Микро биология. Лекции по микробиологии

Микробиология – наука, предметом изучения которой являются микроскопические существа, называемые микроорганизмами, их биологические признаки, систематика, экология, взаимоотношения с другими организмами.

Микроорганизмы – наиболее древняя форма организации жизни на Земле. По количеству они представляют собой самую значительную и самую разнообразную часть организмов, населяющих биосферу.

К микроорганизмам относят:

1) бактерии;

2) вирусы;

4) простейшие;

5) микроводоросли.

Общий признак микроорганизмов – микроскопические размеры; отличаются они строением, происхождением, физиологией.

Бактерии – одноклеточные микроорганизмы растительного происхождения, лишенные хлорофилла и не имеющие ядра.

Грибы – одноклеточные и многоклеточные микроорганизмы растительного происхождения, лишенные хлорофилла, но имеющие черты животной клетки, эукариоты.

Вирусы – это уникальные микроорганизмы, не имеющие клеточной структурной организации.

Основные разделы микробиологии: общая, техническая, сельскохозяйственная, ветеринарная, медицинская, санитарная.

Общая микробиология изучает наиболее общие закономерности, свойственные каждой группе перечисленных микроорганизмов: структуру, метаболизм, генетику, экологию и т. д.

Основной задачей технической микробиологии является разработка биотехнологии синтеза микроорганизмами биологически активных веществ: белков, ферментов, витаминов, спиртов, органических веществ, антибиотиков и др.

Сельскохозяйственная микробиология занимается изучением микроорганизмов, которые участвуют в круговороте веществ, используются для приготовления удобрений, вызывают заболевания растений и др.

Ветеринарная микробиология изучает возбудителей заболеваний животных, разрабатывает методы их биологической диагностики, специфической профилактики и этиотропного лечения, направленного на уничтожение микробов-возбудителей в организме больного животного.

Предметом изучения медицинской микробиологии являются болезнетворные (патогенные) и условно-патогенные для человека микроорганизмы, а также разработка методов микробиологической диагностики, специфической профилактики и этиотропного лечения вызываемых ими инфекционных заболеваний.

Разделом медицинской микробиологии является иммунология, которая занимается изучением специфических механизмов защиты организмов людей и животных от болезнетворных микроорганизмов.

Предметом изучения санитарной микробиологии являются санитарно-микробиологическое состояние объектов окружающей среды и пищевых продуктов, разработка санитарных нормативов.

2. Систематика и номенклатура микроорганизмов

Основной таксономической единицей систематики бактерий является вид.

Вид – это эволюционно сложившаяся совокупность особей, имеющая единый генотип, который в стандартных условиях проявляется сходными морфологическими, физиологическими, биохимическими и другими признаками.

Вид не является конечной единицей систематики. Внутри вида выделяют варианты микроорганизмов, отличающиеся отдельными признаками. Так, различают:

1) серовары (по антигенной структуре);

2) хемовары (по чувствительности к химическим веществам);

3) фаговары (по чувствительности к фагам);

4) ферментовары;

5) бактериоциновары;

6) бактериоциногеновары.

Бактериоцины – вещества, продуцируемые бактериями и губительно действующие на другие бактерии. По типу продуцируемого бактериоцина различают бактериоциновары, а по чувствительности – бактерициногеновары.

Для видовой идентификации бактерий необходимо знать следующие их свойства:

1) морфологические (форму и структуру бактериальной клетки);

2) тинкториальные (способность окрашиваться различными красителями);

3) культуральные (характер роста на питательной среде);

4) биохимические (способность утилизировать различные субстраты);

5) антигенные.

Виды, связанные генетическим родством, объединяют в роды, роды – в семейства, семейства – в порядки. Более высокими таксономическими категориями являются классы, отделы, подцарства и царства.

Согласно современной систематике патогенные микроорганизмы относятся к царству прокариот, патогенные простейшие и грибы – к царству эукариот, вирусы объединяются в отдельное царство – Vira.

Все прокариоты, имеющие единый тип организации клеток, объединены в один отдел – Bacteria. Однако отдельные их группы отличаются структурными и физиологическими особенностями. На этом основании выделяют:

1) собственно бактерии;

2) актиномицеты;

3) спирохеты;

4) риккетсии;

5) хламидии;

6) микоплазмы.

В настоящее время для систематики микроорганизмов используется ряд таксономических систем.

1. Нумерическая таксономия. Признает равноценность всех признаков. Для ее применения необходимо иметь информацию о многих десятках признаков. Видовая принадлежность устанавливается по числу совпадающих признаков.

2. Серотаксономия. Изучает антигены бактерий с помощью реакций с иммунными сыворотками. Наиболее часто применяется в медицинской бактериологии. Недостаток – бактерии не всегда cодержат видоспецифический антиген.

3. Хемотакcономия. Применяются физико-химические методы, с помощью которых исследуется липидный, аминокислотный состав микробной клетки и определенных ее компонентов.

4. Генная систематика. Основана на способности бактерий с гомологичными ДНК к трансформации, трансдукции и конъюгации, на анализе внехромосомных факторов наследственности – плазмид, транспозонов, фагов.

Совокупность основных биологических свойств бактерий можно определить только у чистой культуры – это бактерии одного вида, выращенные на питательной среде.

3. Питательные среды и методы выделения чистых культур

Для культивирования бактерий используют питательные среды, к которым предъявляется ряд требований.

1. Питательность. Бактерии должны содержать все необходимые питательные вещества.

2. Изотоничность. Бактерии должны содержать набор солей для поддержания осмотического давления, определенную концентрацию хлорида натрия.

3. Оптимальный рН (кислотность) среды. Кислотность среды обеспечивает функционирование ферментов бактерий; для большинства бактерий составляет 7,2–7,6.

4. Оптимальный электронный потенциал, свидетельствующий о содержании в среде растворенного кислорода. Он должен быть высоким для аэробов и низким для анаэробов.

5. Прозрачность (чтобы был виден рост бактерий, особенно для жидких сред).

6. Стерильность (чтобы не было других бактерий).

Классификация питательных сред

1. По происхождению:

1) естественные (молоко, желатин, картофель и др.);

2) искусственные – среды, приготовленные из специально подготовленных природных компонентов (пептона, аминопептида, дрожжевого экстракта и т. п.);

3) синтетические – среды известного состава, приготовленные из химически чистых неорганических и органических соединений (солей, аминокислот, углеводов и т. д.).

2. По составу:

1) простые – мясопептонный агар, мясопептонный бульон, агар Хоттингера и др.;

2) сложные – это простые с добавлением дополнительного питательного компонента (кровяного, шоколадного агара): сахарный бульон, желчный бульон, сывороточный агар, желточно-солевой агар, среда Китта-Тароцци, среда Вильсона-Блера и др.

3. По консистенции:

1) твердые (содержат 3–5 % агар-агара);

2) полужидкие (0,15-0,7 % агар-агара);

3) жидкие (не содержат агар-агара).

4. По назначению:

1) общего назначения – для культивирования большинства бактерий (мясопептонный агар, мясопептонный бульон, кровяной агар);

2) специального назначения:

а) элективные – среды, на которых растут бактерии только одного вида (рода), а род других подавляется (щелочной бульон, 1 %-ная пептонная вода, желточно-солевой агар, казеиново-угольный агар и др.);

б) дифференциально-диагностические – среды, на которых рост одних видов бактерий отличается от роста других видов по тем или иным свойствам, чаще биохимическим (среда Эндо, Левина, Гиса, Плоскирева и др.);

в) среды обогащения – среды, в которых происходит размножение и накопление бактерий-возбудителей какого-либо рода или вида, т. е. обогащение ими исследуемого материала (селенитовый бульон).

Для получения чистой культуры необходимо владеть методами выделения чистых культур.

Методы выделения чистых культур.

1. Механическое разобщение на поверхности плотной питательной среды (метод штриха обжигом петли, метод разведений в агаре, распределение по поверхности твердой питательной среды шпателем, метод Дригальского).

2. Использование элективных питательных сред.

3. Создание условий, благоприятных для развития одного вида (рода) бактерий (среды обогащения).

Чистую культуру получают в виде колоний – это видимое невооруженным глазом, изолированное скопление бактерий на твердой питательной среде, представляющее собой, как правило, потомство одной клетки.

Микробиология как наука. Предмет и задачи микробиологии.

По эпидпоказаниям живой аттенуированной туляремийной вакциной.

Специфическое лечение – не разработано.

Микробиология как наука. Предмет и задачи микробиологии.

Микробиология (от греч. micros – малый, bios – жизнь, logos – учение) – наука о мельчайших невидимых невооруженным взглядом живых объектах – микроорганизмах, закономерностях их развития и тех изменениях, которые они вызывают в среде обитания и в окружающей среде.

Термин «микроорганизмы» ввел французский ученый Седдило в конце XIX века.

Микроорганизмы – наиболее древняя форма организации жизни на Земле, они появились задолго до возникновения растений и животных – примерно 3-4 млрд. лет тому назад. В настоящее время они представляют собой по количеству самую значительную и самую разнообразную часть организмов, населяющих биосферу Земли. Они находятся в воздухе, воде, почве, пище, на окружающих нас предметах, на поверхности и внутри нашего тела и других организмов животного и растительного мира, и даже в космосе.

Все микроорганизмы подразделяются на:

Ø патогенные (от греч. patos – болезнь) – болезнетворные, т.е. способные вызвать инфекционное заболевание;

Ø условно-патогенные – вызывают заболевания при определенных условиях;

Ø сапрофитные (от греч. sapros – гнилой и phyton – растения) – непатогенные/неболезнетворные, не вызывают заболевания у человека.

Название «микробиология» предложено французским ученым Дюкло . Микробиология зародилась в пределах биологии. Затем она постепенно дифференцировалась на самостоятельные научные дисциплины :

Ø частная;

Ø медицинская;

Ø клиническая (изучает микроорганизмы, вызывающие заболевания в ЛПУ);

Ø санитарная;

Ø ветеринарная (изучает микроорганизмы, патогенные для животных);

Ø сельскохозяйственная (изучает микроорганизмы – вредителей растений);

Ø морская (изучает микроорганизмы – обитателей морей и океанов);

Ø космическая (изучает микроорганизмы, населяющих космическое пространство);

Ø техническая микробиология (использует микроорганизмы для получения разнообразных продуктов, необходимых для жизнедеятельности людей – вакцины, диагностикумы, ферменты и т.д.).

Предмет изучении общей микробиологии – общие закономерности, биологические свойства микроорганизмов вне зависимости от их видовой принадлежности: морфологию, физиологию, биохимию, генетику, экологию, эволюцию и другие признаки микроорганизмов.

Предмет изучении частной микробиологии – особенности биологических свойств микроорганизмов, характерных определенному виду.

Предмет изучения медицинской микробиологии патогенные и условно-патогенные микроорганизмы , процессы их взаимодействия с макроорганизмом.

Задачи медицинской микробиологии:

Ø микробиологическая диагностика инфекционных заболеваний;

Ø разработка методов специфической профилактики;

Ø разработка этиотропного лечения инфекционных болезней.

В составе медицинской микробиологии выделяю следующие разделы :

Ø бактериология (объект изучения – бактерии);

Ø вирусология (объект изучения – вирусы);

Ø микология (объект изучения – грибы);

Ø прототозоология (объект изучения – простейшие);

Ø альгология (объект изучения – микроскопичские водоросли);

Ø иммунология (объект изучения – защитных реакции организма) и др.

Предмет изучения санитарной микробиологии , тесно связанной с медицинской микробиологией, – санитарно-микробиологическое состояние объектов окружающей среды и пищевых продуктов , разработка санитарно-микробиологических нормативови методов индикации патогенных микроорганизмов в различных объектах окружающей среды.

Исторические этапы развития микробиологии.

Выделяют 5 исторических периода развития и становления микробиологии как науки.

I. Эвристический период .

Многие тысячелетия человечество пользовалось плодами жизнедеятельности микроорганизмов, не подозревая об их существовании. Хотя мысль о наличии в природе невидимых живых существ возникала у многих исследователей. Гиппократ , Парацельс (VI век до н.э.) высказывали предположение о том, что «миазмы», обитающие в болотах, вызывают различные болезни у человека, попадая в его организм через рот. В наиболее законченной форме идею сформулировал Джироламо Фракосторо в труде «О контагиях, контагиозных болезнях и лечении» (1546 г.): заражение человека может происходить тремя путями – при непосредственном соприкосновении, опосредованно (через предмет) и на расстоянии, но при обязательном участии контагий («зародышей болезней»). Однако это были гипотезы, доказательств которых у них не было.

II. Описательный период (морфологический) – охватывает вторую половину XVIII века и продолжается до середины XIX века . Связан с созданием микроскопа и открытием микроскопических существ, невидимых глазом человека. Первый микроскоп был создан в 1590 г. Гансом и Захарием Янсенами , но у него было увеличение всего лишь в 32 раза. Голландский натуралист Антоний Левенгук (1632-1723 гг.) сконструировал микроскоп с увеличением в 160-300 раз, при помощи которого ему удалось обнаружить мельчайших «живых зверьков» (анималькусов ) в дождевой воде, зубном налете и других материалах. Зарисованные им формы микроорганизмов были удивительно правдивы.

В этот же период в 1771 г. выдающийся русский врач Данило Самойлович (1744-1805 гг.) в опыте самозаражения гноем больных чумой доказал роль микроорганизмов в этиологии чумы и возможность предохранения людей от чумы с помощью прививок. Д.С. Самойлович был убежденным сторонником живой природы возбудителя чумы и за 100 с лишним лет до открытия этого микроба пытался обнаружить его. Лишь несовершенство микроскопов того времени помешало ему сделать это. Он предположил возможность искусственного создания невосприимчивости к инфекционному агенту и даже предпринял попытку создания противочумной вакцины. Эти исследования предшествовали работам Э. Дженнера. Работы Д.С. Самойловича внесли большой вклад в разработку мероприятий по борьбе с чумой.

В 1796 г. Эдвард Дженнер (1749-1823 гг.) создал и успешно применил вакцину для профилактики натуральной оспы, взяв материал от доярки, больной коровьей оспой.

III. Физиологический период (Пастеровский) (вторая половина XIX века) – «золотой век» микробиологии. С момента обнаружения микроорганизмов, возник вопрос не только об их роли в патологии человека, но и об их устройстве, биологических свойствах, процессах жизнедеятельности, экологии и т.д. Поэтому с середины XIX века началось интенсивное изучение физиологии бактерий.



Л. Пастер (1822-1895 гг.) – основатель французской школы микробиологии (химик по образованию, талантливый экспериментатор, сделал ряд фундаментальных открытий во многих областях науки, в том числе и в микробиологии), его основные достижения:

Ø открытие бактериальной природы брожения и гниения при изучение болезней вина и пива;

Ø предложение мягкого метода стерилизации – пастеризации;

Ø доказательство невозможности самопроизвольного зарождения жизни (если стерильный бульон оставить в открытой колбе, то он прорастет, но если стерильный бульон поместить в колбу, сообщающуюся с воздухом через спиральную трубку, то бульон не прорастет, т.к бактерии осядут на изогнутых частях трубки);

Ø создание основ вакцинного дела;

Ø разработка и получение вакцины против бешенства, сибирской язвы у животных и куриной холеры;

Ø открытие возбудителей сибирской язвы (Bacillus anthracis), родовой горячки (стрептококки), фурункулеза (стафилококки).

Р. Кох (1843-1910 гг.) – основатель школы немецких микробиологов, его достижения:

Ø внедрение в практику микробиологии анилиновых красителей, иммерсионной системы, плотных питательных сред;

Ø открытие возбудителей туберкулеза и холеры у человека;

Ø сформулирована триаду критериев, по которым можно было установить связь инфекционного заболевания с определенным микроорганизмом (триада Генле-Коха – эти принципы до Коха выдвигал Генле, а Кох сформулировал и развил):

1) микроб, предполагаемый в качестве возбудителя болезни, всегда должен обнаруживаться только при данном заболевании, не выделяясь при других болезнях и от здоровых людей;

2) данный микроб должен быть выделен в чистой культуре;

3) чистая культура этого микроба должна вызывать у экспериментального животного заболевание с клинической и паталогоанатомической картиной, свойственной заболеванию человека.

Сейчас эта триада имеет относительное значение, установление роли микроорганизма в развитии инфекционного заболевания не всегда укладывается в рамки триады.

IV. Иммунологический период (конец XIX – начало XX веков), связан с работами И.И. Мечникова и П. Эрлиха.

И.И. Мечников (1845-1916 гг.) – один из основоположников иммунологии, описал явление фагоцитоза (клеточная теория иммунитета).

Пауль Эрлих (1854-1915 гг.) сформулировал теорию гуморального иммунитета, объяснив происхождение антител и их взаимодействие с антигенами.

В 1908 г. И.И. Мечникову и П. Эрлиху была присуждена Нобелевская премия за работы в области иммунологии.

Конец XIXознаменовался эпохальным открытием царства вирусов.

Д.И. Ивановский (1864-1920 гг.) – первооткрыватель вирусов. Будучи сотрудником кафедры ботаники Петербургского университета в 1892 г. при изучении мозаичной болезни табака пришел он к выводу, что заболевание вызвано фильтрующимся агентом, впоследствии названным вирусом.

1928 г. – А. Флеминг , изучая явления микробного антагонизма, получил нестабильный пенициллин.

А в 1940 г. – Г. Флори и Э. Чейн получили стабильную форму пенициллина.

Отечественный пенициллин был разработан в 40-е годы прошлого столетия ленинградским микробиологом З.В. Ермольевой.

V. Современный период (начался в середине XX века) связан с научно-технической революцией в естествознании.

1944 г. – О. Эвери, К. Мак-Леод, К. Мак-Карти доказали роль ДНК в передаче наследственной информации.

1953 г. – Д. Уотсон и Ф. Крик расшифровали структуру ДНК.

В 60-70 гг. появились работы по генетике бактерий, становление генной инженерии.

1958 г. – П. Медавар и Гашек описали явление иммунологической толерантности. 1959 г. – Р. Портер и Д. Эдельман смоделировали молекулу иммуноглобулина.

1982 г. – Р. Галло, 1883 г. Л. Монтанье открыли ВИЧ.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1. Микрофлора сырья

Использованная литература

Введение

Человечество давно научилось использовать микробиологические процессы в практической деятельности. Многие микробиологические процессы применяются в пищевой промышленности. Например, в основе технологического приготовления хлеба лежат биохимические процессы спиртового и молочнокислого брожения, возбудителями которых являются дрожжи и молочнокислые бактерии. Эти микроорганизмы обуславливают необходимую степень разрыхления и кислотность полуфабрикатов, вкус и аромат хлеба, способствуют улучшению качества изделий, повышению их пищевой ценности.

Так как в хлебопечении и производстве мучных кондитерских изделий сырье не стерилизуют, получение и использование чистых культур имеет важное значение, поскольку они обеспечивают нормальное брожение полуфабрикатов и выпуск готовых изделий стандартного качества. Кроме того, тесто готовят в нестерильных условиях, и в полуфабрикатах кроме полезных микроорганизмов развиваются также и вредные. Для контроля микробиологического состояния производства хлебобулочных и мучных кондитерских изделий на предприятиях созданы микробиологические лаборатории, которые занимаются поддерживанием и возобновлением заквасок и чистых культур и микробиологическим контролем питательных сред, полуфабрикатов и готовой продукции.

Технически чистыми называют культуры, с незначительной примесью других видов микроорганизмов. В хлебопекарной промышленности к чистым культурам относятся прессованные и сушеные дрожжи. Смешанными называют культуры, состоящие из клеток микроорганизмов двух и более видов (например, микроорганизмы заквасок и теста, содержащие дрожжи и молочнокислые бактерии).

1. Микрофлора сырья

В хлебопекарном производстве и при производстве мучных кондитерских изделий в качестве сырья применяют муку, дрожжи, сахар, сахаристые вещества, жиры, яйца и яйцепродукты, молоко и молочные продукты, фрукты и ягоды, вкусовые ароматические и другие вещества. Сырье как растительного, так и животного происхождения содержит большое количество питательных веществ и, таким образом, является благоприятной средой для развития микроорганизмов. Поэтому на пищевых предприятиях следует уделять большое внимание микробиологическому контролю поступающего на производство сырья, а также соблюдать санитарные требования при его хранении, переработке и транспортировке.

Мука. При размоле в муку попадают все микроорганизмы, находящиеся на поверхности зерна, в результате их жизнедеятельности мука при хранении может подвергаться микробиологической порче.

Микробиологическая порча муки происходит при увеличении содержания в ней влаги свыше 15% в результате неправильного хранения. Мука прокисает в результате активизации жизнедеятельности молочнокислых бактерий, которые сбраживают сахара муки с образованием кислот. При хранении муки на складах при повышенной относительной влажности воздуха происходит плесневение под действием микроскопических грибов.

Прогоркание муки является результатом окисления жиров муки кислородом воздуха и ферментативного гидролиза жиров. При хранении муки влажностью более 20% происходит самосогревание муки, которое сопровождается размножением спорообразующих бактерий, вызывающих тягучую болезнь хлеба. Такая мука в хлебопечении и в производстве мучных кондитерских изделий не используется.

Крахмал. Сырой картофельный крахмал является скоропортящимся продуктом, так как имеет высокую влажность (около 50%). При неблагоприятных условиях хранения в крахмале интенсивно размножаются бактерии, что приводит к микробиологической порче крахмала - его закисанию, изменению цвета. Сухой крахмал, имеющий влажность 20%, не подвергается микробиологической порче. Если крахмал хранить при высокой относительной влажности воздуха, то вследствие высокой гигроскопичности (способности поглощать влагу) он может увлажняться; образуя комки, развиваются микроорганизмы и появляется гнилостный запах.

Дрожжи. В хлебопечении используются прессованные, сушеные, жидкие дрожжи и дрожжевое молоко. В прессованных дрожжах могут содержаться посторонние микроорганизмы, присутствие которых нежелательно, так как они снижают качество дрожжей. К ним относятся дикие дрожжи из рода Candida (Кандида), которые снижают подъемную силу дрожжей, а также гнилостные и другие бактерии, ухудшающие стойкость при хранении.

Поваренная соль. Соль может быть обсеменена споровыми формами микроорганизмов. Она имеет низкую влажность, которая меньше той, при которой могут жить микроорганизмы. Поэтому соль не подвергается микробиологической порче.

Сахар и сахаристые вещества. Сахар является основным сырьем, входящим в рецептуру мучных кондитерских изделий, а также в сдобные и многие хлебобулочные сорта. Влажность сахара не более 0,15%, поэтому при правильном хранении он не подвергается микробиологической порче.

При нарушении санитарных требований и правил хранения в сахаре могут развиваться дрожжи, споры бактерий и грибов, так как при хранении сахара во влажной среде на поверхности его кристаллов конденсируется влага, в которой растворяется сахар. В образовавшейся пленке сахарного раствора развиваются микроорганизмы, а выделяемые ими кислоты разлагают сахарозу, что резко ухудшает вкус сахара.

Микробиологической порче подвергаются иногда патока и мёд. Они содержат большое количество сухих веществ, в том числе сахара. Микроорганизмы развиваются в том случае, если в патоку и мёд попадает вода. В результате происходит брожение и закисание. Для прекращения брожения патоку и мёд рекомендуется нагреть до 75-85°С.

Молоко и молочные продукты. Молоко и сливки являются благоприятной средой для жизнедеятельности многих микроорганизмов. При неправильном хранении наблюдаются различные виды микробиологической порчи этих продуктов. К микроорганизмам вызывающим порчу молока, относятся молочнокислые, гнилостные, маслянокислые, слизеобразующие, пигментобразующие бактерии, дрожжи, бактерии кишечной группы.

Молочнокислые бактерии сбраживают молочный сахар с образованием молочной кислоты. Избыток молочной кислоты вызывает скисание молока; вкус молока при этом приятный, кисловатый. Маслянокислые бактерии вызывают в молоке брожение, в результате которого молоко скисает и приобретает неприятный прогорклый вкус и запах. Гнилостные бактерии, развиваясь в молоке, вызывают прогоркание и ухудшают вкус, запах становится неприятный, гнилостный. Слизеобразующие бактерии вызывают тягучесть молока. Пигментобразующие бактерии вызывают окрашивание молока (покраснение, посинение). Бактерии кишечной группы вызывают свертывание молока с образованием СО2.

Молоко и молочные продукты могут стать источником пищевых отравлений, если в них попадает золотистый стафилококк. Молоко загрязняется стафилококком при доении коров, особенно когда коровы больны маститом. При размножении стафилококка в молоке не наблюдается признаков порчи. Для предотвращения порчи молока его хранят в холодильнике при температуре не выше 8°С в течение 20 ч или пастеризуют. Для длительного хранения из молока готовят молочные консервы - это сгущённое молоко без сахара или с сахаром и сухое молоко.

Сгущённое молоко без сахара при правильном ведении технологического процесса приготовления и соответствующих условиях может храниться в течение нескольких месяцев. При нарушении этих требований возникает микробиологическая порча сгущённого молока. В результате жизнедеятельности кислотообразующих бактерий происходит его свертывании, а при развитии гнилостных и маслянокислых - вздутие консервных банок, под действием образующих газов (бомбаж)

В сгущённом молоке с сахаром концентрация сухого вещества повышенная. Сахар играет роль консервируемого вещества и препятствует развитию микроорганизмов. В сгущённое молоко микроорганизмы попадают из исходного сырья - молока и сахара. При хранении сгущённое молоко с сахаром иногда подвергается микробиологической порче. Оно может заплесневеть, загустеть в результате развития микрококков. Микроскопические грибы вызывают комкование, дрожжи - бомбаж.

Творог и сметана подвергаются микробиологической порче в результате жизнедеятельности различных микроорганизмов. Так, дрожжи вызывают их брожение, молочнокислые бактерии - прокисание, гнилостные бактерии - ослизнение, горький вкус. Творог и сметану необходимо хранить в холодильнике при температуре 2-4°С.

Жиры и масла. Сливочное масло и маргарин обсеменены большим количеством различных микроорганизмов. Главным образом, это молочнокислые бактерии: встречаются гнилостные, спорообразующие и флуоресцирующие бактерии, дрожжеподобные грибы. При неправильном хранении они вызывают различные виды порчи масла. Например, при размножении молочнокислых бактерий наблюдается прокисание, гнилостные бактерии придают горький вкус, спорообразующие - рыбный вкус и запах, дрожжеподобные грибы вызывают прогоркание, затхлый вкус и запах, микроскопические грибы - плесневение. Масло, подвергнутое микробиологической порче, в производство не допускается. Хранят масло в холодильнике при температуре минус 8-10°С.

Топленое масло имеет влажность не более 1%, растительное - 0,3%, поэтому они не подвергаются микробиологической порче. Но при длительном хранении растительного масла образуется осадок, который является хорошей питательной средой для ряда микроорганизмов, продукты жизнедеятельности которых ухудшают качество растительного масла..

Яйца и яйцепродукты. В хлебопекарном производстве и в производстве мучных кондитерских изделий применяют яйца куриные (реже - гусиные и утиные), меланж, яичный порошок. Яйца являются хорошей питательной средой для развития микроорганизмов, так как они имеют повышенную влажность (73%) и содержат много белков, жиров и других веществ. Внутри яйца условно стерильны, и микроорганизмы могут проникать в них только при повреждении скорлупы и оболочки. Скорлупа яиц чаще всего обсеменяется во время сбора, хранения и транспортирования. Заражение может произойти и при формировании яйца в организме птицы, если она больна, в этом случае в яйцах можно обнаружить сальмонеллы, стафилококки.

Гнилостные бактерии, микроскопические грибы, бактерии кишечной группы и др. Если микроорганизмы находятся на поверхности скорлупы, то при соблюдении условий хранения микрофлора не развивается. При повышении температуры и влажности воздуха микроорганизмы становятся, более активны, проникают внутрь яиц, размножаются и вызывают гнилостное разложение. Образующиеся при этом продукты придают яйцу лежалый или тухлый запах. Утиные и гусиные яйца могут быть заражены сальмонеллами, так как этих микроорганизмов много в кишечнике водоплавающей птицы. Утиные и гусиные яйца являются причиной пищевых отравлений, поэтому они проходят тщательную санитарную обработку. Их применяют только для изделий, приготовление которых включает длительную обработку при высокой температуре. Запрещается употребление этих яиц для приготовления кремов и сбивных кондитерских изделий.

Меланж - замороженная смесь яичных белков, желтков. Перед использованием его размораживают и хранят не более 4 ч, иначе в нем быстро размножаются микроорганизмы, что приведет к порче меланжа.

Яичный порошок - это содержимое яйца, высушенное до влажности не более 9%. Хранение в герметичной таре исключает микробиологическую порчу, но при повышенной влажности яичный порошок плесневеет или загнивает.

Кофе, какао, орехи. Эти продукты являются хорошей питательной средой для развития микроорганизмов. При длительном хранении в условиях повышенной влажности воздуха наблюдается их плесневение. Для предохранения от микробиологической порчи эти продукты хранят в сухих, хорошо проветриваемых помещениях.

Фрукты и ягоды. Свежие фрукты и ягоды содержат много влаги, сахаров, витаминов и других веществ, что делает среду благоприятной для развития многих микроорганизмов - микроскопических грибов, дрожжей и бактерий.

Во избежание микробиологической порчи, фрукты и ягоды следует хранить в холодильнике не более 2 суток при температуре 0-2°С. Для длительного хранения фрукты и ягоды консервируют путем замораживания, сушки, а также путем приготовления из них полуфабрикатов (пюре, повидло, варенья, подварок, джема).

Фрукты и ягоды замораживают при температуре минус 10-20°С, при этом количество микроорганизмов заметно уменьшается. Скорость их отмирания зависит от их вида и степени обсемененности сырья. Особенно устойчивы к низкой температуре споры бактерий Clostridium botulinum (Клостридиум ботулинум), кишечная палочка и сальмонеллы. После оттаивания на плодах снова начинают развиваться микроорганизмы - микроскопические грибы и дрожжи. Сушка - это способ консервирования фруктов и ягод, при котором из продукта выделяется влага. В результате создаются условия, при которых жизнедеятельность различных микроорганизмов подавлена. Но во время высушивания погибают не все микроорганизмы. Долго сохраняется жизнеспособность споры бактерии, микроскопических грибов, дрожжи, а также патогенные микробы кишечной группы. Сушеные фрукты и ягоды хранят при температуре 10°С и относительной влажности воздуха 65%. Несоблюдение условий хранения, в частности повышение влажности воздуха и увлажнение сушеных фруктов и ягод, ведет к их микробиологической порче.

Плодово-ягодные полуфабрикаты изготовляют с добавлением сахара при уваривании, поэтому они устойчивы при хранении. Но в них могут содержаться микроорганизмы, вызывающие порчу. Вредные микроорганизмы попадают из сырья или при нарушении правил приготовления. В плодово-ягодных полуфабрикатах могут размножаться дрожжи, вызывающие спиртовое брожение; микроскопические грибы придающие продуктам неприятный вкус и запах; молочнокислые и уксуснокислые бактерии, под действием которых продукт закисает. Во фруктовые пюре и повидло в качестве консервантов-антисептиков добавляют сернистую или сорбиновую кислоту.

2. Микробиология хлебобулочных и мучных кондитерских изделий

микрофлора хлебопекарный мучной порча

Технология хлеба и мучных кондитерских изделий из дрожжевого теста (крекеры, кексы, ромовая баба, кондитерская слойка, восточные сладости и другие мучные изделия) основана на процессах спиртового и молочнокислого брожения, возбудителями которых являются и молочнокислые бактерии.

Особенности технологии хлебобулочных и мучных кондитерских изделий.

Основные стадии технологического процесса производства хлеба следующие: подготовка сырья, замес теста и расстойка теста, выпечка готовых изделий.

В производстве мучных кондитерских изделий используется только пшеничная мука. Хлеб вырабатывают из пшеничной, ржаной муки, а также из их смеси. Технологии приготовления теста из муки ржаной и пшеничной различны, поскольку в этих процессах участвуют различные микроорганизмы.

Приготовление опары. Для приготовления пшеничного теста применяют два способа - опарный и безопарный. Целью приготовления опары является получение наибольшего количества дрожжей с наивысшей активностью. Это достигается тогда, когда начинает падать скорость образования газов СО2, т.е. когда дрожжи привыкают к мучной среде и переключаются с дыхания на брожение, в процессе последнего объем опары увеличивается. В первые 1 - 1,5 ч брожения дрожжевые клетки не размножаются, а происходит увеличение их размеров. Они приспосабливаются к новым условиям среды, т.е. переживают период задержки роста. Затем процесс брожения активизируется, и дрожжи начинают энергично почковаться, т.е. происходит их быстрый рост; он продолжается 4 - 4,5 ч и характеризуется наибольшей скоростью газообразования. Если в это время замесить тесто на готовой опаре, продолжительность его брожения будет минимальной, так как все бродильные ферменты дрожжей приобретут высокую активность за время брожения опары.

Замес и брожение теста. На выброженной опаре замешивают тесто. Оно бродит 1 - 1,5 ч при температуре 30 - 31°С. В бродящих полуфабрикатах происходит спиртовое и молочнокислое брожение, обусловливающие их разрыхление и созревание изменение состава белков и крахмала.

В тесте микроорганизмы снова приспосабливаться к новому составу среды, это приводит к задержке роста клеток, затем они начинают быстро размножаться, т.е. переходят в фазу быстрого роста. Из всех микроорганизмов муки молочнокислые бактерии наиболее приспособлены к развитию в тесте. Размножаясь, они образуют молочную кислоту, которая отрицательно действует на другие микроорганизмы и таким образом создаются условия для развития преимущественно молочнокислых бактерий. Сначала погибают микроорганизмы, живущие в щелочной среде, например, гнилостные бактерии, затем микроорганизмы, развивающиеся в нейтральной среде, - бактерии кишечной группы. При дальнейшем возрастании кислотности погибают уже кислотолюбивые бактерии - уксуснокислые, маслянокислые и другие. В муке имеются микроорганизмы, которые могут развивать и при высокой кислотности среды, но для них необходим кислород, т.е. доступ воздуха. Исключение составляют дрожжи вида Saccharomyces cerevisiae (Сахаромицес церевизия), которые могут жить и в кислородной, и в бескислородной среде, а так как тесто - среда бескислородная, то в нем размножаются только эти дрожжи. Следовательно, в образовании пшеничного теста участвуют дрожжи Saccharomyces cerevisiae и молочнокислые бактерии.

Микробиологические процессы в тесте. В тесте наблюдается симбиоз дрожжей и молочнокислых бактерий. Молочнокислые бактерии сбраживают сахара с образованием молочной кислоты, которая, подкисляя среду, создает благоприятные условия для развития дрожжей. Дрожжи в процессе жизнедеятельности обогащают среду азотистыми веществами и витаминами, необходимыми бактериями. Молочная кислота подавляет жизнедеятельность других микроорганизмов (гнилостных, бактерий кишечной группы, уксуснокислых, маслянокислых и др.), продукты, жизнедеятельности которых токсичны для дрожжей.

В спиртовом брожении теста из пшеничной и ржаной муки участвуют дрожжи, относящиеся к сахаромицетам (Saccharomyces cerevisiae и S. minor). Спиртовое брожение в тесте протекает в анаэробных условиях или при ограниченном доступе кислорода воздуха. В присутствии кислорода дрожжи получают энергию в результате процессов дыхания, т.е. ведут себя как аэробы. Оптимальная температура развития хлебопекарных дрожжей около 30°С. Дрожжи хорошо переносят кислотность среды до 10 - 12 рН. Отрицательное влияние на жизнедеятельность дрожжей указывает избыточное добавление сахара и соли. Молочнокислые бактерии сбраживают молочный сахар лактоза - с образованием молочной кислоты и ряда побочных продуктов. По характеру вызываемого брожения молочнокислые бактерии разделяют на гомоферментативные и гетероферментативные. К гомоферментативным относятся мезофильные молочнокислые бактерии Lactobacillus plantarum (Лактобациллус плантарум) и термофильная палочка Дельбрюка (L. delbrueckii) образующие при брожении только молочную кислоту. К гетероферментативным относятся Lactobacillus brevis (Лактобациллус бревис) и Lactobacillus fermentum (Лактобациллус ферментум), образующие наряду с молочной, уксусную кислоту, спирт, диоксид углерода, водород и другие продукты.

Молочная кислота определяет кислотность теста и этим способствует развитию дрожжей, задерживая размножение вредных, в данном процессе бактерий и является характеристикой полноты процесса, так как по конечной кислотности теста судят о его готовности. Молочная, уксусная, муравьиная кислоты и другие вещества, образующиеся в результате молочнокислого брожения, улучшают вкус и аромат хлеба.

Молочнокислые бактерии нуждаются в углеводах, аминокислотах, витаминах и других факторах роста. Они активны в слабокислых средах, устойчивы к наличию спирта. На развитие молочнокислых бактерий благоприятно влияет, высокая концентрация сахара, соли, накопление молочной и уксусной кислот.

Основными микроорганизмами, синтезирующими молочную кислоту в тесте, являются мезофильные бактерии, имеющий температурный оптимум развития около 35°С. Термофильные молочнокислые бактерии типа бактерий Дельбрюка имеют температурный оптимум 48 - 54°С. С увеличением температуры опары или теста нарастание в них кислотности ускоряется.

Присутствие диких дрожжей и микроскопических грибов в тесте нежелательно, поскольку дикие дрожжи ухудшают подъемную силу прессованных дрожжей, а микроскопические грибы вызывают значительные биохимические изменения. Однако они аэробны и развиваются только при доступе воздуха, поэтому основным препятствием развитию диких дрожжей и микроскопических грибов является недостаток воздуха в тесте.

3. Микроорганизмы, сохраняющиеся в изделиях во время выпечки

В процессе выпечки жизнедеятельность бродильной микрофлоры теста изменяется. При прогревании тестовой заготовки дрожжи и молочнокислые бактерии постепенно отмирают. При выпечке в мякише происходит испарение влаги, поэтому температура в центре мякиша не превышает 96 - 98°С. Некоторые устойчивые споры микроскопических грибов, а также споры сенной палочки не погибают.

После выпечки корка хлеба или выпеченного полуфабриката практически стерильна, но в процессе хранения, транспортировки и реализации в торговой сети может произойти заражения изделий микроорганизмами, в том числе и патогенными. Источниками заражения может быть загрязненный инвентарь (лотки, вагонетки и др.), руки у рабочих, т.е. чаще всего причиной является неудовлетворительное соблюдение санитарных условий. В результате хлеб, хлебобулочные и мучные кондитерские изделия подвергаются микробиологической порче.

4. Виды микробной порчи хлебобулочных и мучных кондитерских изделий

Тягучая болезнь хлеба. Возбудителями тягучей болезни являются спорообразующие бактерии - сенная палочка (Bacillus subtilis). Это мелкие подвижные палочки со слегка закругленными концами, расположенные одиночно или цепочками. Длина сенной палочки 1,5 - 3,5 мкм, толщина - 0,6 - 0,7. Она образует споры, которые легко переносят кипячение и высушивание и погибают мгновенно только при температуре 130°С. При выпечки споры сенной палочки не погибают, а при длительном остывании изделий прорастают и вызывают порчу.

Тягучая болезнь хлеба и мучных кондитерских изделий (например, бисквита) развивается в четыре стадии. Первоначально образуются отдельные тонкие нити, и развивается легкий посторонний запах. Затем запах усиливается, количество нитей увеличивается. Это слабая степень поражения хлеба тягучей болезнью. Далее - при средней степени заболевания - мякиш становится липким, а при сильном - темным и липким, с неприятным запахом.

Для предупреждения тягучей болезни - необходимо обеспечить быстрое охлаждение готовых изделий, т.е. снизить температуру в хлебохранилище и усилить в ней вентиляцию.

Меры борьбы с тягучей болезнью сводятся к созданию условий, препятствующих развитию спор сенной палочки в готовых изделиях, и к уничтожению спор этих бактерий путем дезинфекции. Способы подавления жизнедеятельности сенной палочки в хлебе основаны на её биологических особенностях, в основном на чувствительности к изменению кислотности среды. Для повышения кислотности тесто готовят на заквасках, жидких дрожжах, части спелого теста или опары, а также вносят сгущенную молочную сыворотку, уксусную кислоту и уксуснокислый глицерин в таких количествах, чтобы кислотность хлеба была выше нормы на 1 град.

Хлеб, пораженный тягучей болезнью, запрещается перерабатывать в сухарную муку и использовать в технологическом процессе. Хлеб, пораженный тягучей болезнью, в пищу не употребляют при слабой зараженности он идет на сушку сухарей для животных. Если хлеб не может быть использован для кормовых и технических целей, то его сжигают. Уничтожение спор сенной палочки достигается путем дезинфекции оборудования и помещений.

Складские и производственные помещения подвергают механической очистке, а затем дезинфицируют 3%-ным раствором хлорной извести, стены и полы моют 1%-ным раствором. Металлические, деревянные и тканевые поверхности оборудования обрабатывают 1%-ным раствором уксусной кислоты.

Плесневение. Плесневение хлеба и мучных кондитерских изделий происходит при хранении их в условиях благоприятных для развития микроскопических грибов.

Имеющиеся в муке споры полностью погибают при выпечке хлеба и хлебобулочных изделий, но могут попасть из окружающей среды уже после выпечки, во время охлаждения, транспортировки и хранения. Плесневение вызывается грибами родов Aspergillus, Mucor, Penicillium и др.

Грибы образуют на поверхности выпеченных изделий пушистые налеты белого, серого, зеленого, голубоватого, желтого и черного цветов. Под микроскопом этот налет представляет собой длинные переплетенные нити - мицелий.

При созревании каждого спорангия образуется около сотни спор, из каждой споры вырастает новый мицелий, поэтому грибы размножаются на продуктах очень быстро. Благоприятными условиями для развития микроскопических грибов являются температура 25 - 35°С, относительная влажность воздуха 70 - 80 % и рН от 4,5 до 5,5.

Микроскопические грибы поражают поверхность готовых изделий. Появляется неприятный запах. Заплесневевший хлеб может содержать ядовитые вещества - микотоксины - как в наружных слоях хлеба, так и в мякише. Из микотоксинов в таком хлебе были найдены афлатоксины, которые не только токсичны, но и канцерогенны для людей, и патумен, который не менее токсичен, чем афлатоксины. Поэтому хлеб, пораженный микроскопическими грибами, непригоден в пищу.

Использованная литература

1. Обзор российского рынка хлеба и хлебобулочных изделий [электронный ресурс]/ Система международных маркетинговых центров -- Режим доступа: http://www.marketcenter.ru/

2. В. Федюкин. О государственной промышленной политике в хлебопекарной отрасли [текст]: пром.журнал: Хлебопечение России / Изд. Пищевая промышленность - №8, 2008 - М. 2008 - с.4-5.

3. Молодых В. Российский Союз пекарей на служении отечественному хлебопечению [текст]: пром.журнал: Хлебопечение России / Изд. Пищевая промышленность - №3,2008 - М. 2008 - с. 6-7.

4. Ауэрман Л.Я. Технология хлебопекарного производства [текст]: Учебник. - 9-е изд., перераб и доп. / Под общ. Ред. Л.И. Пучковой. - СПб:Профессия, 2002 - 416с.

5. Сборник рецептур на хлеб и хлебобулочные изделия / Сост. Ершов П.С. - СПб.

6. Пучкова Л.И., Поландова Р.Д., Матвеева И.В. Технология хлеба, кондитерских и макаронных изделий. Часть 1. Технология хлеба. - СПб.:ГИОРД,2005- 559с.

7. Сборник технологических инструкций для производства хлеба и хлебобулочных изделий [текст] / под общ. Ред. А.С,Калмыкова Министерство хлебпродуктов СССР: НПО "ХЛЕБПРОМ" - М:. Прейскурант, 1989 - 493с.

8. Зверева Л.Ф. Технология и технохимический контроль хлебопекарного производства [текст]/ Зверева Л.Ф, Немцова З.С., Волкова Н.П., - 3-е изд. - М.Лекгая и пищевая промышленность, 1983 - 416с.

9. ГОСТ 27844-88 "Изделия булочные. Технические условия"

10. Шебершнева Н.Н., Хабибуллина И.С. Лабораторный практикум по дисциплине "Товароведение и экспертиза зерномучных товаров" [текст] / Шебершнева Н.Н., Хабибуллина И.С - М.: Издательский комплекс МГУПП, 2008. - 160с.

11. ГОСТ 10354-82 Пленка полиэтиленовая. Технические условия

12. ГОСТ 25951-83 Пленка полиэтиленовая термоусадочная. Технические условия

13. ГОСТ 5667-65 Хлеб и хлебобулочные изделия. Правила приемки, методы отбора образцов, методы определения органолептических показателей и массы изделий

14. ГОСТ 5670-96 Хлебобулочные изделия. Методы определения кислотности

15. ГОСТ 5669 - 96 "Хлебобулочные изделия. Метод определения пористости".

16. ГОСТ 21094 - 75 "Хлеб и хлебобулочные изделия. Метод определения влажности".

Размещено на Allbest.ru

Подобные документы

    Исследование истории финско-карельской кухни. Изучение сырья для приготовления хлебобулочных и мучных кондитерских изделий. Анализ ассортимента мучных и кондитерских изделий. Технология приготовления пирогов с начинкой. Составление технологических карт.

    курсовая работа , добавлен 24.06.2015

    Изучение ассортимента сдобных хлебобулочных и мучных кондитерских изделий кафе. Разработка плана–меню, технологической документации, составление технологических схем. Раскрытие организации производственных и трудовых процессов на данном предприятии.

    курсовая работа , добавлен 15.06.2015

    Ассортимент и показатели качества мучных кондитерских изделий. Пищевая ценность кондитерских изделий. Сырье для производства кондитерских изделий. Технология приготовления мучных кондитерских изделий. Десерты.

    курсовая работа , добавлен 09.09.2007

    Характеристика пищевой ценности мучных кондитерских изделий, их значение в питании человека. Роль воды, углеводов, белков и жиров в пищевых продуктах. Составляющие пищевой ценности: энергетическая, биологическая, физиологическая, органолептическая.

    курсовая работа , добавлен 17.06.2011

    Состояние и перспективы развития производства, торговли и потребления мучных кондитерских товаров. Классификация и характеристика ассортимента мучных изделий кондитерской промышленности. Анализ потребительских свойств печенья, пряников и карамели.

    курсовая работа , добавлен 12.12.2011

    Значение кондитерских изделий в питании. Предварительная подготовка продуктов. Технология приготовления изделий: "Чэк-чэк", торта "Тюбетейка", "Бармак". Требования к качеству мучных кондитерских изделий. Санитарные требования, предъявляемые к цеху.

    контрольная работа , добавлен 28.01.2014

    Подготовка сырья к производству мучных и кондитерских изделий. Технологический процесс приготовления кексов на дрожжах и без разрыхлителя. Технологический процесс приготовления полуфабрикатов для кондитерских изделий. Производство карамельного сиропа.

    контрольная работа , добавлен 18.01.2012

    Изучение влияния кондитерских изделий на организм человека. Характеристика полезных и вредных свойств сладостей. Описания шоколадных, мучных и сахаристых кондитерских изделий. Разработка рекомендаций по безопасному употреблению кондитерских изделий.

    реферат , добавлен 12.03.2015

    Способы замеса теста. Дрожжевое тесто и изделия из него. Дефекты изделий, вызванные нарушением рецептуры и режимом его приготовления. Технология изготовления изделий из дрожжевого слоеного теста. Подготовка кондитерских листов к выпечке и режимы выпечки.

    контрольная работа , добавлен 28.03.2011

    История возникновения хлеба и хлебобулочных изделий. Потребительские свойства хлебобулочных изделий. Классификация хлебобулочных изделий. Требования к качеству хлебобулочных изделий. Упаковка, маркировка и хранение хлеба и хлебобулочных изделий.

Наука биология включает в себя большое количество подразделов и дочерних наук. Однако одной из самых молодых и перспективных, полезных для человека и его деятельности является микробиология. Сравнительно недавно возникшая, но стремительно набравшая обороты в развитии, эта наука на сегодняшний день сама стала родоначальницей таких разделов, как биотехнология и Что такое микробиология и как проходили этапы ее становления и развития? Разберемся в этом вопросе подробнее.

Что такое микробиология?

В первую очередь, микробиология - это наука. Объемная, интересная, молодая, но динамично развивающаяся наука. Этимология слова ведет свое происхождение от греческого языка. Так, "mikros" означает "малый", вторая часть слова происходит от "bios", что значит "жизнь", и заключительная часть от греч. "logos", что переводится как учение. Теперь можно дать дословный ответ на вопрос, что такое микробиология. Это учение о микро-жизни.

Другими словами, это изучение самых мелких живых существ, которые не видимы невооруженным глазом. К таким одноклеточным организмам относятся:

  1. Прокариоты (безъядерные организмы, или не имеющие оформленного ядра):
  • бактерии;
  • археи.

2. Эукариоты (организмы, имеющие оформленное ядро):

  • одноклеточные водоросли;
  • простейшие.

3. Вирусы.

Однако приоритетное значение в микробиологии отводится изучению именно бактерий самых разных видов, форм и способов получения энергии. Именно в этом состоят основы микробиологии.

Предмет изучения науки

На вопрос, что изучает микробиология, можно ответить так: она изучает внешнее многообразие бактерий по форме и размерам, их влияние на окружающую среду и на живые организмы, способы питания, развития и размножения микроорганизмов, а также их влияние на хозяйственную и практическую деятельность человека.

Микроорганизмы - это существа, способные обитать в самых разнообразных условиях. Для них практически нет пределов по температуре, по кислотности и щелочности среды, давлению и влажности. При любых условиях существует хотя бы одна (а чаще всего множество) группа бактерий, способная выживать. Сегодня известны сообщества микроорганизмов, которые заселяют совершенно анаэробные условия внутри вулканов, на дне термоисточников, в темных глубинах океанов, суровых условиях гор и скал и так далее.

Науке известны сотни видов микроорганизмов, которые со временем складываются в тысячи. Однако установлено, что это только малая толика того разнообразия, что есть в природе. Поэтому работы у микробиологов очень много.

Одним из самых знаменитых центров, в котором происходило подробное изучение микроорганизмов и всех процессов, с ними связанных, являлся Пастеровский институт во Франции. Названный в честь знаменитого основателя микробиологии как науки Луи Пастера, этот институт микробиологии выпустил из своих стен массу замечательных специалистов, которыми были совершены не менее замечательные и значительные открытия.

В России на сегодняшний день действует институт микробиологии им. С. Н. Виноградского РАН, который является самым крупным исследовательским центром в области микробиологии в нашей стране.

Исторический экскурс в микробиологическую науку

История развития микробиологии как науки складывается из трех основных условных этапов:

  • морфологический или описательный;
  • физиологический или накопительный;
  • современный.

В целом, история микробиологии насчитывает в своем развитии около 400 лет. То есть начало возникновения приходится примерно на XVII век. Поэтому и считается, что она достаточно молодая наука в сравнении с другими разделами биологии.

Морфологический или описательный этап

Само название говорит о том, что на данном этапе проходило, строго говоря, просто накопление знаний о морфологии бактериальных клеток. Началось все с открытия прокариот. Данная заслуга принадлежит родоначальнику микробиологической науки итальянцу Антонио ван Левенгуку, который обладал острым умом, цепким взглядом и хорошим умением логически мыслить и обобщать. Будучи также неплохим техником, он сумел выточить линзы, дающие увеличение в 300 раз. Причем повторить его достижение смогли только в середине XX века русские ученые. И то не вытачиванием, а выплавкой линз из оптического стекловолокна.

Вот эти линзы и послужили материалом, через который Левенгук обнаружил микроорганизмы. Причем изначально он ставил перед собой задачу весьма прозаичного характера: ученого интересовало, почему хрен такой горький. Растерев части растения и рассмотрев их под микроскопом собственного производства, он и увидел целый живой мир крошечных созданий. Было это в 1695 году. С этих пор Антонио начинает активно изучать и описывать различные виды бактериальных клеток. Он различает их только по форме, однако и это уже немало.

Левенгуку принадлежит около 20 рукописных томов, которые описывают подробно шаровидные, палочковидные, спиральные и другие виды бактерий. Им написан первый труд по микробиологии, который называется "Тайны природы, открытые Антони ван Левенгуком". Первая попытка систематизировать и обобщить накопленные знания по морфологии бактерий принадлежит ученому О. Мюллеру, который предпринял ее в 1785 году. С этого момента история развития микробиологии начинает набирать свои обороты.

Физиологический или накопительный этап

На данном этапе развития науки были изучены механизмы, лежащие в основе жизнедеятельности бактерий. Рассмотрены процессы, в которых они принимают участие и которые без них невозможны в природе. Была доказана невозможность самозарождения жизни без участия живых организмов. Все эти открытия были совершены в результате экспериментов великого ученого-химика, но после этих открытий еще и микробиолога, Луи Пастера. Сложно переоценить его значение в развитии этой науки. История микробиологии вряд ли сумела бы развиться так быстро и полно, если бы не этот гениальный человек.

Открытия Пастера можно отобразить несколькими основными пунктами:

  • доказал, что знакомый людям издревле процесс брожения сахаристых веществ обусловлен наличием определенного вида микроорганизмов. Причем для каждого вида брожения (молочно-кислое, спиртовое, масляное и так далее) характерно наличие специфической группы бактерий, которые его и осуществляют;
  • ввел в пищевую отрасль процесс пастеризации для избавления продуктов от микрофлоры, вызывающей их гниение и порчу;
  • ему принадлежит заслуга повышения иммунитета к болезням путем введения вакцины в организм. То есть Пастер - родоначальник прививок, именно он доказал, что болезни вызываются наличием болезнетворных бактерий;
  • разрушил представления об аэробности всего живого и доказал, что для жизни многих бактерий (маслянокислых, например) кислород вообще не нужен, и даже вреден.

Главной неоспоримой заслугой Луи Пастера стало то, что все свои открытия он доказывал экспериментально. Так, что ни у кого не могло оставаться сомнений в справедливости полученных результатов. Но на этом история микробиологии, конечно, не заканчивается.

Еще одним ученым, работавшим в XIX веке и внесшим неоценимый вклад в изучение микроорганизмов, стал - немецкий ученый, которому принадлежит заслуга выведения чистых линий бактериальных клеток. То есть в природе все микроорганизмы тесно взаимосвязаны между собой. Одна группа в процессе жизнедеятельности создает для другой, другая делает тоже самое для третьей и так далее. То есть это те же цепи питания, что и у высших организмов, только внутри бактериальных сообществ. Вследствие этого очень сложно изучить какое-то отдельное сообщество, группу микроорганизмов, ведь их размеры чрезвычайно малы (1 -6 м или 1 мкм) и, находясь в постоянном тесном взаимодействии между собой, они не поддаются тщательному изучению поодиночке. Идеальной представлялась возможность вырастить множество идентичных клеток бактерий одного сообщества в искусственных условиях. То есть получить массу одинаковых клеток, которые будут видны невооруженным глазом и изучить процессы у которых станет значительно легче.

Таким образом было накоплено множество ценных сведений о жизнедеятельности бактерий, их пользе и вреде для человека. Развитие микробиологии пошло еще более интенсивным путем.

Современный этап

Современная микробиология - это целый комплекс подразделов и мини-наук, которые занимаются изучением не только самих бактерий, но и вирусов, грибков, архей и всех известных и вновь открываемых микроорганизмов. На вопрос, что такое микробиология, сегодня можно дать очень полный и развернутый ответ. Это комплекс наук, занимающихся изучением жизнедеятельности микроорганизмов, их применения в практической жизни человека в разных областях и сферах, а также влияния микроорганизмов друг на друга, на окружающую среду и живые организмы.

В связи с таким обширным понятием микробиологии следует привести современную градацию данной науки на разделы.

  1. Общая.
  2. Почвенная.
  3. Водная.
  4. Сельскохозяйственная.
  5. Медицинская.
  6. Ветеринарная.
  7. Космическая.
  8. Геологическая.
  9. Вирусология.
  10. Пищевая.
  11. Промышленная (техническая).

Каждый из приведенных разделов занимается подробным изучением микроорганизмов, их влияния на жизнь и здоровье людей и животных, а также возможности использования бактерий в практических целях для улучшения качества жизни человечества. Все это в комплексе и есть то, что изучает микробиология.

Наибольший вклад в развитие современных методов микробиологии, способов выведения и возделывания штаммов микроорганизмов внесли такие ученые, как Вольфрам Циллиг и Карл Штеттер, Карл Везе, Норман Пейс, Уотсон Крик, Полинг, Цукеркандль. Из отечественных ученых это такие имена, как И. И. Мечников, Л. С. Ценковский, Д. И. Ивановский, С. Н. Виноградский, В. Л. Омелянский, С. П. Костычев, Я. Я. Никитинский и Ф. М. Чистяков, А. И. Лебедев, В. Н. Шапошников. Благодаря работам перечисленных ученых, были созданы способы борьбы с серьезными болезнями животных и людей (сибирская язва, сахарный клещ, ящур, оспа и так далее). Были созданы способы повышения иммунитета к бактериологическим и вирусным заболеваниям, получены штаммы микроорганизмов, способных перерабатывать нефть, создавать в процессе жизнедеятельности массу различных органических веществ, очищать и улучшать экологическую обстановку, разлагать нераспадающиеся химические соединения и многое другое.

Вклад этих людей поистине неоценим, поэтому некоторые из них (Мечников И. И.) получили Нобелевскую премию за свои работы. На сегодняшний день существуют дочерние науки, образовавшиеся на основе микробиологии, которые являются самыми передовыми в биологии - это биотехнология, биоинженерия и генная инженерия. Работа каждой из них направлена на получение организмов или группы организмов с заранее заданными свойствами, удобными человеку. На выведение новых методов работы с микроорганизмами, на получение максимальной выгоды от использования бактерий.

Таким образом, этапы развития микробиологии хотя и немногочисленны, однако очень содержательны и полны событиями.

Методы изучения микроорганизмов

Современные методы микробиологии основаны на работе с чистыми культурами, а также использовании новейших достижений техники (оптической, электронной, лазерной и так далее). Вот основные из них.

  1. Использование микроскопических технических средств. Как правило, только световые микроскопы полного результата не дают, поэтому применяются также люминесцентные, лазерные и электронные.
  2. Посевы бактерий на специальных питательных средах для выведения и культивирования абсолютно чистых колоний культур.
  3. Физиолого-биохимические методы анализа культуры микроорганизмов.
  4. Молекулярно-биологические методы анализа.
  5. Генетические методы анализа. На сегодняшний день стало возможным проследить генеалогическое древо практически каждой открытой группы микроорганизмов. Это стало возможным благодаря работам Карла Везе, который сумел расшифровать участок генома колонии бактерий. С этим открытием стало возможным построение филогенетической системы прокариот.

Совокупность перечисленных методов позволяет получать полную и подробную информацию о любом из вновь открывающихся или уже открытых микроорганизмов и находить им правильное применение.

Этапы микробиологии, которые она прошла в своем становлении как наука, не всегда включали такой щедрый и точный набор методов. Однако примечательно, что самым действенным в любые времена является метод экспериментальный, именно он послужил основой для накопления знаний и умений в работе с микромиром.

Микробиология в медицине

Один из наиболее важных и значимых именно для человеческого здоровья разделов микробиологии является медицинская микробиология. Предметом ее изучения стали вирусы и патогенные бактерии, которые вызывают тяжелые заболевания. Поэтому перед медиками-микробиологами стоит задача: выявить патогенный организм, культивировать его чистую линию, изучить особенности жизнедеятельности и причины, по которым наносится вред организму человека, и найти средство для устранения данного действия.

После того как чистая культура патогенного организма будет получена, необходимо провести тщательный молекулярно-биологический анализ. На основе результатов провести испытание устойчивости организмов к антибиотикам, выявить пути распространения заболевания и выбрать наиболее эффективный метод лечения против данного микроорганизма.

Именно медицинская микробиология, в том числе ветеринарная, помогла решить ряд злободневных проблем человечества: созданы бешенства, рожи непарнокопытных, оспы овец, анаэробных инфекций, туляремии и паратифа, стало возможным избавление от чумы и парапневмонии и так далее.

Пищевая микробиология

Основы микробиологии, санитарии и гигиены тесно взаимосвязаны между собой и вообще едины. Ведь патогенные организмы способны распространяться гораздо быстрее и в большем объеме, когда условия санитарии и гигиены оставляют желать лучшего. И в первую очередь это находит отражение в пищевой промышленности, при массовых производствах продуктов питания.

Современные данные о морфологии и физиологии микроорганизмов, биохимических процессах, вызываемых ими, а также влияние экологических факторов на микрофлору, развивающуюся в продуктах питания при транспортировании, хранении, реализации и переработке сырья, позволяют избежать многих проблем. Роль микроорганизмов в процессе формирования и изменения качества пищевых продуктов и возникновения ряда заболеваний, вызываемых патогенными и условно-патогенными видами, весьма значительна, и поэтому задачей пищевой микробиологии, санитарии и гигиены является эту роль выявить и повернуть на благо человеку.

Также пищевая микробиология культивирует бактерии, способные преобразовывать из нефти белки, использует микроорганизмы для разложения пищевых продуктов, для обработки многих товаров питания. Процессы брожения на основе молочно-кислых и масляно-кислых бактерий дают человечеству множество необходимых продуктов.

Вирусология

Совершенно отдельная и очень большая группа микроорганизмов, которая на сегодняшний день является самой малоизученной - это вирусы. Микробиология и вирусология - две тесно взаимосвязанные категории микробиологической науки, которые изучают патогенные бактерии и вирусы, способные нанести тяжкий вред здоровью живых организмов.

Вирусология раздел очень обширный и сложный, поэтому заслуживает отдельного изучения.

И других кисломолочных продуктов, получения алкоголя , уксуса , при мочке льна .

Донаучный этап развития

Люди издревне знали о многих процессах, вызываемых микроорганизмами, однако не знали истинных причин вызывающих эти явления. Отсутствие сведений о природе таких явлений не мешало делать наблюдения и даже использовать ряд этих процессов в быту. Ряд философов и естествоиспытателей делали умозрительные заключения о причинах тех или иных явлений. При этом наиболее близко к открытию микромира подошел Джироламо Фракасторо ( -), предположивший что инфекции вызывают маленькие тельца, передающиеся при контакте и сохраняющиеся на вещах больного. Однако в то время невозможно было удостовериться в правильности его идей и распространение получили совершенно иные гипотезы.

Бактериальную природу инфекционных заболеваний многие учёные продолжали отвергать и после революционных открытий Пастера и Коха . Так, в 1892 году Макс Петтенкофер, уверенный в том что холеру вызывают миазмы, выделяемые окружающей средой, и пытаясь доказать свою правоту, проглотил при свидетелях-медиках культуру холерных вибрионов и не заболел.

Описательный этап

Антони ван Левенгук.

Возможность изучения микроорганизмов возникла лишь с развитием оптических приборов. Первый микроскоп был создан ещё в 1610 году Галилеем . В Роберт Гук впервые увидел растительные клетки. Однако 30 кратного увеличения его микроскопа не хватило чтобы увидеть простейших и тем более бактерии . По мнению В. Л. Омельянского «первым исследователем, перед изумлённым взором которого открылся мир микроорганизмов, был учёный иезуит Афанасий Кирхер ( -), автор ряда сочинений астрологического характера», однако обычно первооткрывателем микромира называют Антони ван Левенгука .

Между тем, наука в целом ещё не была готова к пониманию роли микроорганизмов в природе. Система теорий возникла тогда лишь в физике . Во времена Левенгука отсутствовали представления о ключевых процессах живой природы, так, незадолго до него в 1648 году Ван Гельмонт , не имея никакого понятия о фотосинтезе , заключил из своего опыта с ивой, что растение берёт питание только из дистиллированной воды, которой он его поливал. Более того, даже неживая материя ещё не была достаточно изучена, состав атмосферы, необходимый для понимания того же фотосинтеза, будет определён лишь в -1776 годах . Поэтому неудивительно что «животным» Левенгука не нашлось место нигде, кроме как в коллекции курьёзов.

В течение следующих 100-150 лет развитие микробиологии проходило лишь с описанием новых видов. Видную роль в изучении многообразия микроорганизмов сыграл Отто Фридрих Мюллер [кто? ] , который к описал и назвал по линнеевской биномиальной номенклатуре 379 различных видов. В это время было сделано и несколько интересных открытий. Так, в была определена причина «кровоточения» просфор - бактерия, названная Serratia marcescens (другое название Monas prodigiosa ). Также следует отметить Христиана Готтфрида Эренберга [кто? ] , описавшего множество пигментированных бактерий, первые железобактерии , а также скелеты простейших и диатомовых водорослей в морских и лиманных отложениях, чем положил начало микропалеонтологии. Именно он впервые объяснил окраску воды Красного моря развитием в ней цианобактерий Trichodesmium erythraeum . Он, однако, причислял бактерий к простейшим и рассматривал их вслед за Левенгуком как полноценных животных с желудком, кишечником и конечностями…

В России одним из первых микробиологов был Л. С. Ценковский ( -), описавший большое число простейших, водорослей и грибов и сделавший вывод об отсутствии резкой границы между растениями и животными. Им также была организована одна из первых Пастеровских станций и предложена вакцина против сибирской язвы .

Высказывались в это время и смелые гипотезы, например врач-эпидемиолог Д. С. Самойлович ( -1801) был убеждён в том что болезни вызываются именно микроорганизмами, однако тщетно пытался увидеть в микроскоп возбудитель чумы - возможности оптики тогда ещё не позволяли это сделать. В итальянец А. Басси обнаружил передачу болезни шелковичного червя при переносе микроскопического гриба. Ж. Л. Л. Бюффон и А. Л. Лавуазье связывали брожение с дрожжами, однако общепринятой оставалась чисто химическая теория этого процесса, сформулированная в 1697 году Г. Э. Шталем. Для спиртового брожения, как для любой реакции, Лавуазье и Л. Ж. Гей-Люссаком были посчитаны стехиометрические соотношения. В 1830-х Ш. Каньяр де Латур, Ф. Кютцинг и Т. Шванн независимо друг от друга наблюдали обилие микроорганизмов в осадке и плёнке на поверхности бродящей жидкости и связали брожение с их развитием. Эти представление наткнулись, однако, на резкую критику со стороны таких видных химиков как Фридрих Вёлер , Йёнс Якоб Берцелиус и Юстус Либих . Последний даже написал анонимную статью «О разгаданной тайне спиртового брожения» () - саркастическую пародию на микробиологические исследования тех лет.

Тем не менее, вопрос о причинах брожения, тесно связанный с вопросом о спонтанном самозарождении жизни, стал первым успешно решённым вопросом о роли микроорганизмов в природе.

Споры о самозарождении и брожении

Открытие вирусов

Изучение обмена веществ микроорганизмов

Техническая, или промышленная, микробиология

Техническая микробиология изучает микроорганизмы, используемые в производственных процессах с целью получения различных практически важных веществ: пищевых продуктов, этанола, глицерина, ацетона, органических кислот и др.

Огромный вклад в развитие микробиологии внесли русские и советские учёные: И. И. Мечников ( -), Д. И. Ивановский ( -), Н. Ф. Гамалея ( -), Л. С. Ценковский, С. Н. Виноградский , В. Л. Омелянский , Д. К. Заболотный ( -), В. С. Буткевич, С. П. Костычев, Н. Г. Холодный, В. Н. Шапошников, Н. А. Красильников, А. А. Ишменецкий и др.

Большая роль в развитии технической микробиологии принадлежит С. П. Костычеву, С. Л. Иванову и А. И. Лебедеву, которые изучили химизм процесса спиртового брожения, вызываемого дрожжами. На основании исследований химизма образования органических кислот мицелиальными грибами, проведённым В. Н. Костычевым и В. С. Буткевичем, в 1930 году в Ленинграде было организовано производство лимонной кислоты. На основе изучения закономерностей развития молочнокислых бактерий, осуществлённого В. Н. Шапошниковым и А. Я. Мантейфель, в начале 1920-х годов в СССР было организовано производство молочной кислоты, необходимой в медицине для лечения ослабленных и рахитичных детей. В. Н. Шапошников и его ученики разработали технологию получения ацетона и бутилового спирта с помощью бактерий, и в 1934 году в Грозном был пущен первый в СССР завод по выпуску этих растворителей. Труды Я. Я. Никитинского Ф. М. Чистякова положили начало развитию микробиологии консервного производства и холодильного хранения скоропортящихся пищевых продуктов. Благодаря работам А. С. Королёва , А. Ф. Войткевича и их учеников значительное развитие получила микробиология молока и молочных продуктов.

Частью технической микробиологии является пищевая микробиология, изучающая способы получения пищевых продуктов с использованием микроорганизмов. Например, дрожжи применяют в виноделии, пивоварении, хлебопечении, спиртовом производстве; молочнокислые бактерии - в производстве кисломолочных продуктов, сыров, при квашении овощей; уксусно-кислые бактерии - в производстве уксуса; мицелиальные грибы используют для получения лимонной и других пищевых органических кислот и т. д. К настоящему времени выделились специальные разделы пищевой микробиологии: микробиология дрожжевого и хлебопекарного производства, пивоваренного производства, консервного производства, молока и молочных продуктов, уксуса, мясных и рыбных продуктов, маргарина и т. д.

Методы и цели микробиологии

К методам исследования любых микроорганизмов относят:

  • микроскопия : световая, фазово-контрастная , темнопольная , флуоресцентная , электронная ;
  • культуральный метод (бактериологический, вирусологический);
  • биологический метод (заражение лабораторных животных с воспроизведением инфекционного процесса на чувствительных моделях);
  • молекулярно-генетический метод (ПЦР , ДНК- и РНК-зонды и др.);
  • серологический метод - выявления антигенов микроорганизмов или антител к ним (ИФА).

Цель медицинской микробиологии - глубокое изучение структуры и важнейших биологических свойств патогенных микробов, взаимоотношения их с организмом человека в определенных условиях природной и социальной среды, совершенствование методов микробиологической диагностики, разработка новых, более эффективных лечебных и профилактических препаратов, решение такой важной проблемы, как ликвидация и предупреждение инфекционных болезней.

Связь с другими науками

За время существования микробиологии сформировались общая, техническая, сельскохозяйственная, ветеринарная, медицинская, санитарная ветви.

Примечания

Литература

  • Вербина Н. М., Каптерёва Ю. В. Микробиология пищевых производств. - М.: изд. ВО «АГРОПРОМИЗДАТ», 1988. - ISBN 5-10-000191-7
  • Воробьёв А. В., Быков А. С., Пашков Е. П., Рыбакова А. М. Микробиология: Учебник. - 2-е изд. перераб. и доп. - М.: Медицина, 2003. - 336 с. - (Учеб. лит. для студ. фарм. вузов). - ISBN 5-225-04411-5
  • Галынкин В. А., Заикина Н.А., Кочеровец В.И. и др. Основы фармацевтической микробиологии: учебное пособие для системы послевузовского образования. - С.-П.: Проспект науки, 2008. - 288 с. - ISBN 978-5-903090-14-3
  • Гусев М. В. , Минеева Л. А. Микробиология. - 9-е изд., стер. - М.: Издательский центр «Академия», 2010. - 464 с. - (Серия: Классическая учебная книга). - ISBN 978-5-7695-7372-9
  • Гусев М. В., Минеева Л. А. Микробиология: Учебник для студ. биол. специальностей вузов. - 4-е изд., стер. - М.: Издательский центр «Академия», 2003. - 464 с. - ISBN 5-7695-1403-5
  • Заварзин Г. А. , Колотилова Н. Н. Введение в природоведческую микробиологию. - М.: Книжный дом «Университет», 2001. - 256 с. - ISBN 5-8013-0124-0
  • Кондратьева Е. Н. Автотрофные прокариоты: Учеб. пособие для студентов вузов, обучающихся по направлению «Биология», специальностям «Микробиология», «Биотехнология». - М.: Изд-во МГУ, 1996. - 302 с. - ISBN 5-211-03644-1
  • Лысак В. В. Микробиология: учеб. пособие. - Минск: БГУ, 2007. - 426 с. - ISBN 985-485-709-3
  • Шлегель Г. Г. История микробиологии: Перевод с немецкого. - М: изд-во УРСС, 2002. - 304 с. - ISBN 5-354-00010-6

См. также

  • Портал:Микробиология и иммунология

Ссылки