Ультрафиолет в спектре электромагнитного излучения. Типы волн и электромагнитный спектр

Свойства электромагнитных излучений. Электромагнитные излучения с различными длинами волн имеют довольно много различий, но все они, от радиоволн и до гамма-излучения, одной физической природы. Все виды электромагнитного излучения в большей или меньшей степени проявляют свойства интерференции, дифракции и поляризации, характерные для волн. Вместе с тем все виды электромагнитного излучения в большей или меньшей мере обнаруживают квантовые свойства.

Общим для всех электромагнитных излучений являются механизмы их возникновения: электромагнитные волны с любой длиной волны могут возникать при ускоренном движении электрических зарядов или при переходах молекул, атомов или атомных ядер из одного квантового состояния в другое. Гармонические колебания электрических зарядов сопровождаются электромагнитным излучением, имеющим частоту, равную частоте колебаний зарядов.

Радиоволны. При колебаниях, происходящих с частотами от 10 5 до 10 12 Гц, возникают электромагнитные излучения, длины волн которых лежат в интервале от нескольких километров до нескольких миллиметров. Этот участок шкалы электромагнитных излучений относится к диапазону радиоволн. Радиоволны применяются для радиосвязи, телевидения, радиолокации.

Инфракрасное излучение. Электромагнитные излучения с длиной волны, меньшей 1-2 мм, но большей 8*10 -7 м, т.е. лежащие между диапазоном радиоволн и диапазоном видимого света, называются инфракрасным излучением.

Область спектра за красным его краем впервые экспериментально была исследована в 1800г. английским астрономом Вильямом Гершелем (1738 – 1822 гг.). Гершель поместил термометр с зачерненным шариком за красный край спектра и обнаружил повышение температуры. Шарик термометра нагревался излучением, невидимым глазом. Это излучение назвали инфракрасными лучами.

Инфракрасное излучение испускают любые нагретые тела. Источниками инфракрасного излучения служат печи, батареи водяного отопления, электрические лампы накаливания.

С помощью специальных приборов инфракрасное излучение можно преобразовать в видимый свет и получать изображения нагретых предметов в полной темноте. Инфракрасное излучение применяется для сушки окрашенных изделий, стен зданий, древесины.

Видимый свет. К видимому свету (или просто свету) относятся излучения с длиной волны примерно от 8*10-7 до 4*10-7 м, от красного до фиолетового света.

Значение этого участка спектра электромагнитных излучений в жизни человека исключительно велико, так как почти все сведения об окружающем мире человек получает с помощью зрения.

Свет является обязательным условием развития зеленых растений и, следовательно, необходимым условием для существования жизни на Земле.

Ультрафиолетовое излучение . В 1801 году немецкий физик Иоганн Риттер (1776 – 1810), исследуя спектр, открыл, что за его фиолетовым краем имеется область, создаваемая невидимыми глазом лучами. Эти лучи воздействуют на некоторые химические соединения. Под действием этих невидимых лучей происходит разложения хлорида серебра, свечение кристаллов сульфида цинка и некоторых других кристаллов.

Невидимое глазом электромагнитное излучение с длиной волны меньше, чем у фиолетового света, называют ультрафиолетовым излучением. К ультрафиолетовому излучению относят электромагнитные излучения в диапазоне длин волн от 4*10 -7 до 1*10 -8 м.

Ультрафиолетовое излучение способно убивать болезнетворных бактерий, поэтому его широко применяют в медицине. Ультрафиолетовое излучение в составе солнечного света вызывает биологические процессы, приводящие к потемнению кожи человека – загару.

В качестве источников ультрафиолетового излучения в медицине используются газоразрядные лампы. Трубки таких ламп изготавливают из кварца, прозрачного для ультрафиолетовых лучей; поэтому эти лампы называют кварцевыми лампами.

Рентгеновские лучи . Если в вакуумной трубке между нагретым катодом, испускающим электрон, и анодом приложить постоянное напряжение в несколько десятков тысяч вольт, то электроны будут сначала разгоняться электрическим полем, а затем резко тормозиться в веществе анода при взаимодействии с его атомами. При торможении быстрых электронов в веществе или при переходах электронов на внутренних оболочках атомов возникают электромагнитные волны с длиной волны меньше, чем у ультрафиолетового излучения. Это излучение было открыто в 1895 году немецким физиком Вильгельмом Рентгеном (1845-1923). Электромагнитные излучения в диапазоне длин волн от 10 -14 до 10 -7 м называются рентгеновскими лучами.

Рентгеновские лучи невидимы глазом. Они проходят без существенного поглощения через значительные слои вещества, непрозрачного для видимого света. Обнаруживают рентгеновские лучи по их способности вызывать определенное свечение некоторых кристаллов и действовать на фотопленку.

Способность рентгеновских лучей проникать через толстые слои вещества используется для диагностики заболеваний внутренних органов человека. В технике рентгеновские лучи применяются для контроля внутренней структуры различных изделий, сварных швов. Рентгеновское излучение обладает сильным биологическим действием и применяется для лечения некоторых заболеваний.

Гамма-излучение . Гамма-излучением называют электромагнитное излучение, испускаемое возбужденными атомными ядрами и возникающее при взаимодействии элементарных частиц.

Гамма-излучение – самое коротковолновое электромагнитное излучение (l< 10 -10 м). Его особенностью являются ярко выраженные корпускулярные свойства. Поэтому гамма-излучение обычно рассматривают как поток частиц – гамма-квантов. В области длин волн от 10 -10 до 10 -14 и диапазоны рентгеновского и гамма-излучений перекрываются, в этой области рентгеновские лучи и гамма-кванты по своей природе тождественны и отличаются лишь происхождением.

Основной характеристикой электромагнитного спектра представляющего совокупность диапазонов частот является волновой процесс. В результате электромагнитный спектр можно определить по его длине волны и частоте.

Частота - как быстро волна вибрирует или идет вверх и вниз. Длина волны - это расстояние между двумя пиками. Частота и длина обратно связаны, что означает, что волны низкой частоты имеют длиннее колебания и наоборот.

Человек может видеть свет в определенном диапазоне длин колебаний и частот. Этот диапазон называется видимым спектром. Частотный диапазон видимого спектра составляет от 405 терагерц до 790 терагерц.

Типы волн и электромагнитный спектр

Электромагнитный спектр включает широкий спектр волн, который люди не могут видеть. Невидимые типы волн представляют радиоволны, инфракрасные и рентгеновские лучи. Эти типы колебаний широко применяются в различных областях науки и техники.

Если бы у человека глаза были как у гремучей змеи или совы он мог бы хорошо видеть ночью. Для того чтобы помочь пилотам увидеть в темноте или при плохой погоде в кабине устанавливается радар, обнаруживающий отражение радиоволн. И если бы глаза человека были чувствительны как лучи рентгеновской камеры люди могли бы даже видеть через органы или здания!

Свет, который могут видеть люди, это только одна часть всей электрической и магнитной энергии вокруг нашего мира. Радиоволны, Х-лучи, гамма-лучи и световые волны работают аналогичным образом. Вся вместе эта энергия называется электромагнитным спектром.

В видимом спектре цвет света зависит от частоты. представляет сложную комбинацию состоящую из многих длин. Если пропустить видимый спектр через призму создастся «радуга» путем перенаправления каждой длины волны под несколько иным углом. Порядок цветов красный, оранжевый, желтый, зеленый, синий, индиго (темно синий) и фиолетовый.

Цвета света

Что мы видим, когда наблюдаем отраженный свет от объекта. Когда свет попадает на объект несколько длин колебаний поглощаются этим объектом, а некоторые отражаются. Свет различных длин волн выглядит как разные цвета. Когда мы видим объект определенного цвета, что означает, что свет этого цвета отражается от объекта. Например, когда вы видите красную рубашку, рубашка поглощает все цвета света, за исключением красного. Частота света, который мы видим, является отражение красного и мы видим эту рубашку как красную.

Черный и белый немного отличается от других цветов. Белый — это сочетание всех цветов, поэтому когда мы видим белый, объект отражает все цвета света. Черный является противоположностью. Когда мы видим черный объект, то это означает, что почти все цвета света поглощаются.

Аддитивные цвета

Аддитивность –целое значение величины равно сумме значений его составный частей.

Аддитивные основные цвета могут быть объединены, чтобы сделать любой другой цвет. Это три цвета красный, синий и зеленый. Этот факт используется все время в технологиях, таких как компьютерные экраны и телевизоры. Объединяя только три основных вида света различными способами, можно сделать любой цвет.

Субтрактивные цвета

Субтрактивный – вычитание из равномерного белого составляющих.

Если есть белый свет и хотите вычесть цвета, чтобы получить любой другой цвет, то необходимо использовать основные субтрактивные цвета для фильтрации или удаления света определенных цветов. Первичные субтрактивные цвета - голубой, пурпурный и желтый.

Что такое электромагнитное излучение?

Световые волны и другие виды энергии, которые излучаются вызывают электромагнитное излучение. Вместе они составляют то, что называется электромагнитный спектр . Наши глаза могут видеть только ограниченную часть электромагнитного спектра - красочные радуги мы видим в солнечный, но дождливый день, когда невероятно узкая часть электромагнитного излучения преломляется в капельках дождя. Это энергия видимого света, и как радиоволны и все остальное состоит из электромагнитных волн.

Эти волнообразные формы модели электричества и магнетизма на скорости 300000 км в секунду распространяются вокруг.

Свет, который видят люди тянется в спектре от красного (самая низкая частота и большая длина волны, которую глаза могут зарегистрировать) далее оранжевый, желтый, зеленый, синий и индиго (темно синий) и фиолетовый.

Как электромагнитная волна двигается

Если бы мы могли заглянуть внутрь светового луча (или других электромагнитных волн), что можно увидеть: электрическая волна вибрирует в одном направлении, а магнитная вибрирует в перпендикулярном. Две волны вибрируют в идеальной зависимости, перпендикулярном направлении путешествуете всегда вместе.

С XIX века ученые понимают, что электричество и магнетизм являются равноправными партнерами, которые работают вместе, близко во все времена.

Какие виды энергии составляют электромагнитный спектр?

Другие виды электромагнитного излучения, которые испускают объекты

  • Радиоволны : если бы наши глаза могут видеть радиоволны, мы бы могли (в теории) смотреть ТВ программы просто глядя на небо! Длина радиоволны: 30 см – 500 м. Радиоволны охватывают огромную полосу частот варьируемой от десятков сантиметров высокой частоты до сотен метров в низкочастотном диапазоне. Электромагнитная волна больше, чем СВЧ радиоволна микроволновой печи.
  • СВЧ : такие радиоволны используются не только для приготовления пищи в микроволновой печи, но и для передачи информации в радиолокационной технике. Типичный размер: 15 см (длина карандаша).
  • Инфракрасное : просто с частотой немного короче чем красный цвет. Есть своего рода невидимый «горячий свет» называемый ИК. Хотя мы не можем видеть излучение, мы можем почувствовать путем потепления кожи, когда он попадает на наше лицо — это то, что мы думаем как излучаемое тепло. Если бы глаза человека были бы как у гремучих змей человек бы видел инфракрасное излучение, как линзы ночного видения, встроенные в наших головах. Типичная длина колебания: 0,01 мм
  • Видимый спектр о котором пояснено выше.
  • Ультрафиолетовое : это выше частоты фиолетового света, который наши глаза могут обнаружить. Солнце передает мощное ультрафиолетовое излучение, которое человек не может видеть. Вот почему человек получает загар, даже когда плавает в море или в пасмурные дни. Вот почему так важен солнцезащитный крем. Типичная длина колебания: 500 Нм (как большая бактерия).
  • Рентгеновские лучи : очень полезный тип высокочастотных волн, широко используются в медицине и безопасности. Типичный размер: 0,1 Нм (ширина атома).
  • Гамма лучи : излучаются радиоактивными веществами и опасны для жизни. Типичный размер: 0,02 Нм (ядро атома).

Материал из Википедии - свободной энциклопедии

К:Википедия:Страницы на КУЛ (тип: не указан)

Длина волны - частота - энергия фотона

В качестве спектральной характеристики электромагнитного излучения используют следующие величины :

  • Частоту колебаний - шкала частот приведена в отдельной статье;
  • Энергию фотона (кванта электромагнитного поля).

Прозрачность вещества для гамма-лучей, в отличие от видимого света, зависит не от химической формы и агрегатного состояния вещества, а в основном от заряда ядер, входящих в состав вещества, и от энергии гамма-квантов. Поэтому поглощающую способность слоя вещества для гамма-квантов в первом приближении можно охарактеризовать его поверхностной плотностью (в г/см²). Длительное время считалось, что создание зеркал и линз для γ-лучей невозможно, однако, согласно последним исследованиям в данной области, преломление γ-лучей возможно. Это открытие, возможно, означает создание нового раздела оптики - γ-оптики .

Резкой нижней границы для гамма-излучения не существует, однако обычно считается, что гамма-кванты излучаются ядром, а рентгеновские кванты - электронной оболочкой атома (это лишь терминологическое различие, не затрагивающее физических свойств излучения).

Рентгеновское излучение

  • от 0,1 нм = 1 Å (12 400 эВ) до 0,01 нм = 0,1 Å (124 000 эВ) - жёсткое рентгеновское излучение . Источники: некоторые ядерные реакции , электронно-лучевые трубки .
  • от 10 нм (124 эВ) до 0,1 нм = 1 Å (12 400 эВ) - мягкое рентгеновское излучение . Источники: электронно-лучевые трубки, тепловое излучение плазмы.

Рентгеновские кванты излучаются в основном при переходах электронов в электронной оболочке тяжёлых атомов на низколежащие орбиты. Вакансии на низколежащих орбитах создаются обычно электронным ударом. Рентгеновское излучение, созданное таким образом, имеет линейчатый спектр с частотами, характерными для данного атома (см. характеристическое излучение); это позволяет, в частности, исследовать состав веществ (рентгено-флюоресцентный анализ). Тепловое , тормозное и синхротронное рентгеновское излучение имеет непрерывный спектр.

В рентгеновских лучах наблюдается дифракция на кристаллических решётках, поскольку длины электромагнитных волн на этих частотах близки к периодам кристаллических решёток. На этом основан метод рентгено-дифракционного анализа .

Ультрафиолетовое излучение

Диапазон: От 400 нм (3,10 эВ) до 10 нм (124 эВ)

Наименование Аббревиатура Длина волны в нанометрах Количество энергии на фотон
Ближний NUV 400 - 300 3,10 - 4,13 эВ
Средний MUV 300 - 200 4,13 - 6,20 эВ
Дальний FUV 200 - 122 6,20 - 10,2 эВ
Экстремальный EUV, XUV 121 - 10 10,2 - 124 эВ
Вакуумный VUV 200 - 10 6,20 - 124 эВ
Ультрафиолет А, длинноволновой диапазон, Чёрный свет UVA 400 - 315 3,10 - 3,94 эВ
Ультрафиолет B (средний диапазон) UVB 315 - 280 3,94 - 4,43 эВ
Ультрафиолет С, коротковолновой, гермицидный диапазон UVC 280 - 100 4,43 - 12,4 эВ

Оптическое излучение

Излучение оптического диапазона (видимый свет и ближнее инфракрасное излучение [ ]) свободно проходит сквозь атмосферу, может быть легко отражено и преломлено в оптических системах. Источники: тепловое излучение (в том числе Солнца), флюоресценция, химические реакции, светодиоды.

  • от 30 ГГц до 300 ГГц - микроволны .
  • от 3 ГГц до 30 ГГц - сантиметровые волны (СВЧ) .
  • от 300 МГц до 3 ГГц - дециметровые волны .
  • от 30 МГц до 300 МГц - метровые волны .
  • от 3 МГц до 30 МГц - короткие волны .
  • от 300 кГц до 3 МГц - средние волны .
  • от 30 кГц до 300 кГц - длинные волны .
  • от 3 кГц до 30 кГц - сверхдлинные (мириаметровые) волны .

См. также

Напишите отзыв о статье "Электромагнитный спектр"

Примечания

Отрывок, характеризующий Электромагнитный спектр

– Однако Михаил Иларионович, я думаю, вышел, – сказал князь Андрей. – Желаю счастия и успеха, господа, – прибавил он и вышел, пожав руки Долгорукову и Бибилину.
Возвращаясь домой, князь Андрей не мог удержаться, чтобы не спросить молчаливо сидевшего подле него Кутузова, о том, что он думает о завтрашнем сражении?
Кутузов строго посмотрел на своего адъютанта и, помолчав, ответил:
– Я думаю, что сражение будет проиграно, и я так сказал графу Толстому и просил его передать это государю. Что же, ты думаешь, он мне ответил? Eh, mon cher general, je me mele de riz et des et cotelettes, melez vous des affaires de la guerre. [И, любезный генерал! Я занят рисом и котлетами, а вы занимайтесь военными делами.] Да… Вот что мне отвечали!

В 10 м часу вечера Вейротер с своими планами переехал на квартиру Кутузова, где и был назначен военный совет. Все начальники колонн были потребованы к главнокомандующему, и, за исключением князя Багратиона, который отказался приехать, все явились к назначенному часу.
Вейротер, бывший полным распорядителем предполагаемого сражения, представлял своею оживленностью и торопливостью резкую противоположность с недовольным и сонным Кутузовым, неохотно игравшим роль председателя и руководителя военного совета. Вейротер, очевидно, чувствовал себя во главе.движения, которое стало уже неудержимо. Он был, как запряженная лошадь, разбежавшаяся с возом под гору. Он ли вез, или его гнало, он не знал; но он несся во всю возможную быстроту, не имея времени уже обсуждать того, к чему поведет это движение. Вейротер в этот вечер был два раза для личного осмотра в цепи неприятеля и два раза у государей, русского и австрийского, для доклада и объяснений, и в своей канцелярии, где он диктовал немецкую диспозицию. Он, измученный, приехал теперь к Кутузову.
Он, видимо, так был занят, что забывал даже быть почтительным с главнокомандующим: он перебивал его, говорил быстро, неясно, не глядя в лицо собеседника, не отвечая на деланные ему вопросы, был испачкан грязью и имел вид жалкий, измученный, растерянный и вместе с тем самонадеянный и гордый.
Кутузов занимал небольшой дворянский замок около Остралиц. В большой гостиной, сделавшейся кабинетом главнокомандующего, собрались: сам Кутузов, Вейротер и члены военного совета. Они пили чай. Ожидали только князя Багратиона, чтобы приступить к военному совету. В 8 м часу приехал ординарец Багратиона с известием, что князь быть не может. Князь Андрей пришел доложить о том главнокомандующему и, пользуясь прежде данным ему Кутузовым позволением присутствовать при совете, остался в комнате.
– Так как князь Багратион не будет, то мы можем начинать, – сказал Вейротер, поспешно вставая с своего места и приближаясь к столу, на котором была разложена огромная карта окрестностей Брюнна.
Кутузов в расстегнутом мундире, из которого, как бы освободившись, выплыла на воротник его жирная шея, сидел в вольтеровском кресле, положив симметрично пухлые старческие руки на подлокотники, и почти спал. На звук голоса Вейротера он с усилием открыл единственный глаз.
– Да, да, пожалуйста, а то поздно, – проговорил он и, кивнув головой, опустил ее и опять закрыл глаза.
Ежели первое время члены совета думали, что Кутузов притворялся спящим, то звуки, которые он издавал носом во время последующего чтения, доказывали, что в эту минуту для главнокомандующего дело шло о гораздо важнейшем, чем о желании выказать свое презрение к диспозиции или к чему бы то ни было: дело шло для него о неудержимом удовлетворении человеческой потребности – .сна. Он действительно спал. Вейротер с движением человека, слишком занятого для того, чтобы терять хоть одну минуту времени, взглянул на Кутузова и, убедившись, что он спит, взял бумагу и громким однообразным тоном начал читать диспозицию будущего сражения под заглавием, которое он тоже прочел:
«Диспозиция к атаке неприятельской позиции позади Кобельница и Сокольница, 20 ноября 1805 года».
Диспозиция была очень сложная и трудная. В оригинальной диспозиции значилось:
Da der Feind mit seinerien linken Fluegel an die mit Wald bedeckten Berge lehnt und sich mit seinerien rechten Fluegel laengs Kobeinitz und Sokolienitz hinter die dort befindIichen Teiche zieht, wir im Gegentheil mit unserem linken Fluegel seinen rechten sehr debordiren, so ist es vortheilhaft letzteren Fluegel des Feindes zu attakiren, besondere wenn wir die Doerfer Sokolienitz und Kobelienitz im Besitze haben, wodurch wir dem Feind zugleich in die Flanke fallen und ihn auf der Flaeche zwischen Schlapanitz und dem Thuerassa Walde verfolgen koennen, indem wir dem Defileen von Schlapanitz und Bellowitz ausweichen, welche die feindliche Front decken. Zu dieserien Endzwecke ist es noethig… Die erste Kolonne Marieschirt… die zweite Kolonne Marieschirt… die dritte Kolonne Marieschirt… [Так как неприятель опирается левым крылом своим на покрытые лесом горы, а правым крылом тянется вдоль Кобельница и Сокольница позади находящихся там прудов, а мы, напротив, превосходим нашим левым крылом его правое, то выгодно нам атаковать сие последнее неприятельское крыло, особливо если мы займем деревни Сокольниц и Кобельниц, будучи поставлены в возможность нападать на фланг неприятеля и преследовать его в равнине между Шлапаницем и лесом Тюрасским, избегая вместе с тем дефилеи между Шлапаницем и Беловицем, которою прикрыт неприятельский фронт. Для этой цели необходимо… Первая колонна марширует… вторая колонна марширует… третья колонна марширует…] и т. д., читал Вейротер. Генералы, казалось, неохотно слушали трудную диспозицию. Белокурый высокий генерал Буксгевден стоял, прислонившись спиною к стене, и, остановив свои глаза на горевшей свече, казалось, не слушал и даже не хотел, чтобы думали, что он слушает. Прямо против Вейротера, устремив на него свои блестящие открытые глаза, в воинственной позе, оперев руки с вытянутыми наружу локтями на колени, сидел румяный Милорадович с приподнятыми усами и плечами. Он упорно молчал, глядя в лицо Вейротера, и спускал с него глаза только в то время, когда австрийский начальник штаба замолкал. В это время Милорадович значительно оглядывался на других генералов. Но по значению этого значительного взгляда нельзя было понять, был ли он согласен или несогласен, доволен или недоволен диспозицией. Ближе всех к Вейротеру сидел граф Ланжерон и с тонкой улыбкой южного французского лица, не покидавшей его во всё время чтения, глядел на свои тонкие пальцы, быстро перевертывавшие за углы золотую табакерку с портретом. В середине одного из длиннейших периодов он остановил вращательное движение табакерки, поднял голову и с неприятною учтивостью на самых концах тонких губ перебил Вейротера и хотел сказать что то; но австрийский генерал, не прерывая чтения, сердито нахмурился и замахал локтями, как бы говоря: потом, потом вы мне скажете свои мысли, теперь извольте смотреть на карту и слушать. Ланжерон поднял глаза кверху с выражением недоумения, оглянулся на Милорадовича, как бы ища объяснения, но, встретив значительный, ничего не значущий взгляд Милорадовича, грустно опустил глаза и опять принялся вертеть табакерку.
– Une lecon de geographie, [Урок из географии,] – проговорил он как бы про себя, но довольно громко, чтобы его слышали.
Пржебышевский с почтительной, но достойной учтивостью пригнул рукой ухо к Вейротеру, имея вид человека, поглощенного вниманием. Маленький ростом Дохтуров сидел прямо против Вейротера с старательным и скромным видом и, нагнувшись над разложенною картой, добросовестно изучал диспозиции и неизвестную ему местность. Он несколько раз просил Вейротера повторять нехорошо расслышанные им слова и трудные наименования деревень. Вейротер исполнял его желание, и Дохтуров записывал.
Когда чтение, продолжавшееся более часу, было кончено, Ланжерон, опять остановив табакерку и не глядя на Вейротера и ни на кого особенно, начал говорить о том, как трудно было исполнить такую диспозицию, где положение неприятеля предполагается известным, тогда как положение это может быть нам неизвестно, так как неприятель находится в движении. Возражения Ланжерона были основательны, но было очевидно, что цель этих возражений состояла преимущественно в желании дать почувствовать генералу Вейротеру, столь самоуверенно, как школьникам ученикам, читавшему свою диспозицию, что он имел дело не с одними дураками, а с людьми, которые могли и его поучить в военном деле. Когда замолк однообразный звук голоса Вейротера, Кутузов открыл глава, как мельник, который просыпается при перерыве усыпительного звука мельничных колес, прислушался к тому, что говорил Ланжерон, и, как будто говоря: «а вы всё еще про эти глупости!» поспешно закрыл глаза и еще ниже опустил голову.
Стараясь как можно язвительнее оскорбить Вейротера в его авторском военном самолюбии, Ланжерон доказывал, что Бонапарте легко может атаковать, вместо того, чтобы быть атакованным, и вследствие того сделать всю эту диспозицию совершенно бесполезною. Вейротер на все возражения отвечал твердой презрительной улыбкой, очевидно вперед приготовленной для всякого возражения, независимо от того, что бы ему ни говорили.

Виды излучений

Тепловое излучение излучение, при котором потери атомами энергии на излучение света компенсируются за счет энергии теплового движения атомов (или молекул) излучающего тела. Тепловым источником является солнце, лампа накаливания и т. д.

Электролюминесценция (от латинского люминесценция - «свечение») – разряд в газе сопровождающийся свечением. Северное сияние есть проявление электролюминесценции. Используется в трубках для рекламных надписей.

Катодолюминесценция свечение твердых тел, вызванное бомбардировкой их электронами. Благодаря ей светятся экраны электронно-лучевых трубок телевизоров.

Хемилюминесценция излучение света в некоторых химических реакциях, идущих с выделением энергии. Ее можно наблюдать на примере светлячка и других живых организмах, обладающих свойством светиться.

Фотолюминесценция свечение тел непосредственно под действием падающих на них излучений. Примером являются светящиеся краски, которыми покрывают елочные игрушки, они излучают свет после их облучения. Это явление широко используется в лампах дневного света.

Для того чтобы атом начал излучать, ему необходимо передать определенную энергию. Излучая, атом теряет полученную энергию, и для непрерывного свечения вещества необходим приток энергии к его атомам извне.

Спектры





Полосатые спектры

Полосатый спектр состоит из отдельных полос, разделенных темными промежутками. С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом.

Для наблюдения молекулярных спектров так же, как и для наблюдения линейчатых спектров, обычно используют свечение паров в пламени или свечение газового разряда.


Спектральный анализ

Спектральный анализ - совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения, акустических волн, распределения по массам и энергиям элементарных частиц и др. В зависимости от целей анализа и типов спектров выделяют несколько методов спектрального анализа. Атомный и молекулярный спектральный анализы позволяют определять элементный и молекулярный состав вещества, соответственно. В эмиссионном и абсорбционном методах состав определяется по спектрам испускания и поглощения. Масс-спектрометрический анализ осуществляется по спектрам масс атомарных или молекулярных ионов и позволяет определять изотопный состав объекта. Простейший спектральный аппарат - спектрограф.

Схема устройства призменного спектрографа


История

Тёмные линии на спектральных полосках были замечены давно (например, их отметил Волластон), но первое серьёзное исследование этих линий было предпринято только в 1814 году Йозефом Фраунгофером. В его честь эффект получил название «Фраунгоферовы линии». Фраунгофер установил стабильность положения линий, составил их таблицу (всего он насчитал 574 линии), присвоил каждой буквенно-цифровой код. Не менее важным стало его заключение, что линии не связаны ни с оптическим материалом, ни с земной атмосферой, но являются природной характеристикой солнечного света. Аналогичные линии он обнаружил у искусственных источников света, а также в спектрах Венеры и Сириуса.

Фраунгоферовы линии


Вскоре выяснялось, что одна из самых отчётливых линий всегда появляется в присутствии натрия. В 1859 году Г.Кирхгоф и Р.Бунзен после серии экспериментов заключили: каждый химический элемент имеет свой неповторимый линейчатый спектр, и по спектру небесных светил можно сделать выводы о составе их вещества. С этого момента в науке появился спектральный анализ, мощный метод дистанционного определения химического состава.

Для проверки метода в 1868 году Парижская академия наук организовала экспедицию в Индию, где предстояло полное солнечное затмение. Там учёные обнаружили: все тёмные линии в момент затмения, когда спектр излучения сменил спектр поглощения солнечной короны, стали, как и было предсказано, яркими на тёмном фоне.

Природа каждой из линий, их связь с химическими элементами выяснялись постепенно. В 1860 году Кирхгоф и Бунзен при помощи спектрального анализа открыли цезий, а 1861 году - рубидий. А гелий был открыт на Солнце на 27 лет ранее, чем на Земле (1868 и 1895 годы соответственно).

Принцип работы

Атомы каждого химического элемента имеют строго определённые резонансные частоты, в результате чего именно на этих частотах они излучают или поглощают свет. Это приводит к тому, что в спектроскопе на спектрах видны линии (тёмные или светлые) в определённых местах, характерных для каждого вещества. Интенсивность линий зависит от количества вещества и его состояния. В количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах.

Оптический спектральный анализ характеризуется относительной простотой выполнения, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества (10-30 мг), необходимого для анализа на большое число элементов. Атомарные спектры (поглощения или испускания) получают переведением вещества в парообразное состояние путём нагревания пробы до 1000-10000 °C. В качестве источников возбуждения атомов при эмиссионном анализе токопроводящих материалов применяют искру, дугу переменного тока; при этом пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя или плазму различных газов.

Спектр электромагнитных излучений

Свойства электромагнитных излучений. Электромагнитные излучения с различными длинами волн имеют довольно много различий, но все они, от радиоволн и до гамма-излучения, одной физической природы. Все виды электромагнитного излучения в большей или меньшей степени проявляют свойства интерференции, дифракции и поляризации, характерные для волн. Вместе с тем все виды электромагнитного излучения в большей или меньшей мере обнаруживают квантовые свойства.

Общим для всех электромагнитных излучений являются механизмы их возникновения: электромагнитные волны с любой длиной волны могут возникать при ускоренном движении электрических зарядов или при переходах молекул, атомов или атомных ядер из одного квантового состояния в другое. Гармонические колебания электрических зарядов сопровождаются электромагнитным излучением, имеющим частоту, равную частоте колебаний зарядов.

Радиоволны . При колебаниях, происходящих с частотами от 10 5 до 10 12 Гц, возникают электромагнитные излучения, длины волн которых лежат в интервале от нескольких километров до нескольких миллиметров. Этот участок шкалы электромагнитных излучений относится к диапазону радиоволн. Радиоволны применяются для радиосвязи, телевидения, радиолокации.

Инфракрасное излучение. Электромагнитные излучения с длиной волны, меньшей 1-2 мм, но большей 8*10 -7 м, т.е. лежащие между диапазоном радиоволн и диапазоном видимого света, называются инфракрасным излучением.


Область спектра за красным его краем впервые экспериментально была исследована в 1800г. английским астрономом Вильямом Гершелем (1738 - 1822 гг.). Гершель поместил термометр с зачерненным шариком за красный край спектра и обнаружил повышение температуры. Шарик термометра нагревался излучением, невидимым глазом. Это излучение назвали инфракрасными лучами.

Инфракрасное излучение испускают любые нагретые тела. Источниками инфракрасного излучения служат печи, батареи водяного отопления, электрические лампы накаливания.

С помощью специальных приборов инфракрасное излучение можно преобразовать в видимый свет и получать изображения нагретых предметов в полной темноте. Инфракрасное излучение применяется для сушки окрашенных изделий, стен зданий, древесины.

Видимый свет. К видимому свету (или просто свету) относятся излучения с длиной волны примерно от 8*10 -7 до 4*10 -7 м, от красного до фиолетового света.

Значение этого участка спектра электромагнитных излучений в жизни человека исключительно велико, так как почти все сведения об окружающем мире человек получает с помощью зрения. Свет является обязательным условием развития зеленых растений и, следовательно, необходимым условием для существования жизни на Земле.

Ультрафиолетовое излучение . В 1801 году немецкий физик Иоганн Риттер (1776 - 1810), исследуя спектр, открыл, что за

его фиолетовым краем имеется область, создаваемая невидимыми глазом лучами. Эти лучи воздействуют на некоторые химические соединения. Под действием этих невидимых лучей происходит разложения хлорида серебра, свечение кристаллов сульфида цинка и некоторых других кристаллов.

Невидимое глазом электромагнитное излучение с длиной волны меньше, чем у фиолетового света, называют ультрафиолетовым излучением. К ультрафиолетовому излучению относят электромагнитные излучения в диапазоне длин волн от 4*10 -7 до 1*10 -8 м.

Ультрафиолетовое излучение способно убивать болезнетворных бактерий, поэтому его широко применяют в медицине. Ультрафиолетовое излучение в составе солнечного света вызывает биологические процессы, приводящие к потемнению кожи человека - загару.

В качестве источников ультрафиолетового излучения в медицине используются газоразрядные лампы. Трубки таких ламп изготавливают из кварца, прозрачного для ультрафиолетовых лучей; поэтому эти лампы называют кварцевыми лампами.

Рентгеновские лучи. Если в вакуумной трубке между нагретым катодом, испускающим электрон, и анодом приложить постоянное напряжение в несколько десятков тысяч вольт, то электроны будут сначала разгоняться электрическим полем, а затем резко тормозиться в веществе анода при взаимодействии с его атомами. При торможении быстрых электронов в веществе или при переходах электронов на внутренних оболочках атомов возникают электромагнитные волны с длиной волны меньше, чем у ультрафиолетового излучения. Это излучение было открыто в 1895 году немецким физиком Вильгельмом Рентгеном (1845-1923). Электромагнитные излучения в диапазоне длин волн от 10 -14 до 10 -7 м называются рентгеновскими лучами.


Рентгеновские лучи невидимы глазом. Они проходят без существенного поглощения через значительные слои вещества, непрозрачного для видимого света. Обнаруживают рентгеновские лучи по их способности вызывать определенное свечение некоторых кристаллов и действовать на фотопленку.

Способность рентгеновских лучей проникать через толстые слои вещества используется для диагностики заболеваний внутренних органов человека. В технике рентгеновские лучи применяются для контроля внутренней структуры различных изделий, сварных швов. Рентгеновское излучение обладает сильным биологическим действием и применяется для лечения некоторых заболеваний. Гамма-излучение. Гамма-излучением называют электромагнитное излучение, испускаемое возбужденными атомными ядрами и возникающее при взаимодействии элементарных частиц.

Гамма-излучение - самое коротковолновое электромагнитное излучение (<10 -10 м). Его особенностью являются ярко выраженные корпускулярные свойства. Поэтому гамма-излучение обычно рассматривают как поток частиц - гамма-квантов. В области длин волн от 10 -10 до 10 -14 и диапазоны рентгеновского и гамма-излучений перекрываются, в этой области рентгеновские лучи и гамма-кванты по своей природе тождественны и отличаются лишь происхождением.


Электромагнитный спектр - ряд форм электромагнитного излучения, расположенных по порядку величин их частот или длин волн (рисунок 4).

Рисунок 4 - Спектр электромагнитных излучений

Электромагнитное излучение (электромагнитные волны) -- распространяющееся в пространстве возмущение электрических и магнитных полей.

Диапазоны электромагнитного излучения

  • 1 Радиоволны
  • 2. Инфракрасное излучение (Тепловое)
  • 3. Видимое излучение (Оптическое)
  • 4. Ультрафиолетовое излучение
  • 5. Жёсткое излучение

Основными характеристиками электромагнитного излучения принято считать частоту и длину волны. Длина волны зависит от скорости распространения излучения. Скорость распространения электромагнитного излучения в вакууме равна скорости света, в других средах эта скорость меньше.

Особенностями электромагнитных волн c точки зрения теории колебаний и понятий электродинамики являются наличие трёх взаимноперпендикулярных векторов: волнового вектора, вектора напряжённости электрического поля E и вектора напряжённости магнитного поля H.

Электромагнитные волны -- это поперечные волны (волны сдвига), в которых вектора напряжённостей электрического и магнитного полей колеблются перпендикулярно направлению распространения волны, но они существенно отличаются от волн на воде и от звука тем, что их можно передать от источника к приёмнику в том, числе и через вакуум.

Общим для всех видов излучений является скорость их распространения в вакууме, равная 300 000 000 метров в секунду.

Электромагнитные излучения характеризуются частотой колебаний, показывающих число полных циклов колебаний в секунду, или длиной волны, т.е. расстоянием, на которое распространяется излучение за время одного колебания (за один период колебаний).

Частота колебаний (f), длина волны (л) и скорость распространения излучения (с) связаны между собой соотношением:

Электромагнитное излучение принято делить по частотным диапазонам. Между диапазонами нет резких переходов, они иногда перекрываются, а границы между ними условны. Поскольку скорость распространения излучения постоянна, то частота его колебаний жёстко связана с длиной волны в вакууме.

Ультракороткие радиоволны принято разделять на метровые, дециметровые, сантиметровые, миллиметровые и субмиллиметровые или микрометровые. Волны с длиной л длиной менее 1 м (частота более 300 МГц) принято также называть микроволнами или волнами сверхвысоких частот (СВЧ).

Инфракрасное излучение -- электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны 0,74 мкм) и микроволновым излучением (1-2 мм).

Инфракрасное излучение занимает самую большую часть оптического спектра. Инфракрасное излучение также называют «тепловым» излучением, так как все тела, твёрдые и жидкие, нагретые до определённой температуры, излучают энергию в инфракрасном спектре. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения. Спектр излучения абсолютно чёрного тела при относительно невысоких (до нескольких тысяч Кельвинов) температурах лежит в основном именно в этом диапазоне.

Видимый свет представляет собой сочетание семи основных цветов: красного, оранжевого, желтого, зеленого, голубого, синего и фиолетового. Перед красными областями спектра в оптическом диапазоне находятся инфракрасные, а за фиолетовыми - ультрафиолетовые. Но не инфракрасные, не ультрафиолетовые не видимы для человеческого глаза.

Видимое, инфракрасное и ультрафиолетовое излучение составляет так называемую оптическую область спектра в широком смысле этого слова. Самым известным источником оптического излучения является Солнце. Его поверхность (фотосфера) нагрета до температуры 6000 градусов и светит ярко-жёлтым светом. Этот участок спектра электромагнитного излучения непосредственно воспринимается нашими органами чувств.

Излучение оптического диапазона возникает при нагревании тел (инфракрасное излучение называют также тепловым) из-за теплового движения атомов и молекул. Чем сильнее нагрето тело, тем выше частота его излучения. При определённом нагревании тело начинает светиться в видимом диапазоне (каление), сначала красным цветом, потом жёлтым и так далее. И наоборот, излучение оптического спектра оказывает на тела тепловое воздействие.

Кроме теплового излучения источником и приёмником оптического излучения могут служить химические и биологические реакции. Одна из известнейших химических реакций, являющихся приёмником оптического излучения, используется в фотографии.

Жёсткие лучи. Границы областей рентгеновского и гамма-излучения могут быть определены лишь весьма условно. Для общей ориентировки можно принять, что энергия рентгеновских квантов лежит в пределах 20 эВ -- 0,1 МэВ, а энергия гамма-квантов -- больше 0,1 МэВ.

Ультрафиолетовое излучение (ультрафиолет, УФ, UV) -- электромагнитное излучение, занимающее диапазон между видимым и рентгеновским излучением (380 -- 10 нм, 7,9Ч1014 -- 3Ч1016 Гц). Диапазон условно делят на ближний (380--200 нм) и дальний, или вакуумный (200--10 нм) ультрафиолет, последний так назван, поскольку интенсивно поглощается атмосферой и исследуется только вакуумными приборами.

Длинноволновое ультрафиолетовое излучение обладает сравнительно небольшой фотобиологической активностью, но способно вызвать пигментацию кожи человека, оказывает положительное влияние на организм. Излучение этого поддиапазона способно вызывать свечение некоторых веществ, поэтому его используют дли люминесцентного анализа химического состава продуктов.

Средневолновое ультрафиолетовое излучение оказывает тонизирующее и терапевтическое действие на живые организмы. Оно способно вызывать эритему и загар, превращать в организме жипотных необходимый для роста и развития витамин D в усвояемую форму, обладает мощным антирахитным действием. Излучение этого поддиапазона вредны для большинства растений.

Коротковолновое ультрафиолетовое излечение отличается бактерицидным действием, поэтому его широко используют для обеззараживания воды и воздуха, дезинфекции и стерилизации различного инвентаря и посуды.

Основной природный источник ультрафиолетового излучения на Земле Солнце. Соотношение интенсивности излучения УФ-А и УФ-Б, общее количество ультрафиолетовых лучей, достигающих поверхности Земли, зависит от различных факторов.

Искусственные источники ультрафиолетового излучения многообразны. Сегодня искусственные источники ультрафиолетового излучения широко применяются в медицине, профилактических, санитарных и гигиенических учреждениях, сельском хозяйстве и т.д. предоставляются существенно большие возможности, чем при использовании естественного ультрафиолетового излучения излучения .

Физик Рентген открыл еще более коротковолновое излучение. Недолго думая, эти лучи назвали в честь самого Рентгена. Обладая хорошей проницающей способностью, рентгеновское излучение нашло применение в медицине и кристаллографии. Как Вы, наверное, наслышаны, рентгеновские лучи опять-таки вредны живым организмам. И атмосфера Земли из-за их проницательности, упомянутой только что, им не помеха. Нас выручает магнитосфера Земли. Она задерживает многие опасные излучения космоса. Длины волн лучей Рентгена заключены между 0,1 А и 100 А.

Самые короткие волны (меньше 0,1 А) у гамма-лучей. Это самый опасный вид радиоактивности, самое опасное электромагнитное излучение. Энергия фотонов гамма-лучей очень высока, и их излучение происходит при некоторых процессах внутри ядер атомов. Примером такого процесса может быть аннигиляция - взаимоуничтожение частицы и античастицы с превращением их массы в энергию. Регистрируемые, время от времени, таинственные гамма-вспышки на небе пока никак не объяснены астрономами. Ясно, что энергия явления, производящего вспышки, просто грандиозна. По некоторым подсчетам, на секунды, которые длится такая вспышка, она излучает больше энергии, чем вся остальная Вселенная. Гамма-излучение не пропускается к Земле ее магнитосферой .