах других ученых вплоть до начала XIX века. Гравитационная постоянная в нынешнем виде впервые была введена в закон всемирного тяготения, по-видимому, только после перехода к единой метрической системе мер. Возможно впервые это было сделано французским физиком Пуассоном в «Трактате по механике» (1809), по крайней мере никаких более ранних работ, в которых фигурировала бы гравитационная постоянная, историками не выявлено. В 1798 году Генри Кавендиш поставил эксперимент с целью определения средней плотности Земли с помощью крутильных весов , изобретённых Джоном Мичеллом (Philosophical Transactions 1798). Кавендиш сравнивал маятниковые колебания пробного тела под действием тяготения шаров известной массы и под действием тяготения Земли. Численное значение гравитационной постоянной было вычислено позже на основе значения средней плотности Земли. Точность измеренного значения G со времён Кавендиша увеличилась, но и его результат был уже достаточно близок к современному.

См. также

Примечания

Ссылки

  • Гравитационная постоянная - статья из Большой советской энциклопедии

Wikimedia Foundation . 2010 .

  • Дарвин (космический проект)
  • Коэффициент размножения на быстрых нейтронах

Смотреть что такое "Гравитационная постоянная" в других словарях:

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ - (тяготения постоянная) (γ, G) универсальная физ. постоянная, входящая в формулу (см.) … Большая политехническая энциклопедия

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ - (обозначается G) коэффициент пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259.0,00085).10 11 Н.м²/кг² … Большой Энциклопедический словарь

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ - (обозначение G), коэффициент закона ГРАВИТАЦИИ Ньютона. Равен 6,67259.10 11 Н.м2.кг 2 … Научно-технический энциклопедический словарь

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ - фундаментальная физ. константа G, входящая в закон тяготения Ньютона F=GmM/r2, где m и М массы притягивающихся тел (матер. точек), r расстояние между ними, F сила притяжения, G= 6,6720(41)X10 11 Н м2 кг 2(на 1980). Наиболее точно значение Г. п.… … Физическая энциклопедия

    гравитационная постоянная - — Тематики нефтегазовая промышленность EN gravitational constant … Справочник технического переводчика

    гравитационная постоянная - gravitacijos konstanta statusas T sritis fizika atitikmenys: angl. gravitation constant; gravity constant vok. Gravitationskonstante, f rus. гравитационная постоянная, f; постоянная всемирного тяготения, f pranc. constante de la gravitation, f … Fizikos terminų žodynas

    гравитационная постоянная - (обозначается G), коэффициент пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259 + 0,00085)·10 11 Н·м2/кг2. * * * ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ (обозначается G), коэффициент… … Энциклопедический словарь

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ - тяготения постоянная, универс. физ. постоянная G, входящая в ф лу, выражающую ньютоновский закон тяготения: G = (6,672 59 ± 0,000 85)*10 11Н*м2/кг2 … Большой энциклопедический политехнический словарь

    Гравитационная постоянная - коэффициент пропорциональности G в формуле, выражающей закон тяготения Ньютона F = G mM / r2 , где F сила притяжения, М и m массы притягивающихся тел, r расстояние между телами. Другие обозначения Г. п.: γ или f (реже k2). Числовое… … Большая советская энциклопедия

    ГРАВИТАЦИОННАЯ ПОСТОЯННАЯ - (обозначается G), коэф. пропорциональности в законе тяготения Ньютона (см. Всемирного тяготения закон), G = (6,67259±0,00085) х 10 11 Н х м2/кг2 … Естествознание. Энциклопедический словарь

Книги

  • Вселенная и физика без "темной энергии" (открытия, идеи, гипотезы). В 2 томах. Том 1 , О. Г. Смирнов. Книги посвящены проблемам физики и астрономии, существующим в науке десятки и сотни лет от Г. Галилея, И. Ньютона, А. Эйнштейна до наших дней. Мельчайшие частицы материи и планеты, звезды и…