Таблица логарифмов по основанию 2. Что такое логарифм

Вещественный логарифм

Логарифм вещественного числа log a b имеет смысл при src="/pictures/wiki/files/55/7cd1159e49fee8eff61027c9cde84a53.png" border="0">.

Наиболее широкое применение нашли следующие виды логарифмов.

Если рассматривать логарифмируемое число как переменную, мы получим логарифмическую функцию , например: . Эта функция определена в правой части числовой прямой: x > 0 , непрерывна и дифференцируема там (см. рис. 1).

Свойства

Натуральные логарифмы

При справедливо равенство

(1)

В частности,

Этот ряд сходится быстрее, а кроме того, левая часть формулы теперь может выразить логарифм любого положительного числа.

Связь с десятичным логарифмом: .

Десятичные логарифмы

Рис. 2. Логарифмическая шкала

Логарифмы по основанию 10 (обозначение: lg a ) до изобретения калькуляторов широко применялись для вычислений. Неравномерная шкала десятичных логарифмов обычно наносится и на логарифмические линейки . Подобная шкала широко используется в различных областях науки, например:

  • Химия - активность водородных ионов ().
  • Теория музыки - нотная шкала, по отношению к частотам нотных звуков.

Логарифмическая шкала также широко применяется для выявления показателя степени в степенных зависимостях и коэффициента в показателе экспоненты. При этом график, построенный в логарифмическом масштабе по одной или двум осям, принимает вид прямой, более простой для исследования.

Комплексный логарифм

Многозначная функция

Риманова поверхность

Комплексная логарифмическая функция - пример римановой поверхности ; её мнимая часть (рис. 3) состоит из бесконечного числа ветвей, закрученных наподобие спирали. Эта поверхность односвязна ; её единственный нуль (первого порядка) получается при z = 1 , особые точки: z = 0 и (точки разветвления бесконечного порядка).

Риманова поверхность логарифма является универсальной накрывающей для комплексной плоскости без точки 0 .

Исторический очерк

Вещественный логарифм

Потребность в сложных расчётах в XVI веке быстро росла, и значительная часть трудностей была связана с умножением и делением многозначных чисел. В конце века нескольким математикам, почти одновременно, пришла в голову идея: заменить трудоёмкое умножение на простое сложение, сопоставив с помощью специальных таблиц геометрическую и арифметическую прогрессии, при этом геометрическая будет исходной. Тогда и деление автоматически заменяется на неизмеримо более простое и надёжное вычитание. Первым эту идею опубликовал в своей книге «Arithmetica integra » Михаэль Штифель , который, впрочем, не приложил серьёзных усилий для реализации своей идеи.

В 1620-е годы Эдмунд Уингейт и Уильям Отред изобрели первую логарифмическую линейку , до появления карманных калькуляторов - незаменимый инструмент инженера.

Близкое к современному понимание логарифмирования - как операции, обратной возведению в степень - впервые появилось у Валлиса и Иоганна Бернулли , а окончательно было узаконено Эйлером в XVIII веке. В книге «Введение в анализ бесконечных» () Эйлер дал современные определения как показательной , так и логарифмической функций, привёл разложение их в степенные ряды, особо отметил роль натурального логарифма.

Эйлеру принадлежит и заслуга распространения логарифмической функции на комплексную область.

Комплексный логарифм

Первые попытки распространить логарифмы на комплексные числа предпринимали на рубеже XVII-XVIII веков Лейбниц и Иоганн Бернулли , однако создать целостную теорию им не удалось - в первую очередь по той причине, что тогда ещё не было ясно определено само понятие логарифма. Дискуссия по этому поводу велась сначала между Лейбницем и Бернулли, а в середине XVIII века - между Даламбером и Эйлером. Бернулли и Даламбер считали, что следует определить log(-x) = log(x) . Полная теория логарифмов отрицательных и комплексных чисел была опубликована Эйлером в 1747-1751 годах и по существу ничем не отличается от современной.

Хотя спор продолжался (Даламбер отстаивал свою точку зрения и подробно аргументировал её в статье своей «Энциклопедии» и в других трудах), однако точка зрения Эйлера быстро получила всеобщее признание.

Логарифмические таблицы

Логарифмические таблицы

Из свойств логарифма следует, что вместо трудоёмкого умножения многозначных чисел достаточно найти (по таблицам) и сложить их логарифмы, а потом по тем же таблицам выполнить потенцирование , то есть найти значение результата по его логарифму. Выполнение деления отличается только тем, что логарифмы вычитаются. Лаплас говорил, что изобретение логарифмов «продлило жизнь астрономов», многократно ускорив процесс вычислений.

При переносе десятичной запятой в числе на n разрядов значение десятичного логарифма этого числа изменяется на n . Например, lg8314,63 = lg8,31463 + 3 . Отсюда следует, что достаточно составить таблицу десятичных логарифмов для чисел в диапазоне от 1 до 10.

Первые таблицы логарифмов опубликовал Джон Непер (), и они содержали только логарифмы тригонометрических функций, причём с ошибками. Независимо от него свои таблицы опубликовал Иост Бюрги, друг Кеплера (). В 1617 году оксфордский профессор математики Генри Бригс опубликовал таблицы, которые уже включали десятичные логарифмы самих чисел, от 1 до 1000, с 8 (позже - с 14) знаками. Но и в таблицах Бригса обнаружились ошибки. Первое безошибочное издание на основе таблиц Вега () появилось только в 1857 году в Берлине (таблицы Бремивера).

В России первые таблицы логарифмов были изданы в 1703 году при участии Л. Ф. Магницкого . В СССР выпускались несколько сборников таблиц логарифмов.

Таблицы Брадиса (

Итак, перед нами степени двойки. Если взять число из нижней строчки, то можно легко найти степень, в которую придется возвести двойку, чтобы получилось это число. Например, чтобы получить 16, надо два возвести в четвертую степень. А чтобы получить 64, надо два возвести в шестую степень. Это видно из таблицы.

А теперь - собственно, определение логарифма:

Логарифм по основанию a от аргумента x - это степень, в которую надо возвести число a , чтобы получить число x .

Обозначение: log a x = b , где a - основание, x - аргумент, b - собственно, чему равен логарифм.

Например, 2 3 = 8 ⇒ log 2 8 = 3 (логарифм по основанию 2 от числа 8 равен трем, поскольку 2 3 = 8). С тем же успехом log 2 64 = 6 , поскольку 2 6 = 64 .

Операцию нахождения логарифма числа по заданному основанию называют логарифмированием. Итак, дополним нашу таблицу новой строкой:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
log 2 2 = 1 log 2 4 = 2 log 2 8 = 3 log 2 16 = 4 log 2 32 = 5 log 2 64 = 6

К сожалению, далеко не все логарифмы считаются так легко. Например, попробуйте найти log 2 5 . Числа 5 нет в таблице, но логика подсказывает, что логарифм будет лежать где-то на отрезке . Потому что 2 2 < 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Такие числа называются иррациональными: цифры после запятой можно писать до бесконечности, и они никогда не повторяются. Если логарифм получается иррациональным, его лучше так и оставить: log 2 5 , log 3 8 , log 5 100 .

Важно понимать, что логарифм - это выражение с двумя переменными (основание и аргумент). Многие на первых порах путают, где находится основание, а где - аргумент. Чтобы избежать досадных недоразумений, просто взгляните на картинку:

Перед нами - не что иное как определение логарифма. Вспомните: логарифм - это степень , в которую надо возвести основание, чтобы получить аргумент. Именно основание возводится в степень - на картинке оно выделено красным. Получается, что основание всегда находится внизу! Это замечательное правило я рассказываю своим ученикам на первом же занятии - и никакой путаницы не возникает.

С определением разобрались - осталось научиться считать логарифмы, т.е. избавляться от знака «log». Для начала отметим, что из определения следует два важных факта:

  1. Аргумент и основание всегда должны быть больше нуля. Это следует из определения степени рациональным показателем, к которому сводится определение логарифма.
  2. Основание должно быть отличным от единицы, поскольку единица в любой степени все равно остается единицей. Из-за этого вопрос «в какую степень надо возвести единицу, чтобы получить двойку» лишен смысла. Нет такой степени!

Такие ограничения называются областью допустимых значений (ОДЗ). Получается, что ОДЗ логарифма выглядит так: log a x = b ⇒ x > 0 , a > 0 , a ≠ 1 .

Заметьте, что никаких ограничений на число b (значение логарифма) не накладывается. Например, логарифм вполне может быть отрицательным: log 2 0,5 = −1 , т.к. 0,5 = 2 −1 .

Впрочем, сейчас мы рассматриваем лишь числовые выражения, где знать ОДЗ логарифма не требуется. Все ограничения уже учтены составителями задач. Но когда пойдут логарифмические уравнения и неравенства, требования ОДЗ станут обязательными. Ведь в основании и аргументе могут стоять весьма неслабые конструкции, которые совсем необязательно соответствуют приведенным выше ограничениям.

Теперь рассмотрим общую схему вычисления логарифмов. Она состоит из трех шагов:

  1. Представить основание a и аргумент x в виде степени с минимально возможным основанием, большим единицы. Попутно лучше избавиться от десятичных дробей;
  2. Решить относительно переменной b уравнение: x = a b ;
  3. Полученное число b будет ответом.

Вот и все! Если логарифм окажется иррациональным, это будет видно уже на первом шаге. Требование, чтобы основание было больше единицы, весьма актуально: это снижает вероятность ошибки и значительно упрощает выкладки. Аналогично с десятичными дробями: если сразу перевести их в обычные, ошибок будет в разы меньше.

Посмотрим, как работает эта схема на конкретных примерах:

Задача. Вычислите логарифм: log 5 25

  1. Представим основание и аргумент как степень пятерки: 5 = 5 1 ; 25 = 5 2 ;
  2. Составим и решим уравнение:
    log 5 25 = b ⇒ (5 1) b = 5 2 ⇒ 5 b = 5 2 ⇒ b = 2 ;

  3. Получили ответ: 2.

Задача. Вычислите логарифм:

Задача. Вычислите логарифм: log 4 64

  1. Представим основание и аргумент как степень двойки: 4 = 2 2 ; 64 = 2 6 ;
  2. Составим и решим уравнение:
    log 4 64 = b ⇒ (2 2) b = 2 6 ⇒ 2 2b = 2 6 ⇒ 2b = 6 ⇒ b = 3 ;
  3. Получили ответ: 3.

Задача. Вычислите логарифм: log 16 1

  1. Представим основание и аргумент как степень двойки: 16 = 2 4 ; 1 = 2 0 ;
  2. Составим и решим уравнение:
    log 16 1 = b ⇒ (2 4) b = 2 0 ⇒ 2 4b = 2 0 ⇒ 4b = 0 ⇒ b = 0 ;
  3. Получили ответ: 0.

Задача. Вычислите логарифм: log 7 14

  1. Представим основание и аргумент как степень семерки: 7 = 7 1 ; 14 в виде степени семерки не представляется, поскольку 7 1 < 14 < 7 2 ;
  2. Из предыдущего пункта следует, что логарифм не считается;
  3. Ответ - без изменений: log 7 14.

Небольшое замечание к последнему примеру. Как убедиться, что число не является точной степенью другого числа? Очень просто - достаточно разложить его на простые множители. Если в разложении есть хотя бы два различных множителя, число не является точной степенью.

Задача. Выясните, являются ли точными степенями числа: 8; 48; 81; 35; 14 .

8 = 2 · 2 · 2 = 2 3 - точная степень, т.к. множитель всего один;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - не является точной степенью, поскольку есть два множителя: 3 и 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - точная степень;
35 = 7 · 5 - снова не является точной степенью;
14 = 7 · 2 - опять не точная степень;

Заметим также, что сами простые числа всегда являются точными степенями самих себя.

Десятичный логарифм

Некоторые логарифмы встречаются настолько часто, что имеют специальное название и обозначение.

Десятичный логарифм от аргумента x - это логарифм по основанию 10, т.е. степень, в которую надо возвести число 10, чтобы получить число x . Обозначение: lg x .

Например, lg 10 = 1; lg 100 = 2; lg 1000 = 3 - и т.д.

Отныне, когда в учебнике встречается фраза типа «Найдите lg 0,01», знайте: это не опечатка. Это десятичный логарифм. Впрочем, если вам непривычно такое обозначение, его всегда можно переписать:
lg x = log 10 x

Все, что верно для обычных логарифмов, верно и для десятичных.

Натуральный логарифм

Существует еще один логарифм, который имеет собственное обозначение. В некотором смысле, он даже более важен, чем десятичный. Речь идет о натуральном логарифме.

Натуральный логарифм от аргумента x - это логарифм по основанию e , т.е. степень, в которую надо возвести число e , чтобы получить число x . Обозначение: ln x .

Многие спросят: что еще за число e ? Это иррациональное число, его точное значение найти и записать невозможно. Приведу лишь первые его цифры:
e = 2,718281828459...

Не будем углубляться, что это за число и зачем нужно. Просто помните, что e - основание натурального логарифма:
ln x = log e x

Таким образом, ln e = 1 ; ln e 2 = 2 ; ln e 16 = 16 - и т.д. С другой стороны, ln 2 - иррациональное число. Вообще, натуральный логарифм любого рационального числа иррационален. Кроме, разумеется, единицы: ln 1 = 0.

Для натуральных логарифмов справедливы все правила, которые верны для обычных логарифмов.

ПОКАЗАТЕЛЬНАЯ И ЛОГАРИФМИЧЕСКАЯ ФУНКЦИИ VIII

§ 189. Таблицы десятичных логарифмов

Для нахождения десятичных логарифмов составлены специальные таблицы. По ним, зная число х , можно с той или иной точностью определить lg х . Мы будем пользоваться «Четырехзначными математическими таблицами» В. М. Брадиса. Они содержат значения десятичных логарифмов с точностью до 0,0001.

В § 188 было показано, что характеристики десятичных логарифмов легко находятся без таблиц. Поэтому в таблицах приведены лишь мантиссы логарифмов. Рассмотрим несколько примеров нахождения логарифмов чисел по таблицам.

1) Логарифмы трехзначных целых чисел

Пусть, например, требуется найти lg 456. Характеристика этого логарифма равна 2. В таблице ХПI на страницах 65-67 находим число, стоящее на пересечении строки с пометкой 45 и столбца с пометкой 6. Это число 6590. Оно указывает на то, что мантисса логарифма числа 456 приближенно равна 0,6590. Значит, lg 456 ≈ 2,6590. Аналогично находим lg 238 ≈ 2,3766, lg 850 ≈ 2,9294 и т. д.

2) Логарифмы одно- и двузначных целых чисел

Пусть, например, нужно найти lg 5. Если число умножить на 100, то мантисса его десятичного логарифма не изменится. Поэтому мантисса логарифма однозначного числа 5 равна мантиссе трехзначного числа 500. По таблицам эта мантисса равна 0,6990. Поскольку характеристика логарифма числа 5 равна 0, то lg 5 ≈ 0,6990. Аналогично найдем lg 3 ≈ 0,4771 и т. д.

Если нужно найти логарифм числа 13, то для определения его мантиссы достаточно число 13 умножить на 10. Мантисса логарифма числа 130 равна 0,1139. Поскольку характеристика логарифма числа 13 равна 1, то lg 13 ≈ 1,1139. Аналогично найдем lg 75 ≈ 1,8751, lg 64 ≈ 1,8062 и т. д.

3) Логарифмы четырехзначных чисел

Вы, наверное, уже обратили внимание на то, что в правой части таблицы XIII расположены числа, напоминающие поправки к таблицам тригонометрических функций. Эта часть таблицы содержит поправки на четвертую цифру, что дает возможность вычислять логарифмы четырехзначных чисел. Пусть, например, нужно найти lg 2587. По таблице XIII найдем мантиссу трехзначного числа 258 и прибавим к ней поправку на число 7. В результате мы получим мантиссу логарифма четырехзначного числа 2587. Мантисса lg 258 приближенно равна 0,4116, а поправка на 7 равна 0,0012 (в таблице вместо 0,0012 пишут просто 12). Поэтому мантисса логарифма числа 2587 равна:

0,4116 + 0,0012 = 0,4128

Учитывая, что характеристика этого логарифма равна 3, получаем окончательно lg 2587 ≈ 3,4128. Аналогично,

lg 9625≈ 3,9832 + 0,0002 ≈ 3,9834

lg 7718 ≈ 3,8871 + 0,0004 ≈ 3,8875

4) Логарифмы целых чисел, содержащих более четырех цифр

Если целое число содержит более четырех цифр, то его округляют так, чтобы все цифры, начиная с пятой, были нулями. Если при этом пятая цифра меньше 5, то первые четыре цифры не изменяются. Если же пятая цифра больше или равна 5, то четвертую цифру увеличивают на 1.

Например,

573 528 ≈ 573 500, 36 289 ≈ 36 290, 19 998 ≈ 20 000, 7 425 538 ≈7 426 000.

Логарифмы исходных чисел приближенно равны логарифмам чисел, полученных в результате округления. Мантиссы логарифмов этих чисел легко найти по таблицам. Например, мантисса логарифма числа 573 500 равна мантиссе логарифма числа 5735 (при делении числа на 100 мантисса его десятичного логарифма не изменяется). По таблицам находим эту мантиссу: 0,7586. Учитывая, что lg 573 528 имеет характеристику 5, получаем: lg 573 528 ≈ 5,7586.

Аналогично получаем: мантисса логарифма числа 36 290 равна мантиссе логарифма числа 3629, то есть 0,5598. Поэтому lg 36 289 ≈ 4,5598.

5) Логарифмы дробных чисел

Пусть, например, нужно найти lg 803,24. Характеристика этого логарифма равна 2 (целая часть числа 803,24 содержит 3 цифры). Мантисса этого логарифма равна мантиссе логарифма числа 80 324 или приближенно мантиссе логарифма числа 80 320. Из таблиц находим эту мантиссу: 0,9048. Значит, lg 803,24 ≈ 2,9048. Аналогично, характеристика логарифма 0,0053 равна - 3 (дробь 0,0053 перед первой значащей цифрой имеет три нуля, включая нуль целых). Мантисса этого логарифма равна мантиссе логарифма числа 530. Из таблиц находим эту мантиссу: 0,7243. Следователыю, lg 0,0053 ≈ - 3 + 0,7243 = - 2,2757.

Упражнения

1432. Используя таблицы В. М. Брадиса, найти десятичные логарифмы следующих чисел:

257; 301; 25; 99; 2; 3; 3796; 9999; 10 325;

267 398; 37 990 653; 263,56; 35,074; 2,9345; 0,002863; 0,000056.

1433. Используя таблицы В. М. Брадиса, вычислить:

log 3 5; log 9 17; log 0,05 0,004.

1433. ≈ 1,4651; ≈ 1,2894; ≈ 1,8431.

Вещественный логарифм

Логарифм вещественного числа log a b имеет смысл при src="/pictures/wiki/files/55/7cd1159e49fee8eff61027c9cde84a53.png" border="0">.

Наиболее широкое применение нашли следующие виды логарифмов.

Если рассматривать логарифмируемое число как переменную, мы получим логарифмическую функцию , например: . Эта функция определена в правой части числовой прямой: x > 0 , непрерывна и дифференцируема там (см. рис. 1).

Свойства

Натуральные логарифмы

При справедливо равенство

(1)

В частности,

Этот ряд сходится быстрее, а кроме того, левая часть формулы теперь может выразить логарифм любого положительного числа.

Связь с десятичным логарифмом: .

Десятичные логарифмы

Рис. 2. Логарифмическая шкала

Логарифмы по основанию 10 (обозначение: lg a ) до изобретения калькуляторов широко применялись для вычислений. Неравномерная шкала десятичных логарифмов обычно наносится и на логарифмические линейки . Подобная шкала широко используется в различных областях науки, например:

  • Химия - активность водородных ионов ().
  • Теория музыки - нотная шкала, по отношению к частотам нотных звуков.

Логарифмическая шкала также широко применяется для выявления показателя степени в степенных зависимостях и коэффициента в показателе экспоненты. При этом график, построенный в логарифмическом масштабе по одной или двум осям, принимает вид прямой, более простой для исследования.

Комплексный логарифм

Многозначная функция

Риманова поверхность

Комплексная логарифмическая функция - пример римановой поверхности ; её мнимая часть (рис. 3) состоит из бесконечного числа ветвей, закрученных наподобие спирали. Эта поверхность односвязна ; её единственный нуль (первого порядка) получается при z = 1 , особые точки: z = 0 и (точки разветвления бесконечного порядка).

Риманова поверхность логарифма является универсальной накрывающей для комплексной плоскости без точки 0 .

Исторический очерк

Вещественный логарифм

Потребность в сложных расчётах в XVI веке быстро росла, и значительная часть трудностей была связана с умножением и делением многозначных чисел. В конце века нескольким математикам, почти одновременно, пришла в голову идея: заменить трудоёмкое умножение на простое сложение, сопоставив с помощью специальных таблиц геометрическую и арифметическую прогрессии, при этом геометрическая будет исходной. Тогда и деление автоматически заменяется на неизмеримо более простое и надёжное вычитание. Первым эту идею опубликовал в своей книге «Arithmetica integra » Михаэль Штифель , который, впрочем, не приложил серьёзных усилий для реализации своей идеи.

В 1620-е годы Эдмунд Уингейт и Уильям Отред изобрели первую логарифмическую линейку , до появления карманных калькуляторов - незаменимый инструмент инженера.

Близкое к современному понимание логарифмирования - как операции, обратной возведению в степень - впервые появилось у Валлиса и Иоганна Бернулли , а окончательно было узаконено Эйлером в XVIII веке. В книге «Введение в анализ бесконечных» () Эйлер дал современные определения как показательной , так и логарифмической функций, привёл разложение их в степенные ряды, особо отметил роль натурального логарифма.

Эйлеру принадлежит и заслуга распространения логарифмической функции на комплексную область.

Комплексный логарифм

Первые попытки распространить логарифмы на комплексные числа предпринимали на рубеже XVII-XVIII веков Лейбниц и Иоганн Бернулли , однако создать целостную теорию им не удалось - в первую очередь по той причине, что тогда ещё не было ясно определено само понятие логарифма. Дискуссия по этому поводу велась сначала между Лейбницем и Бернулли, а в середине XVIII века - между Даламбером и Эйлером. Бернулли и Даламбер считали, что следует определить log(-x) = log(x) . Полная теория логарифмов отрицательных и комплексных чисел была опубликована Эйлером в 1747-1751 годах и по существу ничем не отличается от современной.

Хотя спор продолжался (Даламбер отстаивал свою точку зрения и подробно аргументировал её в статье своей «Энциклопедии» и в других трудах), однако точка зрения Эйлера быстро получила всеобщее признание.

Логарифмические таблицы

Логарифмические таблицы

Из свойств логарифма следует, что вместо трудоёмкого умножения многозначных чисел достаточно найти (по таблицам) и сложить их логарифмы, а потом по тем же таблицам выполнить потенцирование , то есть найти значение результата по его логарифму. Выполнение деления отличается только тем, что логарифмы вычитаются. Лаплас говорил, что изобретение логарифмов «продлило жизнь астрономов», многократно ускорив процесс вычислений.

При переносе десятичной запятой в числе на n разрядов значение десятичного логарифма этого числа изменяется на n . Например, lg8314,63 = lg8,31463 + 3 . Отсюда следует, что достаточно составить таблицу десятичных логарифмов для чисел в диапазоне от 1 до 10.

Первые таблицы логарифмов опубликовал Джон Непер (), и они содержали только логарифмы тригонометрических функций, причём с ошибками. Независимо от него свои таблицы опубликовал Иост Бюрги, друг Кеплера (). В 1617 году оксфордский профессор математики Генри Бригс опубликовал таблицы, которые уже включали десятичные логарифмы самих чисел, от 1 до 1000, с 8 (позже - с 14) знаками. Но и в таблицах Бригса обнаружились ошибки. Первое безошибочное издание на основе таблиц Вега () появилось только в 1857 году в Берлине (таблицы Бремивера).

В России первые таблицы логарифмов были изданы в 1703 году при участии Л. Ф. Магницкого . В СССР выпускались несколько сборников таблиц логарифмов.

  • Брадис В. М. Четырехзначные математические таблицы. 44-е издание, М., 1973.

Таблицы Брадиса () использовались в учебных заведениях и в инженерных расчётах, не требующих большой точности. Они содержали