Мат ожидание нормальной случайной величины. Случайные величины

Математическое ожидание – это среднее значение случайной величины.

Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности:

Пример.

X -4 6 10
р 0,2 0,3 0,5


Решение: Математическое ожидание равно сумме произведений всех возможных значений X на их вероятности:

М (X) = 4*0,2 + 6*0,3 +10*0,5 = 6.


Для вычисления математического ожидания удобно расчеты проводить в Excel (в особенности когда данных много), предлагаем воспользоваться готовым шаблоном ().

Пример для самостоятельного решения (можете применить калькулятор).
Найти математическое ожидание дискретной случайной величины X, заданной законом распределения:

X 0,21 0,54 0,61
р 0,1 0,5 0,4

Математическое ожидание обладает следующими свойствами.

Свойство 1. Математическое ожидание постоянной величины равно самой постоянной: М(С)=С.

Свойство 2. Постоянный множитель можно выносить за знак математического ожидания: М(СХ)=СМ(Х).

Свойство 3. Математическое ожидание произведения взаимно независимых случайных величин равно произведению математических ожиданий сомножителей: М (Х1Х2 ...Хп)=М (X1) М {Х2)*. ..*М (Xn)

Свойство 4. Математическое ожидание суммы случайных величин равно сумме математических ожиданий слагаемых: М(Хг + Х2+...+Хn) = М{Хг)+М(Х2)+…+М(Хn).

Задача 189. Найти математическое ожидание случайной вели­ чины Z, если известны математические ожидания X н Y: Z = X+2Y, M(X) = 5, M(Y) = 3;

Решение: Используя свойства математического ожидания (математическое ожидание суммы равно сумме математических ожи­даний слагаемых; постоянный множитель можно вынести за знак математического ожидания), получим M(Z)=M(X + 2Y)=M(X) + M(2Y)=M(X) + 2M(Y)= 5 + 2*3 = 11.

190. Используя свойства мaтематического ожидания, доказать, что: а) М(Х - Y) = M(X)-М (Y); б) математическое ожидание отклонения X-M(Х) равно нулю.

191. Дискретная случайная величина X принимает три возможных значения: x1= 4 С вероятностью р1 = 0,5; xЗ = 6 С вероятностью P2 = 0,3 и x3 с вероятностью р3. Найти: x3 и р3, зная, что М(Х)=8.

192. Дан перечень возможных значений дискретной случайной величины X: x1 = -1, х2 = 0, x3= 1 также известны математические ожидания этой величины и ее квадрата: M(Х) = 0,1, М(Х^2)=0,9. Найти вероятности p1, p2,p3 соответствующие возможным значениям xi

194. В партии из 10 деталей содержится три нестандартных. Наудачу отобраны две детали. Найти математическое ожидание дискретной случайной величины X - числа нестандартных деталей среди двух отобранных.

196. Найти математическое ожидание дискретной слу­чайной величины X-числа таких бросаний пяти игральных костей, в каждом из которых на двух костях по­ явится по одному очку, если общее число бросаний равно двадцати.



Математическое ожидание биномиального распределения равно произведению числа испытаний на вероятность появления события в одном испытании:

Как уже известно, закон распределения полностью характеризует случайную величину. Однако часто закон распределения неизвестен и приходится ограничиваться меньшими сведениями. Иногда даже выгоднее пользоваться числами, которые описывают случайную величину суммарно; такие числа называют числовыми характеристиками случайной величины. К числу важных числовых характеристик относится математическое ожидание.

Математическое ожидание, как будет показано далее, приближенно равно среднему значению случайной величины. Для решения многих задач достаточно знать математическое ожидание. Например, если известно, что математическое ожидание числа выбиваемых очков у первого стрелка больше, чем у второго, то первый стрелок в среднем выбивает больше очков, чем второй, и, следовательно, стреляет лучше второго. Хотя математическое ожидание дает о случайной величине значительно меньше сведений, чем закон ее распределения, но для решения задач, подобных приведенной и многих других, знание математического ожидания оказывается достаточным.

§ 2. Математическое ожидание дискретной случайной величины

Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности.

Пусть случайная величина X может принимать только значения х 1 , х 2 , ..., х п , вероятности которых соответственно равны р 1 , р 2 , . . ., р п . Тогда математическое ожидание М (X ) случайной величины X определяется равенством

М (X ) = х 1 р 1 + х 2 р 2 + … + x n p n .

Если дискретная случайная величина X принимает счетное множество возможных значений, то

М (Х )=

причем математическое ожидание существует, если ряд в правой части равенства сходится абсолютно.

Замечание. Из определения следует, что математическое ожидание дискретной случайной величины есть неслучайная (постоянная) величина. Рекомендуем запомнить это утверждение, так как далее оно используется многократно. В дальнейшем будет показано, что математическое ожидание непрерывной случайной величины также есть постоянная величина.

Пример 1. Найти математическое ожидание случайной величины X , зная закон ее распределения:

Решение. Искомое математическое ожидание равно сумме произведений всех возможных значений случайной величины на их вероятности:

M (X )= 3* 0, 1+ 5* 0, 6+ 2* 0, 3= 3, 9.

Пример 2. Найти математическое ожидание числа появлений события А в одном испытании, если вероятность события А равна р.

Решение. Случайная величина X - число появлений события А в одном испытании - может принимать только два значения: х 1 = 1 (событие А наступило) с вероятностью р и х 2 = 0 (событие А не наступило) с вероятностью q = 1 -р. Искомое математическое ожидание

M (X )= 1* p + 0* q = p

Итак, математическое ожидание числа появлений события в одном испытании равно вероятности этого события. Этот результат будет использован ниже.

§ 3. Вероятностный смысл математического ожидания

Пусть произведено п испытаний, в которых случайная величина X приняла т 1 раз значение х 1 , т 2 раз значение х 2 ,...,m k раз значение x k , причем т 1 + т 2 + …+т к = п. Тогда сумма всех значений, принятых X , равна

х 1 т 1 + х 2 т 2 + ... + х к т к .

Найдем среднее арифметическое всех значений, принятых, случайной величиной, для чего разделим найденную сумму на общее число испытаний:

= (х 1 т 1 + х 2 т 2 + ... + х к т к )/п,

= х 1 (m 1 / n ) + х 2 (m 2 / n ) + ... + х к (т к /п ). (*)

Заметив, что отношение m 1 / n - относительная частота W 1 значения х 1 , m 2 / n - относительная частота W 2 значения х 2 и т. д., запишем соотношение (*) так:

= х 1 W 1 + x 2 W 2 + .. . + х к W k . (**)

Допустим, что число испытаний достаточно велико. Тогда относительная частота приближенно равна вероятности появления события (это будет доказано в гл. IX, § 6):

W 1 p 1 , W 2 p 2 , …, W k p k .

Заменив в соотношении (**) относительные частоты соответствующими вероятностями, получим

x 1 p 1 + х 2 р 2 + … + х к р к .

Правая часть этого приближенного равенства есть М (X ). Итак,

М (X ).

Вероятностный смысл полученного результата таков: математическое ожидание приближенно равно (тем точнее, чем больше число испытаний) среднему арифметическому наблюдаемых значений случайной величины.

Замечание 1. Легко сообразить, что математическое ожидание больше наименьшего и меньше наибольшего возможных значений. Другими словами, на числовой оси возможные значения расположены слева и справа от математического ожидания. В этом смысле математическое ожидание характеризует расположение распределения и поэтому его часто называют центром распределения.

Этот термин заимствован из механики: если массы р 1 , р 2 , ..., р п расположены в точках с абсциссами x 1 , х 2 , ..., х n , причем
то абсцисса центра тяжести

x c =
.

Учитывая, что
=
M (X ) и
получим М (Х ) = х с .

Итак, математическое ожидание есть абсцисса центра тяжести системы материальных точек, абсциссы которых равны возможным значениям случайной величины, а массы - их вероятностям.

Замечание 2. Происхождение термина «математическое ожидание» связано с начальным периодом возникновения теории вероятностей (XVI - XVII вв.), когда область ее применения ограничивалась азартными играми. Игрока интересовало среднее значение ожидаемого выигрыша, или, иными словами, математическое ожидание выигрыша.

Следующим по важности свойством случайной величины вслед за математическим ожиданием является ее дисперсия, определяемая как средний квадрат отклонения от среднего:

Если обозначить через то дисперсия VX будет ожидаемым значением Это характеристика „разброса" распределения X.

В качестве простого примера вычисления дисперсии предположим, что нам только что сделали предложение, от которого мы не в силах отказаться: некто подарил нам два сертификата для участия в одной лотерее. Устроители лотереи продают каждую неделю по 100 билетов, участвующих в отдельном тираже. В тираже выбирается один их этих билетов посредством равномерного случайного процесса - каждый билет имеет равные шансы быть выбранным - и обладатель этого счастливого билета получает сто миллионов долларов. Остальные 99 владельцев лотерейных билетов не выигрывают ничего.

Мы можем использовать подарок двумя способами: купить или два билета в одной лотерее, или по одному для участия в двух разных лотереях. Какая стратегия лучше? Попытаемся провести анализ. Для этого обозначим через случайные величины, представляющие размер нашего выигрыша по первому и второму билету. Ожидаемое значение в миллионах, равно

и то же самое справедливо для Ожидаемые значения аддитивны, поэтому наш средний суммарный выигрыш составит

независимо от принятой стратегии.

Тем не менее, две стратегии выглядят различными. Выйдем за рамки ожидаемых значений и изучим полностью распределение вероятностей

Если мы купим два билета в одной лотерее, то наши шансы не выиграть ничего составят 98% и 2% - шансы на выигрыш 100 миллионов. Если же мы купим билеты на разные тиражи, то цифры будут такими: 98.01% - шанс не выиграть ничего, что несколько больше, чем ранее; 0.01% - шанс выиграть 200 миллионов, также чуть больше, чем было ранее; и шанс выиграть 100 миллионов теперь составляет 1.98%. Таким образом, во втором случае распределение величины несколько более разбросано; среднее значение, 100 миллионов долларов, несколько менее вероятно, тогда как крайние значения более вероятны.

Именно это понятие разброса случайной величины призвана отразить дисперсия. Мы измеряем разброс через квадрат отклонения случайной величины от ее математического ожидания. Таким образом, в случае 1 дисперсия составит

в случае 2 дисперсия равна

Как мы и ожидали, последняя величина несколько больше, поскольку распределение в случае 2 несколько более разбросано.

Когда мы работаем с дисперсиями, то все возводится в квадрат, так что в результате могут получиться весьма большие числа. (Множитель есть один триллион, это должно впечатлить

даже привычных к крупным ставкам игроков.) Для преобразования величин в более осмысленную исходную шкалу часто извлекают квадратный корень из дисперсии. Полученное число называется стандартным отклонением и обычно обозначается греческой буквой а:

Стандартные отклонения величины для наших двух лотерейных стратегий составят . В некотором смысле второй вариант примерно на 71247 долларов рискованнее.

Каким образом дисперсия помогает в выборе стратегии? Это не ясно. Стратегия с большей дисперсией рискованнее; но что лучше для нашего кошелька - риск или безопасная игра? Пусть у нас есть возможность купить не два билета, а все сто. Тогда мы могли бы гарантировать выигрыш в одной лотерее (и дисперсия была бы нулевой); или же можно было сыграть в сотне разных тиражей, ничего не получая с вероятностью зато имея ненулевой шанс на выигрыш вплоть до долларов. Выбор одной из этих альтернатив лежит за рамками этой книги; все, что мы можем сделать здесь,- это объяснить, как произвести подсчеты.

В действительности имеется более простой способ вычисления дисперсии, чем прямое использование определения (8.13). (Есть все основания подозревать здесь какую-то скрытую от глаз математику; иначе с чего бы дисперсия в лотерейных примерах оказалась целым кратным Имеем

поскольку - константа; следовательно,

„Дисперсия есть среднее значение квадрата минус квадрат среднего значения"

Например, в задаче про лотерею средним значением оказывается или Вычитание (квадрата среднего) дает результаты, которые мы уже получили ранее более трудным путем.

Есть, однако, еще более простая формула, применимая, когда мы вычисляем для независимых X и Y. Имеем

поскольку, как мы знаем, для независимых случайных величин Следовательно,

„Дисперсия суммы независимых случайных величин равняется сумме их дисперсий" Так, например, дисперсия суммы, которую можно выиграть на один лотерейный билет, равняется

Следовательно, дисперсия суммарного выигрыша по двум лотерейным билетам в двух различных (независимых) лотереях составит Соответствующее значение дисперсии для независимых лотерейных билетов будет

Дисперсия суммы очков, выпавших на двух кубиках, может быть получена по той же формуле, поскольку есть сумма двух независимых случайных величин. Имеем

для правильного кубика; следовательно, случае смещенного центра масс

следовательно, если у обоих кубиков центр масс смещен. Заметьте, что в последнем случае дисперсия больше, хотя принимает среднее значение 7 чаще, чем в случае правильных кубиков. Если наша цель - выбросить побольше приносящих удачу семерок, то дисперсия - не лучший показатель успеха.

Ну хорошо, мы установили, как вычислить дисперсию. Но мы пока не дали ответа на вопрос, почему надо вычислять именно дисперсию. Все так делают, но почему? Основная причина заключается в неравенстве Чебышева которое устанавливает важное свойство дисперсии:

(Это неравенство отличается от неравенств Чебышёва для сумм, встретившихся нам в гл. 2.) На качественном уровне (8.17) утверждает, что случайная величина X редко принимает значения, далекие от своего среднего если ее дисперсия VX мала. Доказательство

тельство необычайно просто. Действительно,

деление на завершает доказательство.

Если мы обозначим математическое ожидание через а стандартное отклонение - через а и заменим в (8.17) на то условие превратится в следовательно, мы получим из (8.17)

Таким образом, X будет лежать в пределах -кратного стандартного отклонения от своего среднего значения за исключением случаев, вероятность которых не превышает Случайная величина будет лежать в пределах 2а от по крайней мере для 75% испытаний; в пределах от до - по крайней мере для 99%. Это случаи неравенства Чебышёва.

Если бросить пару кубиков раз, то общая сумма очков во всех бросаниях почти всегда, при больших будет близка к Причина этого следующая: дисперсия независимых бросаний составит Дисперсия в означает стандартное отклонение всего

Поэтому из неравенства Чебышёва получаем, что сумма очков будет лежать между

по крайней мере для 99% всех бросаний правильных кубиков. Например, итог миллиона бросаний с вероятностью более 99% будет заключен между 6.976 млн и 7.024 млн.

В общем случае, пусть X - любая случайная величина на вероятностном пространстве П, имеющая конечное математическое ожидание и конечное стандартное отклонение а. Тогда можно ввести в рассмотрение вероятностное пространство Пп, элементарными событиями которого являются -последовательности где каждое , а вероятность определяется как

Если теперь определить случайные величины формулой

то величина

будет суммой независимых случайных величин, которая соответствует процессу суммирования независимых реализаций величины X на П. Математическое ожидание будет равно а стандартное отклонение - ; следовательно, среднее значение реализаций,

будет лежать в пределах от до по крайней мере в 99% временного периода. Иными словами, если выбрать достаточно большое то среднее арифметическое независимых испытаний будет почти всегда очень близко к ожидаемому значению (В учебниках теории вероятностей доказывается еще более сильная теорема, называемая усиленным законом больших чисел; но нам достаточно и простого следствия неравенства Чебышёва, которое мы только что вывели.)

Иногда нам не известны характеристики вероятностного пространства, но требуется оценить математическое ожидание случайной величины X при помощи повторных наблюдений ее значения. (Например, нам могла бы понадобиться средняя полуденная температура января в Сан-Франциско; или же мы хотим узнать ожидаемую продолжительность жизни, на которой должны основывать свои расчеты страховые агенты.) Если в нашем распоряжении имеются независимые эмпирические наблюдения то мы можем предположить, что истинное математическое ожидание приблизительно равно

Можно оценить и дисперсию, используя формулу

Глядя на эту формулу, можно подумать, что в ней - типографская ошибка; казалось бы, там должно стоять как в (8.19), поскольку истинное значение дисперсии определяется в (8.15) через ожидаемые значения. Однако замена здесь на позволяет получить лучшую оценку, поскольку из определения (8.20) вытекает, что

Вот доказательство:

(В этой выкладке мы опираемся на независимость наблюдений, когда заменяем на )

На практике для оценки результатов эксперимента со случайной величиной X обычно вычисляют эмпирическое среднее и эмпирическое стандартное отклонение после чего записывают ответ в виде Вот, например, результаты бросаний пары кубиков, предположительно правильных.

Решение:

6.1.2 Свойства математического ожидания

1. Математическое ожидание постоянной величины равно самой постоянной.

2. Постоянный множитель можно выносить за знак математического ожидания.

3. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий.

Это свойство справедливо для произвольного числа случайных величин.

4. Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых.

Это свойство также справедливо для произвольного числа случайных величин.

Пример: M(X) = 5, M(Y) = 2. Найти математическое ожидание случайной величины Z , применив свойства математического ожидания, если известно, что Z=2X + 3Y .

Решение: M(Z) = M(2X + 3Y) = M(2X) + M(3Y) = 2M(X) + 3M(Y) = 2∙5+3∙2 =

1) математическое ожидание суммы равно сумме математических ожиданий

2) постоянный множитель можно вынести за знак математического ожидания

Пусть производится n независимых испытаний, вероятность появления события А в которых равна р. Тогда имеет место следующая теорема:

Теорема. Математическое ожидание М(Х) числа появления события А в n независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании.

6.1.3 Дисперсия дискретной случайной величины

Математическое ожидание не может полностью характеризовать случайный процесс. Кроме математического ожидания надо ввести величину, которая характеризует отклонение значений случайной величины от математического ожидания.

Это отклонение равно разности между случайной величиной и ее математическим ожиданием. При этом математическое ожидание отклонения равно нулю. Это объясняется тем, что одни возможные отклонения положительны, другие отрицательны, и в результате их взаимного погашения получается ноль.

Дисперсией (рассеиванием) дискретной случайной величины называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания.

На практике подобный способ вычисления дисперсии неудобен, т.к. приводит при большом количестве значений случайной величины к громоздким вычислениям.

Поэтому применяется другой способ.

Теорема. Дисперсия равна разности между математическим ожиданием квадрата случайной величины Х и квадратом ее математического ожидания .

Доказательство. С учетом того, что математическое ожидание М(Х) и квадрат математического ожидания М 2 (Х) – величины постоянные, можно записать:

Пример. Найти дисперсию дискретной случайной величины заданной законом распределения.

Х
Х 2
р 0.2 0.3 0.1 0.4

Решение: .

6.1.4 Свойства дисперсии

1. Дисперсия постоянной величины равна нулю. .

2. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат. .

3. Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин. .

4. Дисперсия разности двух независимых случайных величин равна сумме дисперсий этих величин. .

Теорема. Дисперсия числа появления события А в п независимых испытаний, в каждом из которых вероятность р появления события постоянна, равна произведению числа испытаний на вероятности появления и непоявления события в каждом испытании.

Пример: Найти дисперсию ДСВ Х – числа появлений события А в 2-х независимых испытаниях, если вероятность появления события в этих испытаниях одинаковы и известно, что M(X) = 1,2.

Применим теорему из п. 6.1.2:

M(X) = np

M(X) = 1,2; n = 2. Найдём p :

1,2 = 2∙p

p = 1,2/2

q = 1 – p = 1 – 0,6 = 0,4

Найдём дисперсию по формуле :

D(X) = 2∙0,6∙0,4 = 0,48

6.1.5 Среднее квадратическое отклонение дискретной случайной величины

Средним квадратическим отклонением случайной величины Х называется квадратный корень из дисперсии.

(25)

Теорема. Среднее квадратичное отклонение суммы конечного числа взаимно независимых случайных величин равно квадратному корню из суммы квадратов средних квадратических отклонений этих величин.

6.1.6 Мода и медиана дискретной случайной величины

Модой M o ДСВ называется наиболее вероятное значение случайной величины (т.е. значение, которое имеет наибольшую вероятность)

Медианой M e ДСВ называется значение случайной величины, которое делит ряд распределения пополам. Если число значений случайной величины чётное, то медиана находится как среднее арифметическое двух средних значений.

Пример: Найти моду и медиану ДСВ Х :

X
p 0.2 0.3 0.1 0.4

M e = = 5,5

Ход работы

1. Ознакомиться с теоретической частью данной работы (лекции, учебник).

2. Выполнить задание по своему варианту.

3. Составить отчет по работе.

4. Защитить работу.

2. Цель работы.

3. Ход работы.

4. Решение своего варианта.


6.4 Варианты заданий для самостоятельной работы

Вариант №1

1. Найти математическое ожидание, дисперсию, среднее квадратическое отклонение, моду и медиану ДСВ X, заданной законом распределения.

X
P 0.1 0.6 0.2 0.1

2. Найти математическое ожидание случайной величины Z, если известны математические ожидания X и Y: M(Х)=6, M(Y)=4, Z=5X+3Y.

3. Найти дисперсию ДСВ Х – числа появлений события А в двух независимых испытаниях, если вероятности появления событий в этих испытаниях одинаковы и известно, что М (Х) = 1.

4. Дан перечень возможных значений дискретной случайной величины Х : x 1 = 1, x 2 = 2, x 3

Вариант №2

X
P 0.3 0.1 0.2 0.4

2. Найти математическое ожидание случайной величины Z, если известны математические ожидания X и Y: M(Х)=5, M(Y)=8, Z=6X+2Y.

3. Найти дисперсию ДСВ Х – числа появлений события А в трёх независимых испытаниях, если вероятности появления событий в этих испытаниях одинаковы и известно, что М (Х) = 0,9.

x 1 = 1, x 2 = 2, x 3 = 4, x 4 = 10, а также известны математические ожидания этой величины и её квадрата: , . Найти вероятности , , , соответствующие возможным значениям , , и составить закон распределения ДСВ.

Вариант №3

1. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение ДСВ X, заданной законом распределения.

X
P 0.5 0.1 0.2 0.3

2. Найти математическое ожидание случайной величины Z, если известны математические ожидания X и Y: M(Х)=3, M(Y)=4, Z=4X+2Y.

3. Найти дисперсию ДСВ Х – числа появлений события А в четырёх независимых испытаниях, если вероятности появления событий в этих испытаниях одинаковы и известно, что М (х) = 1,2.

4. Дан перечень возможных значений дискретной случайной величины Х: x 1 = 0, x 2 = 1, x 3 = 2, x 4 = 5, а также известны математические ожидания этой величины и её квадрата: , . Найти вероятности , , , соответствующие возможным значениям , , и составить закон распределения ДСВ.

Вариант №4

1. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение ДСВ X, заданной законом распределения.

Основные числовые характеристики дискретных и непрерывных случайных величин: математическое ожидание, дисперсия и среднее квадратическое отклонение. Их свойства и примеры.

Закон распределения (функция распределения и ряд распределения или плотность веро-ятности) полностью описывают поведение случайной величины. Но в ряде задач доста-точно знать некоторые числовые характеристики исследуемой величины (например, ее среднее значение и возможное отклонение от него), чтобы ответить на поставленный во-прос. Рассмотрим основные числовые характеристики дискретных случайных величин.

Определение 7.1. Математическим ожиданием дискретной случайной величины называ-ется сумма произведений ее возможных значений на соответствующие им вероятности:

М (Х ) = х 1 р 1 + х 2 р 2 + … + х п р п. (7.1)

Если число возможных значений случайной величины бесконечно, то , если полученный ряд сходится абсолютно.

Замечание 1. Математическое ожидание называют иногда взвешенным средним , так как оно приближенно равно среднему арифметическому наблюдаемых значений случайной величины при большом числе опытов.

Замечание 2. Из определения математического ожидания следует, что его значение не меньше наименьшего возможного значения случайной величины и не больше наибольше-го.

Замечание 3. Математическое ожидание дискретной случайной величины есть неслучай-ная (постоянная) величина. В дальнейшем увидим, что это же справедливо и для непре-рывных случайных величин.

Пример 1. Найдем математическое ожидание случайной величины Х - числа стандартных деталей среди трех, отобранных из партии в 10 деталей, среди которых 2 бракованных. Составим ряд распределения для Х . Из условия задачи следует, что Х может принимать значения 1, 2, 3. Тогда

Пример 2. Определим математическое ожидание случайной величины Х - числа бросков монеты до первого появления герба. Эта величина может принимать бесконечное число значений (множество возможных значений есть множество натуральных чисел). Ряд ее распределения имеет вид:

Х п
р 0,5 (0,5) 2 (0,5) п

+ (при вычислении дважды использовалась формула суммы бесконечно убывающей геометрической прогрессии: , откуда ).

Свойства математического ожидания.

1) Математическое ожидание постоянной равно самой постоянной:

М (С ) = С. (7.2)

Доказательство. Если рассматривать С как дискретную случайную величину, принимающую только одно значение С с вероятностью р = 1, то М (С ) = С ?1 = С .

2) Постоянный множитель можно выносит за знак математического ожидания:

М (СХ ) = С М (Х ). (7.3)

Доказательство. Если случайная величина Х задана рядом распределения


Тогда М (СХ ) = Сх 1 р 1 + Сх 2 р 2 + … + Сх п р п = С ( х 1 р 1 + х 2 р 2 + … + х п р п ) = СМ (Х ).

Определение 7.2. Две случайные величины называются независимыми , если закон распределения одной из них не зависит от того, какие значения приняла другая. В противном случае случайные величины зависимы .

Определение 7.3. Назовем произведением независимых случайных величин Х и Y случайную величину XY , возможные значения которой равны произведениям всех возможных значений Х на все возможные значения Y , а соответствующие им вероят-ности равны произведениям вероятностей сомножителей.

3) Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:

M (XY ) = M (X )M (Y ). (7.4)

Доказательство. Для упрощения вычислений ограничимся случаем, когда Х и Y принимают только по два возможных значения:

Следовательно, M (XY ) = x 1 y 1 ?p 1 g 1 + x 2 y 1 ?p 2 g 1 + x 1 y 2 ?p 1 g 2 + x 2 y 2 ?p 2 g 2 = y 1 g 1 (x 1 p 1 + x 2 p 2) + + y 2 g 2 (x 1 p 1 + x 2 p 2) = (y 1 g 1 + y 2 g 2) (x 1 p 1 + x 2 p 2) = M (X )?M (Y ).

Замечание 1. Аналогично можно доказать это свойство для большего количества возможных значений сомножителей.

Замечание 2. Свойство 3 справедливо для произведения любого числа независимых случайных величин, что доказывается методом математической индукции.

Определение 7.4. Определим сумму случайных величин Х и Y как случайную величину Х + Y , возможные значения которой равны суммам каждого возможного значения Х с каждым возможным значением Y ; вероятности таких сумм равны произведениям вероятностей слагаемых (для зависимых случайных величин - произведениям вероятности одного слагаемого на условную вероятность второго).

4) Математическое ожидание суммы двух случайных величин (зависимых или незави-симых) равно сумме математических ожиданий слагаемых:

M (X + Y ) = M (X ) + M (Y ). (7.5)

Доказательство.

Вновь рассмотрим случайные величины, заданные рядами распределения, приведен-ными при доказательстве свойства 3. Тогда возможными значениями X + Y являются х 1 + у 1 , х 1 + у 2 , х 2 + у 1 , х 2 + у 2 . Обозначим их вероятности соответственно как р 11 , р 12 , р 21 и р 22 . Найдем М (Х +Y ) = (x 1 + y 1)p 11 + (x 1 + y 2)p 12 + (x 2 + y 1)p 21 + (x 2 + y 2)p 22 =

= x 1 (p 11 + p 12) + x 2 (p 21 + p 22) + y 1 (p 11 + p 21) + y 2 (p 12 + p 22).

Докажем, что р 11 + р 22 = р 1 . Действительно, событие, состоящее в том, что X + Y примет значения х 1 + у 1 или х 1 + у 2 и вероятность которого равна р 11 + р 22 , совпадает с событием, заключающемся в том, что Х = х 1 (его вероятность - р 1). Аналогично дока-зывается, что p 21 + p 22 = р 2 , p 11 + p 21 = g 1 , p 12 + p 22 = g 2 . Значит,

M (X + Y ) = x 1 p 1 + x 2 p 2 + y 1 g 1 + y 2 g 2 = M (X ) + M (Y ).

Замечание . Из свойства 4 следует, что сумма любого числа случайных величин равна сумме математических ожиданий слагаемых.

Пример. Найти математическое ожидание суммы числа очков, выпавших при броске пяти игральных костей.

Найдем математическое ожидание числа очков, выпавших при броске одной кости:

М (Х 1) = (1 + 2 + 3 + 4 + 5 + 6)Тому же числу равно математическое ожидание числа очков, выпавших на любой кости. Следовательно, по свойству 4 М (Х )=

Дисперсия .

Для того, чтобы иметь представление о поведении случайной величины, недостаточно знать только ее математическое ожидание. Рассмотрим две случайные величины: Х и Y , заданные рядами распределения вида

Х
р 0,1 0,8 0,1
Y
p 0,5 0,5

Найдем М (Х ) = 49?0,1 + 50?0,8 + 51?0,1 = 50, М (Y ) = 0?0,5 + 100?0,5 = 50. Как видно, мате-матические ожидания обеих величин равны, но если для Х М (Х ) хорошо описывает пове-дение случайной величины, являясь ее наиболее вероятным возможным значением (при-чем остальные значения ненамного отличаются от 50), то значения Y существенно отсто-ят от М (Y ). Следовательно, наряду с математическим ожиданием желательно знать, на-сколько значения случайной величины отклоняются от него. Для характеристики этого показателя служит дисперсия.

Определение 7.5. Дисперсией (рассеянием) случайной величины называется математическое ожидание квадрата ее отклонения от ее математического ожидания:

D (X ) = M (X - M (X ))². (7.6)

Найдем дисперсию случайной величины Х (числа стандартных деталей среди отобранных) в примере 1 данной лекции. Вычислим значения квадрата отклонения каждого возможно-го значения от математического ожидания:

(1 - 2,4) 2 = 1,96; (2 - 2,4) 2 = 0,16; (3 - 2,4) 2 = 0,36. Следовательно,

Замечание 1. В определении дисперсии оценивается не само отклонение от среднего, а его квадрат. Это сделано для того, чтобы отклонения разных знаков не компенсировали друг друга.

Замечание 2. Из определения дисперсии следует, что эта величина принимает только неотрицательные значения.

Замечание 3. Существует более удобная для расчетов формула для вычисления дисперсии, справедливость которой доказывается в следующей теореме:

Теорема 7.1. D (X ) = M (X ²) - M ²(X ). (7.7)

Доказательство.

Используя то, что М (Х ) - постоянная величина, и свойства математического ожидания, преобразуем формулу (7.6) к виду:

D (X ) = M (X - M (X ))² = M (X ² - 2X?M (X ) + M ²(X )) = M (X ²) - 2M (X )?M (X ) + M ²(X ) =

= M (X ²) - 2M ²(X ) + M ²(X ) = M (X ²) - M ²(X ), что и требовалось доказать.

Пример. Вычислим дисперсии случайных величин Х и Y , рассмотренных в начале этого раздела. М (Х ) = (49 2 ?0,1 + 50 2 ?0,8 + 51 2 ?0,1) - 50 2 = 2500,2 - 2500 = 0,2.

М (Y ) = (0 2 ?0,5 + 100²?0,5) - 50² = 5000 - 2500 = 2500. Итак, дисперсия второй случайной величины в несколько тысяч раз больше дисперсии первой. Таким образом, даже не зная законов распределения этих величин, по известным значениям дисперсии мы можем утверждать, что Х мало отклоняется от своего математического ожидания, в то время как для Y это отклонение весьма существенно.

Свойства дисперсии.

1) Дисперсия постоянной величины С равна нулю:

D (C ) = 0. (7.8)

Доказательство. D (C ) = M ((C - M (C ))²) = M ((C - C )²) = M (0) = 0.

2) Постоянный множитель можно выносить за знак дисперсии, возведя его в квадрат:

D (CX ) = C ²D (X ). (7.9)

Доказательство. D (CX ) = M ((CX - M (CX ))²) = M ((CX - CM (X ))²) = M (C ²(X - M (X ))²) =

= C ²D (X ).

3) Дисперсия суммы двух независимых случайных величин равна сумме их дисперсий:

D (X + Y ) = D (X ) + D (Y ). (7.10)

Доказательство. D (X + Y ) = M (X ² + 2XY + Y ²) - (M (X ) + M (Y ))² = M (X ²) + 2M (X )M (Y ) +

+ M (Y ²) - M ²(X ) - 2M (X )M (Y ) - M ²(Y ) = (M (X ²) - M ²(X )) + (M (Y ²) - M ²(Y )) = D (X ) + D (Y ).

Следствие 1. Дисперсия суммы нескольких взаимно независимых случайных величин равна сумме их дисперсий.

Следствие 2. Дисперсия суммы постоянной и случайной величин равна дисперсии случайной величины.

4) Дисперсия разности двух независимых случайных величин равна сумме их дисперсий:

D (X - Y ) = D (X ) + D (Y ). (7.11)

Доказательство. D (X - Y ) = D (X ) + D (-Y ) = D (X ) + (-1)²D (Y ) = D (X ) + D (X ).

Дисперсия дает среднее значение квадрата отклонения случайной величины от среднего; для оценки самого отклонения служит величина, называемая средним квадратическим отклонением.

Определение 7.6. Средним квадратическим отклонением σ случайной величины Х называется квадратный корень из дисперсии:

Пример. В предыдущем примере средние квадратические отклонения Х и Y равны соответственно