Равнодействующая сил инерции. Неинерциальные системы отсчета

Для того чтобы второй закон Ньютона выполнялся в неинерциальных системах отсчета в дополнение к силам, которые действуют на тела вводят силы инерции.

Определение и формула силы инерции

ОПРЕДЕЛЕНИЕ

Силой инерции называют силу, которая вводится только потому, что система координат, в которой происходит рассмотрение движения тел, является неинерциальной.

Возникновение сил инерции не связано с действием каких-либо тел. Напомним, что неинерциальными системами отсчета являются любые системы, движущейся с ускорением относительно инерциальных систем.

Третий закон Ньютона для сил инерции не выполняется.

Пусть ускорение тела относительно инерциальной системы отсчета равно . Обычно такое ускорение называют абсолютным, при этом ускорение тела относительно неинерциальной системы отсчета носит название относительного (). Второй закон Ньютона для инерциальной системы отсчета запишем как:

где - равнодействующая сила, приложенная к телу массы m. В неинерциальной системе отсчета:

поскольку:

Добавим к правой части выражения (2) силы инерции, так чтобы выполнялся второй закон Ньютона в неинерциальной системе отсчета:

В таком случае получим, что сила инерции равна:

Формула (5) для силы инерции дает верное описание движения в неинерциальной системе отсчета. При этом нахождение разности относительного и абсолютного ускорений является кинематической задачей. Ее можно решить, если известен характер движения неинерциальной системы отсчета относительно инерциальной.

Системы отсчета, движущиеся прямолинейно с постоянным ускорением

Система отсчета, которая перемещается прямолинейно с постоянным ускорением - это простейший случай неинерциальной системы. Рассмотрим неинерциальную систему отсчета, которая движется прямолинейно с постоянным ускорением (переносное ускорение) относительно инерциальной системы отсчета. Тогда:

Согласно формуле (5) сила инерции равна:

Вращающаяся система отсчета

Рассмотрим систему отсчета, вращающуюся относительно неподвижной оси с постоянной скоростью . Для тела находящегося в состоянии покоя в такой системе отсчета формулу для силы инерции можно записать как:

где - радиус-вектор, по величине равный расстоянию от оси вращения до рассматриваемого тела, направленный от центра к телу. Сила инерции (8) называется центробежной силой инерции.

Все тела на поверхности Земли испытывают действие центробежной силы инерции.

Отметим, что всякую задачу можно решить в инерциальной системе отсчета. Применение неинерциальных систем продиктовано соображениями удобства применения неинерциальных систем.

Примеры решения задач по теме «Сила инерции»

ПРИМЕР 1

Задание Какова сила нормального давления тела (вес) на поверхность Земли, если тело неподвижно, имеет массу m. Находится на широте . Радиус Земли считать равным R.
Решение Сделаем рисунок.

Свяжем систему отсчета с Землей. На груз в этой системе отсчета действуют силы: сила тяжести (); сила реакции опоры (); сила трения покоя (). Кроме этих сил, так как систему отсчета связанную с Землей в нашем случае инерциальной считать не будем, действует центробежная сила инерции (). Формулу для расчета силы инерции возьмем:

где радиус траектории (окружности) по которой движется груз.

Систему координат выберем так, что ее начало совпадет с центром тела, ось Y будет перпендикулярна поверхности Земли, ось X - касательная к поверхности Земли (см. рис.1). Так как тело не движется относительно Земли, то второй закон Ньютона запишем как:

В проекциях на оси X и Y выражения (1.2), учитывая (1.1) имеем:

Так как вес тела (P) по величине равен (N), выразим его из первого уравнения системы (1.3), получим:

Ответ

Законы Ньютона выполняются только в инерциальных системах отсчета. Относительно всех инерциальных систем данное тело движется с одинаковым ускорением w. Любая неинерциальная система отдчета движется относительно инерциальных систем с некоторым ускорением, поэтому ускорение тела в неинерциальной системе отсчета будет сдлично от Обозначим разность ускорений тела и инерциальной и неинерциальной системах символом а:

Для поступательно движущейся неинерциальной системы а одинаково для всех точек пространства и представляет собой ускорение неинерциальной системы отсчета. Для вращающейся неинерциальной системы а в разных точках пространства будет различным , где - радиус-вектор, определяющий положение точки относительно неинерциальной системы отсчета).

Пусть результирующая всех сил, обусловленных действием на данное тело со стороны других тел, равна F. Тогда согласно второму закону Ньютона ускорение тела относительно любой инерциальной системы отсчета равно

Ускорение же тела относительно некоторой неинерциальной системы можно в соответствии с (32.1) представить в виде.

Отсюда следует, что даже при тело будет двигаться по отношению к неинерциальной системе отсчета с ускорением - а, т. е. так, как если бы на него действовала сила, равная .

Сказанное означает, что при описании движения в неинерциальных системах отсчета можно пользоваться уравнениями Ньютона, если наряду с силами, обусловленными воздействием тел друг на друга, учитывать так называемые сил и инерции которые следует полагать равными произведению массы тела на взятую с обратным знаком разность его ускорений по отношению к инерциальной и неинерциальной системам отсчета:

Соответственно уравнение второго закона Ньютона в неинерциальной системе отсчета будет иметь вид

Поясним наше утверждение следующим примером. Рассмотрим тележку с укрепленным на ней кронштейном, к которому подвешен на нити шарик (рис. 32.1). Пока тележка покоится или движется без ускорения, нить расположена вертикально и сила тяжести Р уравновешивается реакцией нити Теперь приведем тележку в поступательное движение и ускорением а. Нить отклонится от вертикали на такой угол, чтобы результирующая сил , сообщала шарику ускорение, равное . Относительно системы отсчета, связанной с тележкой, шарик покоится, несмотря на то, что результирующая сил отлична от Ъуля. Отсутствие ускорения шарика по отношению к этой системе отсчета можно формально объяснить тем, что, кроме сил Р и F, равных, в сумме та, на шарик действует еще и сила инерции

Введение сил инерции дает возможность описывать движение тел в любых (как инерциальных, так и неинерциальных) системах отсчета с помощью одних я тех уравнений движения.

Следует отчетливо понимать, что силы инерции нельзя ставить в один ряд с такими силами, как упругие, гравитационные силы и силы трения, т. е. силами, обусловленными воздействием на тело со стороны других, тел. Сиды инерции обусловлены свойствами той системы отсчета, в которой рассматриваются механические явления. В этом смысле их можно назвать фиктивными силами.

Введение в рассмотрение сил инерции не является принципиально необходимым. В принципе любое движение можно всегда рассмотреты по отношению к инерциальной системе отсчета. Однако практически часто представляет интерес как раз движение тел по отношению к неинерциальным системам отсчета, например по отношению к земной новерхности.

Использование сил инерции даёт возможность решить соответствующую задачу непосредственно по отношению к такой системе отсчета, что часто оказывается значительно проще, чем рассмотрение движения в инерциальной системе.

Характерным свойством сил инерции является их пропорциональность массе тела. Благодаря этому свойству силы инерции оказываются аналогичными силам тяготения. Представим себе, что мы находимся в удаленной от всех внешних тел закрытой кабине, которая движется с ускорением g в направлении, которое мы назовем «верхом» (рис. 32.2). Тогда все тела, находящиеся внутри кабины, будут вести себя так, как если бы на них действовала сила инерции -mg. В частности, пружина, к концу которой подвешено тело массы , растянется так, чтобы упругая сила уравновесила силу инерции -mg. Однако такие же явлений наблюдались бы и в том случае, если бы кабина была неподвижной и находилась вблизи, поверхности Земли. Не имея возможности «выглянуть» за пределы кабины, никакими опытами, проводимыми внутри кабины, Мы не смогли бы установить чем обусловлена сила -mg ускоренным движением кабины или действием гравитационного поля Земли. На этом основании сворят об эквивалентности сил инерции и тяготения. Эта эквивалентность лежит в обиове общей теории относительности Эйнштейна.

Пусть на материальную точку М действует некоторая система сил .

Среди сил могут быть активные силы и реакции связей.

На основании аксиомы независимости действия сил точка М под действием этих сил получит такое же ускорение, как если бы на нее действовала, лишь одна сила, равная геометрической сумме заданных сил,

где а - ускорение точки М ; m - масса точки М F Σ ; - равнодействующая системы сил.

Перенесем вектор, стоящий в левой части уравнения, в правую часть. После этого получим сумму векторов, равную нулю,

Введем обозначение, тогда приведенное уравнение можно представить в виде:

Таким образом, все силы, включая силу , должны уравновешиваться, так как силы и F Σ равны между собой и направлены по одной прямой в противоположные стороны. Сила , равная произведению массы точки на ее ускорение, но направленная в сторону, противоположную ускорению, называется силой инерции.

Из последнего уравнения следует, что в каждый данный момент времени силы, приложенные к материальной точке, уравновешиваются силами инерции. Приведенный вывод называют началом Д"Аламбера. Он может быть применен не только к материальной точке, но и к твердому телу или к системе тел. В последнем случае он формулируется следующим образом: если ко всем действующим силам, приложенным к движущемуся телу или системе тел, приложить силы инерции, то полученную систему сил можно рассматривать как находящуюся в равновесии.

Следует подчеркнуть, что силы инерции действительно существуют, но приложены не к движущемуся телу, а к тем телам, которые вызывают ускоренное движение.

Применение начала Д"Аламбера позволяет при решении динамических задач использовать уравнения равновесия. Такой прием решения задач динамики носит название метода кинетостатики .

Рассмотрим, как определяется сила инерции материальной точки в различных случаях ее движения.

1. Точка М массой m движется прямолинейно с ускорением (рис. а, б).

При прямолинейном движении направление ускорения совпадает с траекторией. Сила инерции направлена в сторону, противоположную ускорению, и численное значение ее определяется по формуле:

При ускоренном движении (рис. а) направления ускорения и скорости совпадают и сила инерции направлена в сторону, противоположную движению. При замедленном движении (рис. б), когда ускорение направлено в сторону, обратную скорости, сила инерции действует по направлению движения.

2. Точка М движется криволинейно и неравномерно (рис. в).

При этом, как известно из предыдущего, ее ускорение может быть разложено на нормальную а n и касательную a t составляющие. Аналогично сила инерции точки также складывается из двух составляющих: нормальной и касательной.

Нормальная составляющая силы инерции равна произведению массы точки на нормальное ускорение и направлена противоположно этому ускорению:

Касательная составляющая силы инерции равна произведению массы точки на касательное ускорение и направлена противоположно этому ускорению:

Очевидно, что полная сила инерции точки М равна геометрической сумме нормальной и касательной составляющих, т. е.

Учитывая, что касательная и нормальная составляющие взаимно перпендикулярны, полная сила инерции:

3.3 Работа постоянной силы на прямолинейном перемещении

Определим работу для случая, когда действующая сила постоянна по величине и направлению, а точка ее приложения перемещается по прямолинейной траектории. Рассмотрим материальную точку С, к которой приложена постоянная по значению и направлению сила F.

За некоторый промежуток времени t точка С переместилась в положение С 1 по прямолинейной траектории на расстояние s .

Работа A постоянной силы F при прямолинейном движении точки ее приложения равна произведению модуля силы F на расстояние s и на косинус угла между направлением силы и направлением перемещения, т. е.

Угол α между направлением силы и направлением движения может меняться в пределах от 0 до 180°. При α < 90° работа положительна, при α> 90° - отрицательна, при α = 90° A = 0 (работа равна нулю).

Если cила составляет с направлением движения острый угол, она называется движущей силой, ее работа всегда положительна. Если угол между направлениями силы и перемещения тупой, сила оказывает сопротивление движению, совершает отрицательную работу и носит название силы сопротивления. Примерами сил сопротивления могут служить силы резания, трения, сопротивления воздуха и другие, которые всегда направлены в сторону, противоположную движению.

Когдаα = 0, т. е. когда направление силы совпадает с направлением скорости, A = Fs , так как cos α = 1. Произведение F cos α есть проекция силы F на направление движения материальной точки. Следовательно, работу силы можно определить как произведение перемещения s и проекции силы F на направление движения точки.

За единицу работы в Международной системе единиц (СИ) принят джоуль (Дж), равный работе силы в один ньютон (Н) на совпадающем с ней по направлению движения длиной в один метр (м): . Применяется также более крупная единица работы - килоджоуль (кДж), 1 кДж = 1000 Дж = 10 3 Дж. В технической системе (МКГСС) за единицу работы принят килограмм-сила метр (кгс м).

Инертность - способность сохранять свое состояние неизмен­ным, это внутреннее свойство всех материальных тел.

Сила инерции - сила, возникающая при разгоне или торможе­нии тела (материальной точки) и направленная в обратную сторо­ну от ускорения. Силу инерции можно измерить, она приложена к «связям» - телам, связанным с разгоняющимся или тормозящимся телом.

Рассчитано, что сила инерции равна

F ин = | m*a|

Таким образом, силы, действующие на материальные точки m 1 и m 2 (рис. 14.1), при разгоне платформы соответственно равны

F ин1 = m 1 *a ; F ин2 = m 2 *a

Разгоняющееся тело (плат­форма с массой т (рис. 14.1)) силу инерции не воспринимает, иначе разгон платформы вооб­ще был бы невозможен.

При вращательном движении (криволинейном) возникающее ускорение принято представлять в виде двух составляющих: нормального а п и касательного а t (рис. 14.2).

Поэтому при рассмотрении кри­волинейного движения могут воз­никнуть две составляющие силы инерции: нормальная и касательная

a = a t + a n ;

При равномерном движении по дуге всегда возникает нормаль­ное ускорение, касательное ускорение равно нулю, поэтому действует только нормальная составляющая силы инерции, направленная по радиусу из центра дуги (рис. 14.3).

Принцип кинетостатики (принцип Даламбера)

Принцип кинетостатики используют для упрощения решения ряда технических задач.

Реально силы инерции приложены к телам, связанным с разго­няющимся телом (к связям).

Даламбер предложил условно прикладывать силу инерции к ак­тивно разгоняющемуся телу. Тогда система сил, приложенных к ма­териальной точке, становится уравновешенной, и можно при реше­нии задач динамики использовать уравнения статики.

Принцип Даламбера:

Материальная точка под действием активных сил, реакций связей и условно приложенной силы инерции находится в равновесии;

Конец работы -

Эта тема принадлежит разделу:

Теоретическая механика

Теоретическая механика.. лекция.. тема основные понятия и аксиомы статики..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Задачи теоретической механики
Теоретическая механика - наука о механическом движении материальных твердых тел и их взаимодействии. Механическое дви­жение понимается как перемещение тела в пространстве и во време­ни по от

Третья аксиома
Не нарушая механического состояния тела, можно добавить или убрать уравновешенную систему сил (принцип отбрасывания систе­мы сил, эквивалентной нулю) (рис. 1.3). Р,=Р2 Р,=Р.

Следствие из второй и третьей аксиом
Силу, действующую на твер­дое тело, можно перемещать вдоль линии ее действия (рис. 1.6).

Связи и реакции связей
Все законы и теоремы статики справедливы для свободного твердого тела. Все тела делятся на свободные и связанные. Свободные тела - тела, перемещение которых не ограничено.

Жесткий стержень
На схемах стержни изображают толсто сплошной линией (рис. 1.9). Стержень може

Неподвижный шарнир
Точка крепления пере­мещаться не может. Стер­жень может свободно повора­чиваться вокруг оси шарни­ра. Реакция такой опоры про­ходит через ось шарнира, но

Плоская система сходящихся сил
Система сил, линии действия которых пе­ресекаются в одной точке, называется сходя­щейся (рис. 2.1).

Равнодействующая сходящихся сил
Равнодействующую двух пересекающихся сил можно опреде­лить с помощью параллелограмма или треугольника сил (4-я ак­сиома) (вис. 2.2).

Условие равновесия плоской системы сходящихся сил
При равновесии системы сил равнодействующая должна быть равна нулю, следовательно, при геометрическом построении конец последнего вектора должен совпасть с началом первого. Если

Решение задач на равновесие геометрическим способом
Геометрическим способом удобно пользоваться, если в системе три силы. При решении задач на равновесие тело считать абсолютно твердым (отвердевшим). Порядок решения задач:

Решение
1. Усилия, возникающие в стержнях крепления, по величине равны силам, с которыми стержни поддерживают груз (5-я аксиома статики) (рис. 2.5а). Определяем возможные направления реакций связе

Проекция силы на ось
Проекция силы на ось определяется отрезком оси, отсекаемым перпендикулярами, опущенными на ось из начала и конца вектора (рис. 3.1).

Сил аналитическим способом
Величина равнодействующей равна векторной (геометрической) сумме векторов системы сил. Определяем равнодействующую геоме­трическим способом. Выберем систему координат, определим про­екции всех зада

Сходящихся сил в аналитической форме
Исходя из того, что равнодействующая равна нулю, получим: Усл

Пара сил, момент пары сил
Парой сил называется система двух сил, равных по модулю, параллельных и направлен­ных в разные стороны. Рассмотрим систему сил (Р; Б"), образую­щих пару.

Момент силы относительно точки
Сила, не проходящая через точку крепления тела, вызывает вра­щение тела относительно точки, поэтому действие такой силы на тело оценивается моментом. Момент силы отн

Теорема Пуансо о параллельном переносе сил
Силу можно перенести параллельно линии ее действия, при этом нужно добавить пару сил с моментом, равным произведению модуля силы на расстояние, на которое перенесена сила.

Расположенных сил
Линии действия произвольной системы сил не пересекаются в одной точке, поэтому для оценки состояния тела такую систему следует упростить. Для этого все силы системы переносят в одну произ­вольно вы

Влияние точки приведения
Точка приведения выбрана произвольно. При изменении поло­жения точки приведения величина главного вектора не изменится. Величина главного момента при переносе точки приведения из­менится,

Плоской системы сил
1. При равновесии главный вектор системы равен нулю. Аналитическое определение главного вектора приводит к выводу:

Виды нагрузок
По способу приложения нагрузки делятся на сосредоточенные и распределенные. Если реально передача нагрузки происходит на пренебрежимо малой площадке (в точке), нагрузку называют сосре­доточенной

Момент силы относительно оси
Момент силы относительно оси равен моменту проекции силы на плоскость, перпендикулярную оси, относительно точки пересечения оси с плоскостью (рис. 7.1 а). MOO

Вектор в пространстве
В пространстве вектор силы проецируется на три взаимно пер­пендикулярные оси координат. Проекции вектора образуют ребра прямоугольного параллелепипеда, век­тор силы совпадает с диагональю (рис. 7.2

Пространственная сходящаяся система сил
Пространственная сходящаяся система сил - система сил, не лежащих в одной плоскости, линии действия которых пересе­каются в одной точке. Равнодействующую пространственной системы си

Приведение произвольной пространственной системы сил к центру О
Дана пространственная система сил (рис. 7.5а). Приведем ее к центру О. Силы необходимо параллельно перемещать, при этом образует­ся система пар сил. Момент каждой из этих пар равен

Центр тяжести однородных плоских тел
(плоских фигур) Очень часто приходится определять центр тяжести различных плоских тел и геометрических плоских фигур сложной формы. Для плоских тел можно записать: V =

Определение координат центра тяжести плоских фигур
Примечание. Центр тяжести симметричной фигуры находится на оси симметрии. Центр тяжести стержня находится на середине высоты. Поло­жения центров тяжести простых геометрических фигур могут

Кинематика точки
Иметь представление о пространстве, времени, траектории, пути, скорости и ускорении.Знать способы задания движения точки (естественный и координатный). Знать обозначения, едини

Пройденный путь
Путь измеряется вдоль траектории в направлении движения. Обозначение - S, единицы измерения - метры. Уравнение движения точки: Уравнение, определяющ

Скорость движения
Векторная величина, характеризующая в данный момент бы­строту и направление движения по траектории, называется скоро­стью. Скорость - вектор, в любой момент направленный по к

Ускорение точки
Векторная величина, характеризующая быстроту изменения скорости по величине и направлению, называется ускорением точки. Скорость точки при перемещении из точки М1

Равномерное движение
Равномерное движение - это движение с постоянной скоро­стью: v = const. Для прямолинейного равномерного движения (рис. 10.1 а)

Равнопеременное движение
Равнопеременное движение - это движение с постоянным ка­сательным ускорением: at = const. Для прямолинейного равнопеременного движения

Поступательное движение
Поступательным называют такое движение твердого тела, при котором всякая прямая линия на теле при движении остается парал­лельной своему начальному положению (рис. 11.1, 11.2). При

Вращательное движение
При вращательном движении все точки тела описывают окруж­ности вокруг общей неподвижной оси. Неподвижная ось, вокруг которой вращаются все точки тела, называется осью вращения.

Частные случаи вращательного движения
Равномерное вращение (угловая скорость постоянна): ω =const Уравнение (закон) равномерного вращения в данном случае име­ет вид:

Скорости и ускорения точек вращающегося тела
Тело вращается вокруг точки О. Определим параметры дви­жения точки A , расположенной на расстоянии RA от оси вращения (рис. 11.6, 11.7). Путь

Решение
1. Участок 1 - неравномерное ускоренное движение, ω = φ’ ; ε = ω’ 2. Участок 2 - скорость постоянна - движение равномерное, . ω = const 3.

Основные определения
Сложным движением считают движение, которое можно разло­жить на несколько простых. Простыми движениями считают посту­пательное и вращательное. Для рассмотрения сложного движения точ

Плоскопараллельное движение твердого тела
Плоскопараллельным, или плоским, называется такое движение твердого тела, при котором все точки тела перемещаются парал­лельно некоторой неподвижной в рассматриваемой системе отсчета

Поступа­тельное и вращательное
Плоскопараллельное движение раскладывают на два движения: поступательное вместе с некоторым полюсом и вращательное от­носительно этого полюса. Разложение используют для опред

Центра скоростей
Скорость любой точки тела можно определять с помощью мгновенного центра скоростей. При этом сложное движение пред­ставляют в виде цепи вращений вокруг разных центров. Задача

Аксиомы динамики
Законы динамики обобщают результаты многочисленных опытов и наблюдений. Законы динамики, которые принято рассматривать как аксиомы, были сформулированы Ньютоном, но первый и четвертый законы были и

Понятие о трении. Виды трения
Трение - сопротивление, возникающее при движении одного шероховатого тела по поверхности другого. При скольжении тел воз­никает трение скольжения, при качении - трение качения. Природа сопро

Трение качения
Сопротивление при качении связано с взаимной деформацией грунта и колеса и значительно меньше трения скольжения. Обычно считают грунт мягче колеса, тогда в основном дефор­мируется грунт, и

Свободная и несвободная точки
Материальная точка, движение которой в пространстве не огра­ничено какими-нибудь связями, называется свободной. Задачи реша­ются с помощью основного закона динамики. Материальные то

Решение
Активные силы: движущая сила, сила трения, сила тяжести. Ре­акция в опоре R. Прикладываем силу инерции в обратную от ускоре­ния сторону. По принципу Даламбера, система сил, действующих на платформу

Работа равнодействующей силы
Под действием системы сил точка массой т перемещается из положения М1 в положение M 2 (рис. 15.7). В случае движения под действием системы сил пользуютс

Мощность
Для характеристики работоспособности и быстроты соверше­ния работы введено понятие мощности. Мощность - работа, выполненная в единицу времени:

Мощность при вращении
Рис. 16.2 Тело движется по дуге радиуса из точки М1 в точку М2 М1М2 = φr Работа силы

Коэффициент полезного действия
Каждая машина и механизм, совершая работу, тратит часть энергии на преодоление вредных сопротивлений. Таким образом, машина (механизм) кроме полезной работы совершает еще и дополнитель

Теорема об изменении количества движения
Количеством движения материальной точки называется векторная величина, равная произведению массы точки на ее скорость mv. Вектор количества движения совпадает по

Теорема об изменении кинетической энергии
Энергией называется способность тела совершать механиче­скую работу. Существуют две формы механической энергии: потенциальная энергия, или энергия положения, и кинетическая энергия,

Основы динамики системы материальных точек
Совокупность материальных точек, связанных между собой силами взаимодействия, называется механической системой. Любое материальное тело в механике рассматривается как механическая

Основное уравнение динамики вращающегося тела
Пусть твердое тело под действием внешних сил вращается во­круг оси Оz с угловой скоростью

Напряжения
Метод сечений позволяет определить величину внутреннего си­лового фактора в сечении, но не дает возможности установить за­кон распределения внутренних сил по сечению. Для оценки прочно­сти н

Внутренние силовые факторы, напряжения. Построение эпюр
Иметь представление о продольных силах, о нормальных на­пряжениях в поперечных сечениях. Знать правила построения эпюр продольных сил и нормальных напряжений, закон распределения

Продольных сил
Рассмотрим брус, нагруженный внешними силами вдоль оси. Брус закреплен в стене (закрепление «заделка») (рис. 20.2а). Делим брус на участки нагружения. Участком нагружения с

Геометрические характеристики плоских сечений
Иметь представление о физическом смысле и порядке опре­деления осевых, центробежных и полярных моментов инерции, о главных центральных осях и главных центральных моментах инерции.

Статический момент площади сечения
Рассмотрим произвольное сечение (рис. 25.1). Если разбить сечение на бесконечно малые площадки dA и умножить каждую площадку на расстояние до оси координат и проинтегрировать получе

Центробежный момент инерции
Центробежным моментом инерции сечения называется взятая ковсей площади сумма произведений элементарных площадок на обе координаты:

Осевые моменты инерции
Осевым моментом инерции сечения относительно некоторой реи, лежащей в этой же плоскости, называется взятая по всей пло­щади сумма произведений элементарных площадок на квадрат их расстояния

Полярный момент инерции сечения
Полярным моментом инерции сечения относительно некоторой точки (полюса) называется взятая по всей площади сумма произве­дений элементарных площадок на квадрат их расстояния до этой точки:

Моменты инерции простейших сечений
Осевые моменты инерции прямоугольника (рис. 25.2) Представим прямо

Полярный момент инерции круга
Для круга вначале вычисляют поляр­ный момент инерции, затем - осевые. Представим круг в виде совокупности бесконечно тонких колец (рис. 25.3).

Деформации при кручении
Кручение круглого бруса происходит при нагружении его па­рами сил с моментами в плоскостях, перпендикулярных продольной оси. При этом образующие бруса искривляются и разворачиваются на угол γ,

Гипотезы при кручении
1. Выполняется гипотеза плоских сечений: поперечное сечение бруса, плоское и перпен- дикулярное продольной оси, после деформацииостается плоским и перпендикулярным продольной оси.

Внутренние силовые факторы при кручении
Кручением называется нагружение, при котором в поперечном сечении бруса возникает только один внутренний силовой фактор - крутящий момент. Внешними нагрузками также являются две про

Эпюры крутящих моментов
Крутящие моменты могут меняться вдоль оси бруса. После определения величин моментов по сечениям строим график-эпюру крутящих моментов вдоль оси бруса.

Напряжения при кручении
Проводим на поверхности бру­са сетку из продольных и попе­речных линий и рассмотрим рису­нок, образовавшийся на поверхно­сти после Рис. 27.1а деформации (рис. 27.1а). Поп

Максимальные напряжения при кручении
Из формулы для определения напряжений и эпюры распределе­ния касательных напряжений при кручении видно, что максималь­ные напряжения возникают на поверхности. Определим максимальное напряж

Виды расчетов на прочность
Существует два вида расчета на прочность 1. Проектировочный расчет - определяется диаметр бруса (вала) в опасном сечении:

Расчет на жесткость
При расчете на жесткость определяется деформация и сравни­вается с допускаемой. Рассмотрим деформацию круглого бруса над действием внешней пары сил с моментом т (рис. 27.4).

Основные определения
Изгибом называется такой вид нагружения, при котором в по­перечном сечении бруса возникает внутренний силовой фактор -изгибающий момент. Брус, работающий на

Внутренние силовые факторы при изгибе
Пример 1.Рассмотрим балку, на которую действует пара сил с моментом т и внешняя сила F (рис. 29.3а). Для определения вну­тренних силовых факторов пользуемся методом с

Изгибающих моментов
Поперечная сила в сече­нии считается положитель­ной, если она стремится раз­вернуть се

Дифференциальные зависимости при прямом поперечном изгибе
Построение эпюр поперечных сил и изгибающих моментов су­щественно упрощается при использовании дифференциальных зави­симостей между изгибающим моментом, поперечной силой и интен­сивностью равномерн

Методом сечения Полученное выражение можно обобщить
Поперечная сила в рассматриваемом сечении равна алгебраической сумме всех сил, действующих на балку до рассматриваемого сечения: Q = ΣFi Поскольку речь идет

Напряжения
Рассмотрим изгиб балки, защемленной справа и нагруженной сосредоточенной силой F (рис. 33.1).

Напряженное состояние в точке
Напряженное состояние в точке характеризуется нормальны­ми и касательными напряжениями, возникающими на всех площад­ках (сечениях), проходящих через данную точку. Обычно достаточ­но определить напр

Понятие о сложном деформированном состоянии
Совокупность деформаций, возникающих по различным напра­влениям и в различных плоскостях, проходящих через точку, опре­деляют деформированное состояние в этой точке. Сложное деформи

Расчет круглого бруса на изгиб с кручением
В случае расчета круглого бруса при действии изгиба и кру­чения (рис. 34.3) необходимо учитывать нормальные и касательные напряжения, т. к. максимальные значения напряжений в обоих слу­чаях возника

Понятие об устойчивом и неустойчивом равновесии
Относительно короткие и массивные стержни рассчитывают на сжатие, т.к. они выходят из строя в результате разрушения или остаточных деформаций. Длинные стержни небольшого поперечного сечения под дей

Расчет на устойчивость
Расчет на устойчивость заключается в определении допускае­мой сжимающей силы и в сравнении с ней силы действующей:

Расчет по формуле Эйлера
Задачу определения критической силы математиче­ски решил Л. Эйлер в 1744 г. Для шарнирно закрепленного с обеих сторон стержня (рис. 36.2) формула Эйлера имеет вид

Критические напряжения
Критическое напряжение - напряжение сжатия, соответству­ющее критической силе. Напряжение от сжимающей силы определяется по формуле

Пределы применимости формулы Эйлера
Формула Эйлера выполняется только в пределах упругих де­формаций. Таким образом, критическое напряжение должно быть меньше предела упругости материала. Пред

СИЛА ИНЕРЦИИ

СИЛА ИНЕРЦИИ

Векторная величина, численно равная произведению массы m материальной точки на её w и направленная противоположно ускорению. При криволинейном движении С. и. можно разложить на касательную, или тангенциальную составляющую Jt, направленную противоположно касат. ускорению wt , и на нормальную составляющую Jn, направленную вдоль нормали к траектории от центра кривизны; численно Jt=mwt, Jn=mv2/r, где v - точки, r - радиус кривизны траектории. При изучении движения по отношению к инерциальной системе отсчёта С. и. вводят для того, чтобы иметь формальную возможность составлять ур-ния динамики в форме более простых ур-ний статики (см. ). Понятие о С. и. вводится также при изучении относительного движения. В этом случае присоединение к действующим на материальную точку силам взаимодействия с др. телами С. и.- переносной Jпер и Кориолиса силы Jкор - позволяет составлять ур-ния движения этой точки в подвижной (неинерциальной) системе отсчёта так же, как и в инерциальной.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

СИЛА ИНЕРЦИИ

Векторная величина, численно равная произведениюмассы т материальной точки на её ускорение w и направленнаяпротивоположно ускорению. При криволинейном движении С. и. можно разложитьна касательную, или тангенциальную, составляющую ,направленную противоположно касат. ускорению ,и на нормальную, или центробежную, составляющую ,направленную вдоль гл. нормали траектории от центра кривизны; численно , , где v- скорость точки,- радиус кривизны траектории. При изучении движения по отношению к инерциальнойсистеме отсчёта С. и. вводят для того, чтобы иметь формальную возможностьсоставлять ур-ния динамики в форме более простых ур-ний статики (см. Д"Аламберапринцип, Кинетостатика).

Понятие о С. и. вводится также при изучении относительного движения. Вэтом случае, присоединив к действующим на материальную точку силам взаимодействияс др. телами переносную силу J nep и Кориолиса силу инерции, Тарг.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "СИЛА ИНЕРЦИИ" в других словарях:

    - (также инерционная сила) термин, широко применяемый в различных значениях в точных науках, а также, как метафора, в философии, истории, публицистике и художественной литературе. В точных науках сила инерции обычно представляет собой понятие … Википедия

    Современная энциклопедия

    Векторная величина, численно равная произведению массы m материальной точки на модуль ее ускорения? и направленная противоположно ускорению … Большой Энциклопедический словарь

    сила инерции - Векторная величина, модуль которой равен произведению массы материальной точки на модуль ее ускорения и направленная противоположно этому ускорению. [Сборник рекомендуемых терминов. Выпуск 102. Теоретическая механика. Академия наук СССР. Комитет… … Справочник технического переводчика

    Сила инерции - СИЛА ИНЕРЦИИ, векторная величина, численно равная произведению массы m материальной точки на ее ускорение u и направленная противоположно ускорению. Возникает вследствие неинерциальности системы отсчета (вращения или прямолинейного движения с… … Иллюстрированный энциклопедический словарь

    сила инерции - inercijos jėga statusas T sritis Standartizacija ir metrologija apibrėžtis Vektorinis dydis, lygus materialiojo taško arba kūno masės ir pagreičio sandaugai; kryptis priešinga pagreičiui. atitikmenys: angl. inertia force vok. Trägheitskraft, f;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    Векторная величина, численно равная произведению массы т материальной точки на модуль её ускорения w и направленная противоположно ускорению. * * * СИЛА ИНЕРЦИИ СИЛА ИНЕРЦИИ, векторная величина, численно равная произведению массы m материальной… … Энциклопедический словарь

    сила инерции - inercijos jėga statusas T sritis automatika atitikmenys: angl. inertial force vok. Trägheitskraft, f rus. сила инерции, f pranc. force d inertie, f … Automatikos terminų žodynas

    сила инерции - inercijos jėga statusas T sritis fizika atitikmenys: angl. inertial force vok. Trägheitskraft, f rus. сила инерции, f pranc. force d’inertie, f … Fizikos terminų žodynas

    сила инерции - величина, численно равная произведению массы тела на его ускорение и направленная противоположно ускорению; Смотри также: Сила сила трения сила света сила волочения сила внутреннего тренияЭнциклопедический словарь по металлургии