Черчение объемных фигур. Программы для черчения

Для выполнения изометрической проекции любой детали не­обходимо знать правила построения изометрических проекций плоских и объемных геометрических фигур.

Правила построения изометрических проекций геометриче­ских фигур. Построение любой плоской фигуры следует начи­нать с проведения осей изометрических проекций.

При построении изометрической проекции квадрата (рис. 109) из точки О по аксонометрическим осям откладывают в обе сто­роны половину длины стороны квадрата. Через полученные за­сечки проводят прямые, параллельные осям.

При построении изометрической проекции треугольника (рис. 110) по оси X от точки 0 в обе стороны откладывают отрезки, равные половине стороны треугольника. По оси У от точки О откладывают высоту треугольника. Соединяют полученные за­сечки отрезками прямых.

Рис. 109. Прямоугольная и изометрические проекции квадрата



Рис. 110. Прямоугольная и изометрические проекции треугольника

При построении изометрической проекции шестиугольника (рис. 111) из точки О по одной из осей откладывают (в обе сторо­ны) радиус описанной окружности, а по другой - H/2. Через полученные засечки проводят прямые, параллельные одной из осей, и на них откладывают длину стороны шестиугольника. Со­единяют полученные засечки отрезками прямых.


Рис. 111. Прямоугольная и изометрические проекции шестиугольника



Рис. 112. Прямоугольная и изометрические проекции круга

При построении изометрической проекции круга (рис. 112) из точки О по осям координат откладывают отрезки, равные его радиусу. Через полученные засечки проводят прямые, парал­лельные осям, получая аксонометрическую проекцию квадрата. Из вершин 1, 3 проводят дуги CD и KL радиусом 3С. Соединяют точки 2 с 4, 3 с С и 3 с D. В пересечениях прямых получаются центры а и б малых дуг, проведя которые получают овал, заме­няющий аксонометрическую проекцию круга.

Используя описанные построения, можно выполнить аксоно­метрические проекции простых геометрических тел (табл. 10).

10. Изометрические проекции простых геометрических тел



Способы построения изометрической проекции детали:

1. Способ построения изометрической проекции детали от формообразующей грани используется для деталей, форма кото­рых имеет плоскую грань, называемую формообразующей; ши­рина (толщина) детали на всем протяжении одинакова, на боко­вых поверхностях отсутствуют пазы, отверстия и другие элемен­ты. Последовательность построения изометрической проекции заключается в следующем:

1) построение осей изометрической проекции;

2) построение изометрической проекции формообразующей грани;

3) построение проекций остальных граней посредством изо­бражения ребер модели;


Рис. 113. Построение изометрической проекции детали, начиная от фор­мообразующей грани

4) обводка изометрической проекции (рис. 113).

  1. Способ построения изометрической проекции на основе по­следовательного удаления объемов используется в тех случаях, когда отображаемая форма получена в результате удаления из исходной формы каких-либо объемов (рис. 114).
  2. Способ построения изометрической проекции на основе по­следовательного приращения (добавления) объемов применяется для выполнения изометрического изображения детали, форма которой получена из нескольких объемов, соединенных опреде­ленным образом друг с другом (рис. 115).
  3. Комбинированный способ построения изометрической про­екции. Изометрическую проекцию детали, форма которой полу­чена в результате сочетания различных способов формообразо­вания, выполняют, используя комбинированный способ построе­ния (рис. 116).

Аксонометрическую проекцию детали можно выполнять с изображением (рис. 117, а) и без изображения (рис. 117, б) неви­димых частей формы.


Рис. 114. Построение изометрической проекции детали на основе последовательного удаления объемов


Рис. 115 Построение изометрической проекции детали на основе последовательного приращения объемов


Рис. 116. Использование комбинированного способа построения изометрической проекции детали


Рис. 117. Варианты изображения изометрических проекций детали: а - с изображением невидимых частей;
б - без изображения невидимых частей

Заданную нам плоскую фигуру мы можем построить в трех основных положениях: в плоскости x"Ο"z", соответствующей плоскости П 2 ; в плоскости х"О"у", соответствующей плоскости П 1 (и в плоскости z"О"у", соответствующей плоскости П 3 . Кроме того, мы можем строить натуральное изображение плоской фигуры с использованием показателей искажения u, ν и w или увеличенное (приведенное) с использованием приведенных показателей искажения U, V и W. Эти вопросы на практике решают исходя из конкретных условий: формы плоского отсека, его положения в пространстве и назначения изображения.

TBegin-->TEnd-->

Построим натуральное изображение квадрата размером 50X50 мм в трех основных положениях в прямоугольной изометрической проекции. Для определения величины стороны квадрата умножим заданный нам размер 50 на показатель искажения u=0,82. Получим 50x0,82=41 мм. Строим изометрические оси х", у", z" (рис. 147, а). Для простоты располагаем стороны квадрата параллельно изометрическим осям. Изометрические проекции квадрата будут равными, но различно расположенными ромбами П" 1 , П" 2 , П" 3 с размерами 41x41 мм.

Пусть требуется построить в прямоугольной изометрии «приведённое» изображение прямоугольника, имеющего размеры 30x60 мм. Решаем вопрос о том, в каком положении его изобразить. Положим, решили изобразить в плоскости х"О"у". Проводим оси х"О" и у"О" (рис. 147, б); по одной из них откладываем размер 60 мм, а по другой 30 мм; проведя линии, параллельные осям, получаем изометрическую проекцию прямоугольника, которая будет являться параллелограммом. Сверху изображения подписываем масштаб увеличения М 1.22: 1. Тот же прямоугольник мы "могли изобразить в плоскости x"O"z" (верхнее изображение).

Построим «приведенное» изображение квадрата размером 50 X 50 мм в трех основных положениях в прямоугольной диметричесдой проекции, Приведенные показатели по осям х" и z" равны единице; следовательно, стороны квадрата, параллельные этим осям, будут иметь размеры, равные 50 мм (рис. 148). Приведенный показатель по оси у" равен 0,5, т. е. стороны квадрата, параллельные этой оси, будут иметь размер 25 мм. Изображение в плоскости x"O"z будет являться ромбом, изображения в двух других плоскостях будут равными, но различно расположенными параллелограммами. Масштаб изображения М 1,06: 1 указывают вверху чертежа.

TBegin-->
TEnd-->

При построении треугольника будем пользоваться его основанием и высотой (рис. 149, а). Построение «приведенного» изображения в прямоугольной изометрии начинаем с проведения осей х" и z" (рис. 149, б). От точки О" пересечения осей вправо и влево по оси х" откладываем половины заданного размера а = 50 мм, а по оси z" — высоту треугольника h = 40 мм. Вершины треугольника соединяем прямыми линиями. Обратим внимание на то, что левая сторона треугольника в аксонометрии будет значительно длиннее, чем правая. Вверху построения указываем масштаб изображения.

Построим тот же треугольник в прямоугольной диметрии. Расположим треугольник в плоскости х"О"у" (рис. 149, в). По оси х" отложим высоту треугольника; по оси у" от точки О" отложим половины уменьшенного вдвое размера основания треугольника. Вверху построения указываем масштаб изображения.

В связи с тем, что аксонометрические изображения применяются в практике чаще в качестве иллюстрационных, сопровождающих комплексные чертежи, на которых имеются все необходимые размеры, нанесение размеров и указание масштаба изображения на аксонометрических чертежах не является обязательным. При дальнейшем изложении аксонометрии мы не всегда будем наносить масштабы изображений и размеры.

TBegin-->
TEnd-->

Большое значение в практике имеет быстрота построений аксонометрических изображений. Для ускорения можно рекомендовать некоторые практические приемы построения изометрических осей без измерения углов транспортиром. Первый прием (рис. 150,а) основан наделении окружности на шесть равных частей. Выбрав на оси z "точку О", проводим дугу произвольного радиуса; она пересечет ось z" в точке А, из этой точки тем же радиусом проводим вторую дугу; точки В пересечения дуг используем для проведения осей х" и у". Можно воспользоваться другим приемом (рис. 150, б).

Проводим через точку О" горизонтальную прямую и откладываем на ней семь произвольных равных отрезков; из конечной точки А восставляем перпендикуляр и откладываем на нем четыре таких же части; полученные при этом точки В — искомые.

Вместо 7 и 4 можно брать числа того же отношения, например 35 и 20, 28 и 16 и т. д. Для построения осей в прямоугольной диметрии можно пользоваться следующими соотношениями отрезков (рис. 150, в): для построения угла в 7° 10" — отношением 1: 8 (5: 40), для построения угла в 41°25" — отношением 7: 8 (35: 40).

TBegin-->TEnd-->

Построение правильного шестиугольника в «приведенной» изометрической проекции (рис. 151, а) начинаем с проведения осей х" и у" через точку О" (рис. 151, б). По оси х" откладываем отрезки А"О" и O"D", равные отрезкам АО и OD. По оси у" откладываем отрезок т, взятый с первого чертежа. Через конец этого отрезка проводим прямую F"E"||х": так же строим отрезок В"С. Полученные шесть точек соединяем и обводим изображение.

TBegin-->
TEnd-->

Пусть требуется построить неправильный многоугольник ABCDEF в плоскости х"О"г" в прямоугольной диметрической проекции (рис. 152, а). Опишем вокруг многоугольника прямоугольник GHOK. Принимаем стороны КО и НО за направление осей х и z. Проводим на аксонометрическом чертеже (рис. 152, б) оси х" и z" и строим аксонометрическую проекцию G"H"O"K" прямоугольника GHOK, беря размеры его сторон с первого чертежа. Легко находим точки А", В", Е" и F", принадлежащие сторонам прямоугольника. Для построения точек С, D" пользуемся координатами этих точек, что ясно из сопоставления чертежей. Координаты точек начерчены пунктирными (точечными) линиями.

При построении этого многоугольника в плоскости х"О"у" размеры сторон, параллельных оси у", должны быть уменьшены вдвое, изображение будет суженным (рис. 153, а).

TBegin-->
TEnd-->

Аналогично строится многоугольник во фронтальной диметрической проекции (рис. 153, б), с той лишь разницей, что ось х" располагается горизонтально, а ось у" — под углом 45° к ней.

Кроме фронтальной диметрической проекции ГОСТ 2.317—69 разрешает пользоваться фронтальной изометрической проекцией с таким же расположением аксонометрических осей. Фронтальную изометрическую проекцию выполняют без искажения по осям х",у" и z" (рис. 154, а). Допускается применять фронтальные изометрические и диметрические проекции с углом наклона оси у", равным 30 и 60°.

TBegin-->
TEnd-->

ГОСТ установлена также горизонтальная изометрическая проекция с углом 90° между осями x" и у" и 120° между осями у" и z" (рис. 154, б); вместо угла 120° допускается применять углы 135 и 150°. Горизонтальную изометрическую проекцию выполняют без искажения по осям х", у" и z".

Большой выбор развёрток простых геометрических фигур.

Первое знакомство детей с бумажным моделированием всегда начинается с простых геометрических фигур, таких как кубик и пирамида. Не у многих получается склеить кубик с первого раза, иногда требуется несколько дней, чтобы сделать поистине ровный и безупречный куб. Более сложные фигуры цилиндр и конус требуют в несколько раз больше усилий нежели простой кубик. Если вы не умеете аккуратно клеить геометрические фигуры, значит и за сложные модели вам ещё рано браться. Займитесь сами и научите своих детей клеть эти «азы» моделирования по готовым развёрткам.

Для начала я, конечно же, предлагаю научиться клеить обычный кубик. Развёртки сделаны для двух кубиков, большого и маленького. Более сложной фигурой является маленький кубик потому, как клеить его сложнее, чем большой.

Итак, начнём! Скачайте развёртки всех фигур на пяти листах и распечатайте на плотной бумаге. Перед тем, как печатать и клеить геометрические фигуры обязательно ознакомьтесь со статьёй о том, как выбрать бумагу и как вообще правильно вырезать, сгибать и клеить бумагу.

Для более качественной печати советую использовать программу AutoCAD, и даю вам развёртки для этой программы , а также читайте, как распечатывать из автокада . Вырежьте развёртки кубиков с первого листа, по линиям сгиба обязательно проведите иголкой циркуля под железную линейку, чтобы бумага хорошо сгибалась. Теперь можно начинать клеить кубики.

Для экономии бумаги и на всякий пожарный я сделал несколько развёрток маленького кубика, мало ли вам захочется склеить не один кубик или что-то не получится с первого раза. Ещё одна несложная фигура это пирамида, её развёртки найдёте на втором листе. Подобные пирамиды стоили древние египтяне, правда не из бумаги и не таких маленьких размеров:)

А это тоже пирамида, только в отличие от предыдущей у неё не четыре, а три грани.

Развёртки трёхгранной пирамиды на первом листе для печати.

И ещё одна забавная пирамидка из пяти граней, её развёртки на 4-ом листе в виде звёздочки в двух экземплярах.

Более сложная фигура это пятигранник, хотя пятигранник сложнее начертить, нежели склеить.

Развёртки пятигранника на втором листе.

Вот мы и добрались до сложных фигур. Теперь придётся поднапрячься, склеить такие фигуры нелегко! Для начала обычный цилиндр, его развёртки на втором листе.

А это более сложная фигура по сравнению с цилиндром, т.к. в её основании не круг, а овал.

Развёртки этой фигуры на втором листе, для овального основания сделано две запасных детали.

Чтобы аккуратно собрать цилиндр его детали нужно клеить встык. С одной стороны дно можно приклеить без проблем, просто поставьте на стол заранее склеенную трубку, положите на дно кружок и залейте клеем изнутри. Следите, чтобы диаметр трубы и круглого дна плотно подходили друг к другу, без щелей, иначе клей протечёт и всё приклеится к столу. Второй кружок приклеить будет сложнее, поэтому приклейте внутри вспомогательные прямоугольники на расстоянии толщины бумаги от края трубы. Эти прямоугольники не дадут упасть основанию внутрь, теперь вы без проблем приклеете кружок сверху.

Цилиндр с овальным основанием можно клеить также как и обычный цилиндр, но он имеет меньшую высоту, поэтому тут проще вставить внутрь гармошку из бумаги, а наверх положить второе основание и по краю приклеить клеем.

Теперь очень сложная фигура - конус. Его детали на третьем листе, запасной кружок для днища на 4-ом листе. Вся сложность склеивания конуса в его острой вершине, а потом ещё будет очень сложно приклеить дно.

Сложная и одновременно простая фигура это шар. Шар состоит из 12-ти пятигранников, развёртки шара на 4-ом листе. Сначала клеится две половинки шара, а потом обе склеиваются вместе.

Довольно интересная фигура - ромб, её детали на третьем листе.

А теперь две очень похожие, но совершенно разные фигуры, их отличие только в основании.

Когда склеите эти обе фигуры, то не сразу поймёте, что это вообще такое, они получились какие-то совсем невосприимчивые.

Ещё одна интересная фигурка это тор, только он у нас очень упрощён, его детали на 5-ом листе.

И наконец, последняя фигура из равносторонних треугольников, даже не знаю, как это назвать, но фигура похожа на звезду. Развёртки этой фигуры на пятом листе.

На сегодня это всё! Я желаю вам успехов в этой нелёгкой работе!

В изометрической проекции все коэффициенты равны между собой:

к = т = п;

3 к 2 = 2,

k = yj 2УЗ - 0,82.

Следовательно, при построении изометрической проекции размеры предмета, откладываемые по аксонометрическим осям, умножают на 0,82. Такой перерасчет размеров неудобен. Поэтому изометрическую проекцию для упрощения, как правило, выполняют без уменьшения размеров (искажения) по осям х, у, I, т.е. принимают приведенный коэффициент искажения равным единице. Получаемое при этом изображение предмета в изометрической проекции имеет несколько большие размеры, чем в действительности. Увеличение в этом случае составляет 22% (выражается числом 1,22 = 1: 0,82).

Каждый отрезок, направленный по осям х, у, z или параллельно им, сохраняет свою величину.

Расположение осей изометрической проекции показано на рис. 6.4. На рис. 6.5 и 6.6 показаны ортогональные (а) и изометрические (б) проекции точки А и отрезка Л В.

Шестигранная призма в изометрии. Построение шестигранной призмы по данному чертежу в системе ортогональных проекций (слева на рис. 6.7) приведено на рис. 6.7. На изометрической оси I откладывают высоту Н, проводят линии, параллельные осям хиу. Отмечают на линии, параллельной оси х, положение точек / и 4.

Для построения точки 2 определяют координаты этой точки на чертеже - х 2 и у 2 и, откладывая эти координаты на аксонометрическом изображении, строят точку 2. Таким же образом строят точки 3, 5 и 6.

Построенные точки верхнего основания соединяют между собой, проводят ребро из точки / до пересечения с осью х, затем -

ребра из точек 2 , 3, 6. Ребра нижнего основания проводят параллельно ребрам верхнего. Построение точки Л, расположенной на боковой грани, по координатам х А (или у А) и 1 А очевидно из

Изометрия окружности. Окружности в изометрии изображаются в виде эллипсов (рис. 6.8) с указанием величин осей эллипсов для приведенных коэффициентов искажения, равных единице.

Большая ось эллипсов расположена под углом 90° для эллипсов, лежащих В ПЛОСКОСТИ хС>1 к ОСИ у, В ПЛОСКОСТИ у01 К ОСИ X, в плоскости хОу К ОСИ?.


При построении изометрического изображения от руки (как рисунка) эллипс выполняют по восьми точкам. Например, лоточкам 1, 2, 3, 4, 5, 6, 7 и 8 (см. рис. 6.8). Точки 1, 2, 3 и 4 находят на соответствующих аксонометрических осях, а точки 5, 6, 7 и 8 строят по величинам соответствующих большой и малой осей элипса. При вычерчивании эллипсы в изометрической проекции можно заменять овалами и строить их следующим образом 1 . Построение показано на рис. 6.8 на примере эллипса, лежащего в плоскости xOz. Из точки / как из центра, делают засечку радиусом R = D на продолжении малой оси эллипса в точке О, (строят также аналогичным образом и симметричную ей точку, которая на чертеже не показана). Из точки О, как из центра проводят дугу CGC радиуса D, которая является одной из дуг, составляющих контур эллипса. Из точки О, как из центра проводят дугу радиуса O^G до пересечения с большой осью эллипса в точках О у Проводя через точки О р 0 3 прямую, находят в пересечении с дугой CGC точку К, которая определяет 0 3 К - величину радиуса замыкающей дуги овала. Точки К являются также точками сопряжения дуг, составляющих овал.

Изометрия цилиндра. Изометрическое изображение цилиндра определяется изометрическими изображениями окружностей его основания. Построение в изометрии цилиндра высотой Н по ортогональному чертежу (рис. 6.9, слева) и точки С на его боковой поверхности показано на рис. 6.9, справа.


Предложено Ю.Б. Ивановым.

Пример построения в изометрической проекции круглого фланца с четырьмя цилиндрическими отверстиями и одним треугольным приведен на рис. 6.10. При построении осей цилиндрических отверстий, а также ребер треугольного отверстия использованы их координаты, например координаты х 0 и у 0 .


Просмотр трехмерных чертежей

До сих пор, работая с двухмерными чертежами, мы видели модель только в одной плоскости – XY . Однако в трех измерениях не обойтись без просмотра модели с разных точек обзора.

Основным видом является так называемый вид в плане – это тот вид, который мы привыкли видеть на двухмерных чертежах. Модель в этом случае изображается так, как если бы мы смотрели на нее сверху – такой вид называется видом в плане. Обычно для вида в плане выбирается наиболее информативный вид.

Из книги AutoCAD 2009 автора Орлов Андрей Александрович

Установки файлов чертежей Все чертежи, созданные в программе AutoCAD, хранятся в файлах с расширением DWG. В таком файле хранится полная информация о чертеже: всевозможные стили, параметры, такие как единицы измерения, режимы черчения и т. д. По мере развития программы формат

Из книги ArCon. Дизайн интерьеров и архитектурное моделирование для всех автора Кидрук Максим Иванович

Просмотр трехмерных чертежей До сих пор, работая с двухмерными чертежами, мы видели модель только в одной плоскости – XY. Однако в трех измерениях не обойтись без просмотра модели с разных точек обзора.Основным видом является так называемый вид в плане – это тот вид,

Из книги ArchiCAD 11 автора Днепров Александр Г

Экспорт трехмерных моделей и чертежей Построенный в программе план или трехмерную модель можно легко экспортировать в один из общеизвестных обменных форматов, чтобы впоследствии использовать в других системах.Для экспорта графического изображения используются

Из книги AutoCAD 2009 для студента. Самоучитель автора Соколова Татьяна Юрьевна

Настройка деталировочных чертежей Инструмент создания деталировочных чертежей вызывается щелчком на кнопке Detail (Деталь) раздела Document (Документ) палитры Tolbox (Палитра инструментов). На информационной палитре появляются его настройки (рис. 12.1). Рис. 12.1. Вид информационной

Из книги ArchiCAD. Начали! автора Орлов Андрей Александрович

Построение деталировочных чертежей Для построения деталировочного чертежа необходимо сделать следующее.1. Активизировать нужное окно. Это может быть окно плана этажа или другого плоского вида: разреза, фасада, интерьера, другого деталировочного чертежа и т. п.2. Выбрать

Из книги AutoCAD 2009. Начали! автора Соколова Татьяна Юрьевна

Из книги AutoCAD 2010 автора Орлов Андрей Александрович

Глава 13 Вывод чертежей на печать Вывод на плоттер Настройка плоттера Вывод на принтер Настройка принтера Настройка параметров выводимого изображения Оформление документацииЗаключительный этап создания проекта – вывод документации. При проектировании

Из книги AutoCAD 2009. Учебный курс автора Соколова Татьяна Юрьевна

Создание и настройка книги чертежей Вы уже привыкли работать с палитрой Navigator (Навигатор), обращаясь к ней по мере необходимости. Наиболее часто использовалась отображаемая по умолчанию его карта Project Map (Карта проекта), в которой расположены планы этажей, разрезы и фасады,

Из книги AutoCAD 2008 для студента: популярный самоучитель автора Соколова Татьяна Юрьевна

Глава 12 Редактирование чертежей Выбор объектов Большинство команд редактирования AutoCAD требует предварительного указания объектов для работы с ними. Выбранные объекты – один или несколько – называются набором. Он может, например, включать в себя все объекты

Из книги автора

Построение деталировочных чертежей Для построения деталировочных чертежей необходимо выполнить следующие действия.1. Активировать необходимое окно – это может быть окно плана этажа или другого плоского вида: разреза, фасада, интерьера, другого деталировочного чертежа

Из книги автора

Глава 10 Команды оформления чертежей Штриховка Команда ВНАТСН, формирующая ассоциативную штриховку, вызывается из падающего меню Draw ? Hatch... или щелчком на пиктограмме Hatch... на панели инструментов Draw. При обращении к команде ВНАТСН загружается диалоговое окно Hatch and Gradient,

Из книги автора

Глава 11 Редактирование чертежей Выбор объектов Большинство команд редактирования AutoCAD требует предварительного указания объектов для работы с ними. Выбранные объекты – один или несколько – называются набором. Такой набор можно создать как до, так и после вызова

Из книги автора

Установки файлов чертежей Все чертежи, созданные в программе AutoCAD, хранятся в файлах с расширением DWG. В таком файле содержится полная информация о чертеже: всевозможные стили, параметры, такие как единицы измерения, режимы черчения и т. д. Формат DWG отличается небольшим

Из книги автора

Глава 12 Редактирование чертежей Выбор объектов Редактирование с помощью ручек Удаление и восстановление объектов Копирование объектов Зеркальное отображение объектов Создание подобных объектов Размножение объектов массивом Перемещение объектов Поворот объектов

Из книги автора

Глава 11 Команды оформления чертежей

Из книги автора

Глава 12 Редактирование чертежей