Макс планк годы жизни. Макс планк - биография, информация, личная жизнь

Макс Планк – знаменитый немецкий ученый, родоначальник квантовой физики, лауреат Нобелевской премии, почетный член множества мировых научных сообществ, включен в список Европейской научной элиты 20 века.

Именем Планка названа одна из малых планет и высшая награда германского физического общества.

Без гениального открытия 20 века – кванта и квантовой теории, которую обосновал Макс Планк, трудно представить дальнейшие величайшие достижения современной науки.

Краткая биография

Макс Планк родился 23 апреля 1858 года в городе Киль. Его родственники по отцовской линии принадлежали к старинному дворянскому роду, давшему немецкому обществу образованных юристов, военных, ученых и вдающихся церковных деятелей.

Его отец Вильгельм Планк был успешным юристом, профессором в Кильском университете. Мать, Эмма Патциг, была из семьи пастора. Свой долг предки Макса Планка видели в служении государству и церкви. Несомненно, что это наложило нравственный отпечаток на него самого.

Макс Планк умер в Геттингене 4 октября 1947 года, не дожив полугода до своего девяностолетия.

Детство и юность

До десятилетнего возраста Макса семья Планков жила в Киле, бывшем столицей Голштинии. Затем Вильгельму Планку предложили профессуру в Мюнхенском университете и семья перебралась в столицу Баварии. Макс начинает обучение в Максимилиановской гимназии и проявляет себя как прилежный и разносторонний ученик.

Не смотря на традиционное для гимназий упор на гуманитарные дисциплины, обучение естественных предметов проводилось на высшем уровне. Юный Макс Планк буквально влюбился в такой серьезный предмет как математика и проявлял к его изучению большие способности.

При всей прилежности и старательности учителя не видели каких-то особых способностей у Макса, хотя и характеризовали его как прилежного и исполнительного ученика с сильным характером.

Помимо точных наук Планк очень увлекался музыкой и безо всякого принуждения проводил за роялем большое количество времени. До конца жизни он оставался прекрасным пианистом, хотя по окончании гимназии сделал окончательный выбор в пользу математики и физики. В сентябре 1874 года он становится студентом Мюнхенского университета.

Увлечение наукой

В университете Планк выбирает для более углубленного изучения теоретическую физику и хотя его наставник профессор Жолли убеждал своих студентов, что вряд ли они смогут открыть что-то новое в этой практически до конца изученной науке, упорный студент решил не отступать. В этом поступке сказалась основная черта характера Планка – доводить все до конца и не отступать.

Параллельно теории он занимается и экспериментальной физикой, углубленно изучает математику. Убедившись, что в Мюнхенском университете он получил все, что ему могли предложить, Планк решает продолжить образование в Берлинском университете. Его несколько разочаровали лекции по физике, поэтому он начинает самостоятельно изучать оригинальные работы своих научных наставников Гельмгольца и Кирхгофа.

Знакомство с трудами Рудольфа Клаузиуса по теории теплоты подтолкнули его к изучению термодинамикой. Занятия термодинамикой позволили Планку получить ученую степень, защитив диссертацию в родной "альма матер” – Мюнхенском университете. Проработав младшим ассистентом физического факультета молодой ученый получает должность адъюнкт-профессора Кильского университета.

Это назначение укрепляет его финансовое положение, позволяет ему быть независимым и значительную часть времени посвятить научным исследованиям. Кроме того Макс Планк создает семью. Его женой становится девушка которую он знает с детства – Мария Мерк. В этом браке рождается четверо детей – два сына и дочери-близнецы.

Научная деятельность

Серьезно заниматься научной деятельностью Макс Планк начинает после вступления в должность адъюнкт-профессора Берлинского университета. К этому времени его труды по термодинамике стали широко известны в мировом научном сообществе. Почти одновременно в 1888 году ему предлагают занять пост директора Института теоретической физики.

Желание добраться до сути, постичь неведомое, необыкновенная интуиция, присущая только настоящим ученым, позволила ему сделать открытие, буквально перевернувшее современную для его времени физику.

Создатель квантовой физики

Многие ученые пытались рассчитать и вывести формулу состояния тела в период его нагревания. Нагреваемое тело излучает не только тепло, но и магнитные колебания. Закономерность амплитуды колебания тела в момент нагревания зависит от нескольких факторов.

Некоторые факторы были изучены и просчитаны, но не было единой формулы, которую можно было применить во всех случаях. Для этого была необходима универсальная и совершенно новая единица. В 1900 году Макс Планк вывел эту формулу, применив абсолютно новую единицу измерения величины излучения энергии – квант.

Обоснование этой формулы и новой единицы измерения получила название квантовая теория, а классическую физику до этого революционного открытия стали именовать "физика до Планка". Постоянная Планка успешно применялась в дальнейшем развитии физика. Благодаря ей мир получил фотоэлектрический эффект Альберта Эйнштейна, атомную энергию Нильса Бора и множество других открытий.

В 1919 году Макс Планк становится Нобелевским лауреатом по физике за 1918 год. Эта премия стала признанием величайшего открытия на благо человечества. В семидесятилетнем возрасте он уходит в формальную отставку, фактически возглавляя Общество фундаментальных наук кайзера Вильгельма и оставаясь его президентом с 1930 года до самой смерти.

  • Его личная жизнь была весьма драматичной. Первая горячо любимая жена умерла рано, и он вступил во второй брак.
  • Ему довелось пережить всех своих детей от первого брака. Старший сын был убит в первой мировой войне, дочери умерли во время родов, а младший сын был казнен в конце второй мировой войны за участие в покушении на Гитлера.

Макс Карл Эрнст Людвиг Планк (нем. Max Karl Ernst Ludwig Planck). Родился 23 апреля 1858 года в Киле - умер 4 октября 1947 года в Гёттингене. Немецкий физик-теоретик, основоположник квантовой физики. Лауреат Нобелевской премии по физике (1918) и других наград, член Прусской академии наук (1894), ряда иностранных научных обществ и академий наук. На протяжении многих лет один из руководителей немецкой науки.

Научные труды Планка посвящены термодинамике, теории теплового излучения, квантовой теории, специальной теории относительности, оптике. Он сформулировал второе начало термодинамики в виде принципа возрастания энтропии и использовал его для решения различных задач физической химии. Применив к проблеме равновесного теплового излучения методы электродинамики и термодинамики, Планк получил закон распределения энергии в спектре абсолютно чёрного тела (формула Планка) и обосновал этот закон, введя представление о квантах энергии и кванте действия. Это достижение положило начало развитию квантовой физики, разработкой различных аспектов которой он много занимался в последующие годы («вторая теория» Планка, проблема структуры фазового пространства, статистическая механика квантовых систем и так далее). Планк впервые вывел уравнения динамики релятивистской частицы и заложил основы релятивистской термодинамики. Ряд работ Планка посвящён историческим, методологическим и философским аспектам науки.


Макс Планк родился 23 апреля 1858 года в Киле, принадлежал к старому дворянскому роду; среди его предков - видные юристы, учёные, военные и церковные деятели. Его дед (Heinrich Ludwig Planck, 1785-1831) и прадед (Gottlieb Jakob Planck, 1751-1833) были профессорами теологии в Гёттингенском университете, а дядя (Gottlieb Karl Georg Planck, 1824-1910) - известным юристом, одним из создателей Германского гражданского уложения.

Отец будущего физика, Вильгельм Планк (Johann Julius Wilhelm von Planck, 1817-1900), был также юристом, профессором права Кильского университета. Он был женат дважды и имел двоих детей от первого брака (Хуго и Эмма) и пятерых от второго (Герман, Хильдегард, Адальберт, Макс и Отто). Мать Макса, Эмма Патциг (Emma Patzig, 1821-1914), происходила из пасторской семьи из померанского городка Грайфсвальд. Как писал известный физик Макс Борн, «о происхождении Планка, о всех этих людях - прекрасных, достойных, неподкупных, благородных и великодушных, отдавших себя служению церкви и государству, - необходимо помнить каждому, кто захочет понять характер Макса Планка и истоки его успеха».

Первые девять лет жизни Макса прошли в Киле, столице Голштинии, которая в то время была в центре противоречий между Данией и Пруссией. В 1864 году юный Планк даже стал свидетелем вступления в город прусско-австрийских войск.

В 1867 году Вильгельм Планк принял приглашение занять должность профессора юриспруденции Мюнхенского университета и вместе с семьёй переехал в баварскую столицу. Здесь Макс был отдан в Максимилиановскую гимназию (Maximiliansgymnasium München); он занимался охотно и скоро стал одним из лучших учеников в классе. Хотя много внимания уделялось традиционным для гимназий предметам (в частности, изучению древних языков), преподавание естественнонаучных дисциплин в этой школе также находилось на высоком уровне. Глубокое влияние на юного Планка оказал учитель математики Герман Мюллер (Hermann Müller), от которого будущий учёный впервые услышал о законе сохранения энергии; у Макса рано проявился математический талант. И хотя учителя не видели у него каких-то особых способностей, они специально отмечали его личные качества - сильный характер, прилежность и исполнительность. Обучение в гимназии способствовало укреплению в нём интереса к науке, к выяснению законов природы.

Другим увлечением Планка с детских лет была музыка: он пел в хоре мальчиков, играл на нескольких инструментах (особенно много времени он проводил за роялем), изучал теорию музыки и пробовал сочинять, однако скоро пришёл к выводу, что у него нет таланта композитора. К моменту окончания школы он оказался перед выбором: стать пианистом, филологом или заняться изучением физики и математики. Планк выбрал последнее и в сентябре 1874 года стал студентом Мюнхенского университета. Впрочем, в студенческие годы он по-прежнему много времени уделял музыке: играл на орга́не в студенческой церкви, служил хормейстером в студенческом певческом союзе, дирижировал любительским оркестром.

Вскоре после поступления в университет Планк по совету отца обратился к профессору Филиппу фон Жолли и рассказал, что хотел бы заниматься теоретической физикой. Тот принялся отговаривать студента от этого намерения, утверждая, что эта наука близка к завершению и что в ней осталось исследовать лишь некоторые незначительные проблемы. Впрочем, этот разговор не повлиял на желание Планка стать теоретиком. Объясняя это решение, он говорил, что у него не было желания совершать открытия, а только понять и по возможности углубить уже установленные основы науки. На протяжении шести семестров Планк слушал лекции по экспериментальной физике, которые читали Вильгельм фон Бец (нем. Wilhelm von Beetz) и тот же Жолли. Под руководством последнего Планк провёл своё единственное экспериментальное исследование, посвящённое проницаемости нагретой платины для газов, в частности водорода. Поскольку в Мюнхене не было кафедры теоретической физики, он начал посещать занятия математиков Людвига Зейделя и Густава Бауэра (Gustav Bauer), у которых, как он признавал позже, многому научился.

В лаборатории Жолли Планк познакомился с Германом Гельмгольцем, знаменитым физиком, профессором Берлинского университета. Юноша решил продолжить образование в Берлине, где провёл два семестра 1877/78 учебного года. Здесь его наставниками стали Гельмгольц и Густав Кирхгоф; он также посещал лекции математика Карла Вейерштрасса. Впрочем, Планк был разочарован лекциями по физике, поэтому принялся за тщательное изучение оригинальных работ Гельмгольца и Кирхгофа, которые считал образцом для подражания в плане мастерства и ясности изложения. Вскоре будущий учёный познакомился с трудами Рудольфа Клаузиуса по теории теплоты и был так впечатлён, что решил заняться термодинамикой.

Летом 1878 года Планк возвратился в Мюнхен и вскоре сдал экзамен на право работать учителем физики и математики. Одновременно он начал самостоятельные научные исследования, руководствуясь только книгами и научными статьями. Это позволило его ученику Максу фон Лауэ позже назвать Планка «самоучкой». Отталкиваясь от работ Клаузиуса, Планк рассмотрел вопрос о необратимости процессов теплопроводности и дал первую формулировку второго начала термодинамики в терминах возрастания энтропии. Результаты были изложены в докторской диссертации «О втором законе механической теории теплоты» (Über den zweiten Hauptsatz der mechanischen Wärmetheorie), защита которой состоялась 12 февраля 1879 года в Мюнхенском университете. Наконец, 28 июня, после сдачи устного экзамена, Планку была присуждена степень доктора философии с высшим отличием (summa cum laude). Впрочем, в то время его диссертация не привлекла к себе никакого внимания, несмотря на то, что он послал её нескольким известным физикам.

В 1880 году Планк представил работу «Состояния равновесия изотропных тел при различных температурах» (Gleichgewichtszustände isotroper Körper in verschiedenen Temperaturen) на соискание права работать преподавателем в университете (хабилитация) и получил место приват-доцента, которое занимал на протяжении пяти следующих лет. Поскольку преподавательские обязанности не отнимали у него много времени, он мог полностью сконцентрироваться на научной работе. В свободное время он занимался музыкой, изучал её теорию и получил известность, как блестящий пианист. Другим увлечением Планка в эти годы стал альпинизм, которым он начал заниматься в расположенных неподалёку Баварских Альпах; учёный оставался приверженцем этого вида спорта на протяжении всей последующей жизни.

Всё это время Планк надеялся получить место профессора в каком-нибудь университете. Однако первое приглашение поступило из Высшей лесотехнической школы в Ашаффенбурге (Forstliche Hochschule Aschaffenburg), где освободилась должность преподавателя физики. Посоветовавшись с Гельмгольцем, Планк решил отказаться и ждать варианта, который бы более соответствовал его научным устремлениям. Такой случай представился весной 1885 года, когда молодой учёный получил предложение занять место экстраординарного профессора теоретической физики в Кильском университете. Он с радостью согласился, хотя, как признавался впоследствии, этим назначением он был обязан не столько признанию своих научных трудов, сколько протекции отца, чей близкий друг Густав Карстен работал профессором физики и минералогии в Киле. Здесь, в городе своего детства, Планк быстро освоился и вскоре завершил книгу «Принцип сохранения энергии» (Das Princip der Erhaltung der Energie), над которой работал с 1884 года. Эту монографию он отправил на конкурс работ, объявленный философским факультетом Гёттингенского университета. Книга была встречена с интересом, однако была удостоена лишь второй премии, в то время как первая вообще не была вручена никому из участников конкурса. Причиной этого стало то, что в научном споре между гёттингенцем Вильгельмом Вебером и берлинцем Гельмгольцем Планк оказался на стороне последнего.

Начиная с осени 1886 года, Планк написал серию статей под общим названием «О принципе возрастания энтропии» (Über das Princip der Vermehrung der Entropie), в которых применил термодинамические соображения к решению конкретных задач физики и химии. Эти работы принесли ему определённую известность в научных кругах, особенно среди специалистов по физической химии. В частности, он познакомился с Вильгельмом Оствальдом и Сванте Аррениусом; последний приезжал к Планку в Киль, чтобы обсудить научные проблемы.

31 марта 1887 года Макс Планк, который теперь был вполне обеспечен финансово, женился на своей подруге детства Марии Мерк (Marie Merck), дочери мюнхенского банкира. У них было четверо детей: сыновья Карл (Karl, 1888-1916) и Эрвин (Erwin, 1893-1945) и дочери-близнецы Эмма (Emma, 1889-1919) и Грета (Grete, 1889-1917).

В октябре 1887 года, после смерти Кирхгофа, освободилась кафедра теоретической физики Берлинского университета. Первые два претендента на право занять этот пост - Людвиг Больцман и Генрих Герц - ответили отказом, предпочтя Мюнхен и Бонн соответственно. Тогда Гельмгольц предложил кандидатуру Планка, который получил от коллег высокие оценки как учёный, педагог и человек. К выполнению своих обязанностей в Берлине молодой физик приступил в январе 1889 года; первые три года он оставался экстраординарным профессором, пока в 1892 году в университете не была учреждена ординарная профессура по теоретической физике. Одновременно он возглавил вновь открытый при университете Институт теоретической физики. Работа в Берлине позволяла тесно общаться с Гельмгольцем, Августом Кундтом и другими известными физиками, однако как теоретик Планк находился по существу в изолированном положении, и на первых порах ему стоило большого труда наладить контакт с коллегами-экспериментаторами.

В 1894 году по представлению Гельмгольца и Кундта его избрали действительным членом Прусской академии наук.

Планк принимал активное участие в университетской жизни, в работе различных комиссий и использовал свой всё возраставший авторитет для защиты своих коллег и науки в целом. Так, он настоял на назначении Эмиля Варбурга преемником Августа Кундта, скончавшегося в 1894 году, хотя прусское министерство образования пыталось проигнорировать рекомендацию факультета в пользу этой кандидатуры (возможно, по причине еврейского происхождения Варбурга).

В 1895 году Планк был членом комиссии, расследовавшей по требованию министерства деятельность физика Лео Аронса (нем. Leo Arons), стоявшего на социалистических позициях и финансово поддерживавшего Социал-демократическую партию Германии. Комиссия не обнаружила влияния политических взглядов Аронса на его педагогическую и научную деятельность и отказалась наказывать его. В 1897 году, отвечая на специальный запрос, Планк высказался против принципиального запрета на университетское образование для женщин; сам он разрешил нескольким женщинам посещать свои лекции. Позже он пригласил из Вены Лизу Мейтнер, бывшую студентку Больцмана, и в 1912 году даже назначил её своим ассистентом; Мейтнер стала одним из ближайших друзей Планка. В первые берлинские годы Планк по-прежнему уделял много внимания музыке и одно время даже читал курс по теории музыки. Когда Институту была передана большая фисгармония, он получил возможность изучить на этом инструменте восприятие натурального строя музыки и пришёл к выводу, что темперированный строй при всех обстоятельствах звучит более выразительно. Этот результат («наше ухо предпочитает темперированные гаммы») Планк опубликовал в 1893 году в специальной статье. Интерес к искусству и литературе сблизил учёного с историком Теодором Моммзеном, романистом Адольфом Тоблером и другими представителями гуманитарных кругов.

С 1895 года обязанности Планка включали редактирование журнала Annalen der Physik, в котором учёный отвечал за статьи по теоретическим вопросам. Работая на этом посту, он стремился более чётко отделять физику от математики и философии, что способствовало формированию новой по тем временам дисциплины - теоретической физики. 23 марта 1911 года Планк был избран непременным секретарём Прусской академии наук, то есть одним из четырёх руководителей этого учреждения (по двое от естественнонаучного и гуманитарного отделений). В следующие несколько лет он использовал своё положение для приглашения в Берлин и избрания членом академии Альберта Эйнштейна, работы которого высоко ценил. Кроме того, Планк занимал пост ректора Берлинского университета на 1913/14 учебный год, а также трижды (в 1905-1908 и 1915-1916 годах) избирался президентом Немецкого физического общества. Он был вовлечён в создание Общества кайзера Вильгельма, основанного в 1911 году указом императора Вильгельма II; в частности, с 1913 года он участвовал в переговорах по поводу учреждения в рамках Общества Института физики, возглавить который должен был Эйнштейн.

В октябре 1909 года умерла жена Планка Мария. Спустя полтора года, в марте 1911 года, учёный женился во второй раз - на племяннице своей первой жены Маргарите фон Хёсслин (Margarete von Hoeßlin, 1882-1949), дочери известного художника Георга фон Хёсслина (нем. Georg von Hoeßlin). У них был один общий ребёнок Герман (Hermann, 1911-1954). Планк был семейным человеком и, по свидетельству жены, «полностью раскрывал все свои человеческие качества только в семье». По-настоящему свободно он чувствовал себя только среди людей своего круга; берлинский пригород Груневальд, где учёный с семьёй жил в большом доме с обширным садом, был населён университетскими профессорами. Близкими соседями Планка были известные историки Ганс Дельбрюк и Адольф фон Гарнак.

В довоенные годы каждые две недели Планк устраивал дома музыкальные вечера, в которых участвовали знаменитый скрипач Йозеф Иоахим, и прочие друзья. По свидетельству племянника учёного, музыка была единственной областью, в которой Планк не сдерживал свой дух; учёный предпочитал сочинения Шуберта, Брамса и Шумана.

К берлинскому периоду относится высшее научное достижение Планка. В середине 1890-х годов он занялся проблемой теплового излучения и в конце 1900 года достиг решающего успеха: получил правильную формулу для распределения энергии в спектре абсолютно чёрного тела и дал её теоретическое обоснование, введя знаменитый «квант действия» h . Квантовая гипотеза немецкого учёного, глубокий смысл которой вскрылся лишь много позже, ознаменовала рождение квантовой физики. В последующие годы Планк приложил много усилий, пытаясь согласовать свои результаты с классической физикой; он крайне настороженно относился к дальнейшим шагам, уводящим в сторону от старых представлений, например к теории световых квантов Эйнштейна.

Тем временем, благодаря работам Альберта Эйнштейна, Пауля Эренфеста и других учёных, теория квантов приобретала всё большее признание в научном сообществе. Свидетельством этого стал созыв осенью 1911 года первого Сольвеевского конгресса, посвящённого теме «Излучение и кванты». Эта представительная конференция поместила квантовую теорию излучения в центр внимания научного мира, хотя стоявшие перед ней проблемы и противоречия оставались нерешёнными. После появления в 1913 году работ Нильса Бора, связавшего гипотезу квантов с проблемой строения атома, начался этап бурного развития квантовой физики. Признанием заслуг Планка стало присуждение ему Нобелевской премии по физике за 1918 год с формулировкой «в знак признания услуг, которые он оказал физике своим открытием квантов энергии». 2 июля 1920 года учёный прочитал в Стокгольме нобелевскую лекцию «Возникновение и постепенное развитие теории квантов» .

Как и многие его коллеги, Планк, воспитанный в духе прусского патриотизма, с воодушевлением воспринял начало Первой мировой войны . В своих публичных выступлениях он приветствовал войну, направленную, как он думал, на защиту справедливых требований и жизненно важных ценностей немецкой нации, и призывал молодёжь вступать добровольцами в армию.

Он видел в войне способ преодоления всех разногласий и объединения нации в единое целое: «Немецкий народ вновь обрёл себя». Планк подписал опубликованный в октябре 1914 года «Манифест 93-х интеллектуалов», оправдывавший вступление Германии в войну; впоследствии он сожалел об этом. Смягчение позиции учёного произошло во многом благодаря общению с Хендриком Лоренцем, который вследствие принадлежности к нейтральному государству имел возможность донести до Планка точку зрения противоположной стороны. В частности, голландский физик предоставил доказательства того, что преступления немецких войск в Бельгии не были лишь плодом клеветы и вражеской пропаганды.

Уже с весны 1915 года Планк высказывался против усиления ненависти между народами и за восстановление прежних международных связей, а в начале 1916 года передал через Лоренца открытое письмо коллегам из стран Антанты, в котором объявлял «Манифест 93-х» результатом всплеска патриотизма в первые недели войны, отказался защищать все действия немецких военных в ходе войны и писал, что «существуют области интеллектуальной и нравственной жизни, которые лежат за пределами борьбы наций» и в которых возможно плодотворное сотрудничество граждан разных стран. Много усилий Планк затратил на то, чтобы предотвратить «чистки» в Прусской академии наук, не допустить исключения из неё иностранных членов и избежать полного разрыва отношений с научными обществами вражеских стран.

Наивность представлений Планка о политике в годы войны отмечали Лауэ и Эйнштейн. Поражение в войне и последующее падение монархии больно задели патриотические чувства Планка. Даже спустя четыре года в одном из своих выступлений он выражал сожаление, что императорская фамилия лишилась трона. Вместе с тем, он понимал, что отречение императора является одним из условий проведения необходимых реформ и сохранения немецкого государства как такового.

Война принесла учёному и личную трагедию: в мае 1916 года под Верденом погиб его старший сын Карл. Для Планка это событие стало поводом переоценить своё отношение к сыну, который не мог найти себя в жизни и не смог оправдать надежд, возлагавшихся на него отцом; учёный с горечью писал по этому поводу: «Без войны я бы никогда не узнал его ценность, а сейчас, когда я знаю её, я должен потерять его» . В 1917 году дочь Планка Грета, вышедшая замуж за гейдельбергского профессора Фердинанда Фелинга (Ferdinand Fehling), умерла неделю спустя после родов. Её сестра-близнец Эмма, взявшая на себя заботу о ребёнке, в январе 1919 года тоже стала женой Фелинга, однако в конце года её постигла судьба сестры: она также скончалась при родах. Осиротевшие внучки, получившие имена в честь своих матерей, частично воспитывались в доме деда. Младший сын Планка Эрвин, также служивший на фронте, встретил окончание войны во французском плену.

Планк сыграл видную роль в послевоенной реорганизации немецкой науки, происходившей в условиях упадка экономики и сокращения финансирования научных исследований. Он стал одним из инициаторов учреждения Чрезвычайной ассоциации немецкой науки (нем. Notgemeinschaft der deutschen Wissenschaft), созданной для привлечения финансов из различных источников, и впоследствии активно участвовал в распределении средств, осуществлявшемся различными комиссиями этой организации. Планк, с 1916 года бывший сенатором Общества кайзера Вильгельма, принимал участие в общем руководстве Обществом, институты которого в новых условиях были вынуждены ориентироваться на прикладные разработки, важные для восстановления немецкой промышленности. Учёный занимал критическую позицию по отношению к этой новой политике, призывая не забывать о важности фундаментальных исследований. В июле 1930 года он был избран президентом Общества; много времени пожилой учёный отдавал общению с политиками, предпринимателями, банкирами, журналистами, выступал в средствах массовой информации. Что касается его политических взглядов, то в новых условиях парламентской республики Планк стал поддерживать умеренно правую Немецкую народную партию, представлявшую интересы промышленников. И хотя он не мог одобрить многие нововведения и, например, считал «всеобщее право голосовать (для двадцатилетних!) фундаментальной ошибкой» , он не видел смысла выступать против нового государства и не видел возможности вернуть всё обратно.

Кроме экономической разрухи, положение науки в послевоенной Германии осложнялось международной изоляцией, которая во многом была связана с националистической позицией немецких учёных в годы войны и которая лишь постепенно начинала преодолеваться. Ситуация усугублялась суровыми ограничениями, наложенными на Германию по результатам мирного договора, что не способствовало проявлению инициативы со стороны учёных; Планк и большинство его коллег считали официальное признание собственной неправоты невозможным в таких условиях, ибо это могли счесть проявлением трусости и эгоизма. Лишь к середине 1920-х годов напряжение стало уменьшаться, и в 1926 году, после принятия Германии в Лигу наций, немецкие и австрийские учёные получили приглашение присоединиться к Международному исследовательскому совету (предшественнику Международного совета по науке). Планк, понимавший важность международного научного сотрудничества, способствовал восстановлению разорванных войной связей и налаживанию новых контактов во время своих поездок. В этой деятельности он старался придерживаться принципа невмешательства политики в дела науки и предпочитал неформальные или чисто научные контакты встречам, устроенным государственными или иными политическими организациями. В частности, несмотря на прохладное отношение правительства и своей партии, он посетил в качестве представителя Прусской академии наук торжества по случаю 200-летия Российской академии наук, проходившие в сентябре 1925 года в Ленинграде и Москве .

Планк передал руководство Институтом теоретической физики Максу фон Лауэ ещё в 1921 году, а осенью 1926 года, по достижении предельного возраста, покинул пост профессора Берлинского университета. Его преемником стал Эрвин Шрёдингер, за работами которого Планк следил с большим интересом. Однако и после выхода в отставку учёный, получивший титул почётного профессора, по-прежнему активно участвовал в научной жизни университета, работе приёмных и аттестационных комиссий, ещё несколько лет читал курсы лекций; он также оставался секретарём Прусской академии наук. В 1930-е годы Планк получил возможность больше времени уделять лекциям по общенаучным и философским проблемам; его выступления проходили не только в различных университетах Германии, но и в Голландии, Англии, Швейцарии, Швеции, Финляндии. Учёный строго придерживался в жизни определённого распорядка, согласно которому работа чередовалась с отдыхом. Он всегда использовал свои отпуска, чтобы как следует отдохнуть, путешествовал, занимался альпинизмом, проводил время в своём имении вблизи Тегернзе; ему удалось сохранить хорошее здоровье до преклонного возраста.

В 1933 году к власти в Германии пришли нацисты; начались гонения против неугодных учёных, многие из них (особенно еврейского происхождения) были вынуждены эмигрировать. Многие немецкие учёные поначалу думали, что политика нового режима носит временный характер и что негативные тенденции со временем должны исчезнуть, поэтому тактика Планка и других руководителей науки состояла в том, чтобы защищать науку и при этом избегать какой-либо критики режима. По словам историка Джона Хейльброна (англ. John L. Heilbron), «они открыто шли на уступки в малых вещах и не протестовали публично против великих несправедливостей...».

Первоочередной задачей для Планка и его коллег, оставшихся в Германии, стало сохранение науки в новых условиях, защита её от окончательного разрушения. Для этого пожилой учёный использовал свой авторитет и положение президента Общества кайзера Вильгельма; стараясь не привлекать внимания властей, он способствовал сохранению работоспособности институтов Общества, помогал уволенным сотрудникам найти новую работу или выехать за рубеж. Придерживаясь этой тактики личных контактов, во время встречи с Адольфом Гитлером в мае 1933 года Планк попробовал заступиться за своего еврейского коллегу Фрица Габера, знаменитого химика, однако фюрер даже не захотел говорить на эту тему. Потерпев это поражение, Планк, однако, никогда открыто не выступал против нацистского режима и старался по мере сил поддерживать с ним мирные отношения. Так, он был не согласен с позицией Эйнштейна, публично заявившего о своём неприятии нацизма, и фактически устранился от участия в процедуре лишения Эйнштейна членства в Прусской академии наук . Тем не менее, желая смягчить ситуацию, Планк выступил с заявлением, в котором напомнил о значении работ Эйнштейна для развития физики, однако при этом выразил сожаление, что «Эйнштейн своим собственным политическим поведением сделал своё присутствие в академии невозможным».

Планк также выступил в качестве организатора чествования памяти Габера, скончавшегося в эмиграции; это собрание состоялось, несмотря на официальный запрет посещать его, распространявшийся на всех государственных служащих. Учёный позволял себе критиковать режим лишь косвенным образом, затрагивая в своих выступлениях на философские и исторические темы те или иные проблемы современности. Эйнштейн так и не простил Планка за его отказ публично выступить против творившихся несправедливостей (в 1933 году прекратилась их переписка), и даже Лауэ критиковал своего учителя за то, что тот не проявил большего «упрямства».

В начале 1936 года активизировались нападки на Планка со стороны представителей так называемой «арийской физики»; учёный объявлялся проводником вредных идей, посредственным исследователем, ставленником «эйнштейновской клики». Эта активизация была во многом обусловлена назначенными на 1 апреля перевыборами президента Общества кайзера Вильгельма, которое, по словам Филиппа Ленарда, с самого начала было «еврейским чудовищем». Однако Планку удалось сохранить за собой этот пост, одновременно начались поиски подходящего преемника. Им стал Карл Бош, сменивший Планка в 1937 году. 22 декабря 1938 года пожилой учёный ушёл и с должности секретаря академии, однако продолжал борьбу, стараясь сохранить за этим научным учреждением остатки самостоятельности. В мае 1938 года в Берлине был, наконец, открыт Институт физики Общества кайзера Вильгельма (нем. Kaiser-Wilhelm-Institut für Physik), созданию которого на протяжении многих лет Планк посвящал много усилий. Несмотря на сопротивление представителей «арийской физики», по инициативе вновь назначенного директора Петера Дебая институту было присвоено имя Макса Планка.

После начала Второй мировой войны Планк продолжал выступать с лекциями по всей стране. В феврале 1944 года в результате налёта англо-американской авиации сгорел дом учёного в Груневальде; были уничтожены его рукописи и дневники, бо́льшая часть его обширной библиотеки. Он был вынужден переехать к своему другу Карлу Штилю (нем. Carl Still) в имение Рогец под Магдебургом. Жестоким ударом для престарелого учёного стала смерть его второго сына Эрвина (нем. Erwin Planck), который был близок к группе полковника Штауффенберга и принимал участие в дискуссиях заговорщиков о будущем переустройстве Германии. Хотя непосредственного участия в событиях 20 июля 1944 года Эрвин, по-видимому, не принимал, он был приговорён к смерти и, несмотря на прошения отца о помиловании, в январе 1945 года повешен.

Весной 1945 года Макс Планк едва не погиб во время бомбёжки в Касселе, где он выступал с очередной лекцией. В конце апреля имение Рогец было разрушено; Планк с женой некоторое время укрывались в лесу, затем в течение двух недель жили у местного молочника; состояние учёного усугублялось артритом позвоночника, он с трудом мог ходить. Наконец, он был доставлен в Гёттинген американскими военными, отправленными на спасение старика по просьбе профессора Роберта Поля. Здесь учёный был вынужден провести пять недель в университетской клинике, его здоровье значительно ухудшилось в результате пережитых событий. Оправившись, Планк поселился в Гёттингене у своей племянницы; вскоре он смог вернуться к работе, к лекционным выступлениям.

В июле 1946 года Планк посетил Англию, где в качестве единственного представителя Германии принял участие в праздновании 300-летия со дня рождения . Некоторое время престарелый физик оставался почётным президентом Общества кайзера Вильгельма, которое вскоре с согласия учёного было переименовано в Общество Макса Планка (первым его президентом стал Отто Ган).

В Бонне, во время одной из своих лекционных поездок, 88-летний Планк серьёзно заболел двусторонним воспалением лёгких, однако сумел выздороветь.

В марте 1947 года состоялось его последнее выступление перед студентами. Научное сообщество Германии готовилось к торжествам по случаю его 90-летия, но за считанные месяцы до этой круглой даты учёный скончался от инсульта. Это случилось 4 октября 1947 года в Гёттингене, где Планк и был похоронен.


Общая механика.

Читателя предлагается книга выдающегося немецкого ученого, нобелевского лауреата по физике Макса Планка (1858-1947), представляющая собой учебник по общей механике.

Автор рассматривает отдельную материальную точку, разделив всю механику на две части: механику материальной точки и механику системы материальных точек. Работа отличается глубиной и ясностью изложения материала и занимает важное место в научном наследии ученого.

Введение в теоретическую физику. Том 2

Механика деформируемых тел.

Настоящая книга, в которой рассматриваются вопросы механики упругого деформируемого тела, представляет собой продолжение курса «Общей механики» выдающегося немецкого физика Макса Планка.

Автор с обычным мастерством, сжато и ясно вводит читателя в круг исследований по теории упругости, гидродинамике и аэродинамике и в теорию вихревых движений. В представлении читателя этой книги механика деформируемых тел должна возникнуть как естественное, обусловленное внутренней необходимостью продолжение общей механики и прежде всего как ряд тесно связанных, логически обоснованных понятий. Это даст возможность не только изучать с полным пониманием более подробные курсы и специальную литературу, но и производить самостоятельные, более глубокие исследования.

Введение в теоретическую физику. Том 3

Теория электричества и магнетизма.

Настоящая книга, написанная выдающимся немецким ученым, основоположником квантовой механики Максом Планком, содержит изложение электрических и магнитных явлений. Работа входит в число монографий по основным разделам теоретической физики, занимающих важное место в научном наследии Планка.

Материал книги отличается глубиной и ясностью описания, благодаря чему она не утратила своего значения и сегодня.

Введение в теоретическую физику. Том 4

Оптика.

В книге выдающегося немецкого физика Макса Планка большое внимание уделено систематическому изложению и развитию основных положений теоретической оптики, представлены их связи с другими отделами физики.

В первых двух частях работы автор рассматривает материю как непрерывную среду с непрерывно меняющимися свойствами. В третьей части при описании дисперсии вводится атомистический метод рассмотрения. Автором также намечен естественный переход к квантовой механике на основе классической теории при помощи соответствующего обобщения.

Введение в теоретическую физику. Том 5

Теория теплоты.

Настоящая книга представляет собой пятый, заключительный том «Введения в теоретическую физику» Макса Планка.

В первых двух частях работы выдающегося немецкого физика излагаются классическая термодинамика и основы теории теплопроводности. Причем теплопроводность рассматривается автором в качестве простейшего примера необратимых процессов. Благодаря такой точке зрения переход от термодинамики к теории теплопроводности оказывается в изложении Планка ясным и естественным.

Третья часть книги целиком посвящена явлениям теплового излучения. В дальнейших главах автор излагает основы атомистики и теории квантов, классическую и квантовую статистику.

Квантовая теория. Революция в микромире

Макса Планка часто называли революционером, хотя он был против этого.

В 1900 году ученый выдвинул идею о том, что энергия излучается не непрерывно, а в виде порций, или квантов. Отголоском этой гипотезы, перевернувшей сложившиеся представления, стало развитие квантовой механики — дисциплины, которая вместе с теорией относительности лежит в основе современного взгляда на Вселенную.

Квантовая механика рассматривает микроскопический мир, а некоторые ее постулаты настолько удивительны, что сам Планк не единожды признавал: он не успевает за последствиями своих открытий. Учитель учителей, в течение десятилетий он стоял у штурвала немецкой науки, сумев сохранить искру разума в сумрачный период нацизма.

Немецкий физик Макс Карл Эрнст Людвиг Планк родился в г. Киле (принадлежавшем тогда Пруссии), в семье профессора гражданского права Иоганна Юлиуса Вильгельма фон Планка, профессора гражданского права, и Эммы (в девичестве Патциг) Планк.


В детстве мальчик учился играть на фортепьяно и органе, обнаруживая незаурядные музыкальные способности. В 1867 г. семья переехала в Мюнхен, и там П. поступил в Королевскую Максимилиановскую классическую гимназию, где превосходный преподаватель математики впервые пробудил в нем интерес к естественным и точным наукам. По окончании гимназии в 1874 г. он собирался было изучать классическую филологию, пробовал свои силы в музыкальной композиции, но потом отдал предпочтение физике.

В течение трех лет П. изучал математику и физику в Мюнхенском и год – в Берлинском университетах. Один из его профессоров в Мюнхене, физик-экспериментатор Филипп фон Жолли, оказался плохим пророком, когда посоветовал молодому П. избрать другую профессию, так как, по его словам, в физике не осталось ничего принципиально нового, что можно было бы открыть. Эта точка зрения, широко распространенная в то время, возникла под влиянием необычайных успехов, которых ученые в XIX в. достигли в приумножении наших знаний о физических и химических процессах.

В бытность свою в Берлине П. приобрел более широкий взгляд на физику благодаря публикациям выдающихся физиков Германа фон Гельмгольца и Густава Кирхгофа, а также статьям Рудольфа Клаузиуса. Знакомство с их трудами способствовало тому, что научные интересы П. надолго сосредоточивались на термодинамике – области физики, в которой на основе небольшого числа фундаментальных законов изучаются явления теплоты, механической энергии и преобразования энергии. Ученую степень доктора П. получил в 1879 г., защитив в Мюнхенском университете диссертацию о втором начале термодинамики, утверждающем, что ни один непрерывный самоподдерживающийся процесс не может переносить тепло от более холодного тела к более теплому.

На следующий год П. написал еще одну работу по термодинамике, которая принесла ему должность младшего ассистента физического факультета Мюнхенского университета. В 1885 г. он стал адъюнкт-профессором Кильского университета, что упрочило его независимость, укрепило финансовое положение и предоставило больше времени для научных исследований. Работы П. по термодинамике и ее приложениям к физической химии и электрохимии снискали ему международное признание. В 1888 г. он стал адъюнкт-профессором Берлинского университета и директором Института теоретической физики (пост директора был создан специально для него). Полным (действительным) профессором он стал в 1892 г.

С 1896 г. П. заинтересовался измерениями, производившимися в Государственном физико-техническом институте в Берлине, а также проблемами теплового излучения тел. Любое тело, содержащее тепло, испускает электромагнитное излучение. Если тело достаточно горячее, то это излучение становится видимым. При повышении температуры тело сначала раскаляется докрасна, затем становится оранжево-желтым и, наконец, белым. Излучение испускает смесь частот (в видимом диапазоне частота излучения соответствует цвету). Однако излучение тела зависит не только от температуры, но и до некоторой степени от таких характеристик поверхности, как цвет и структура.

В качестве идеального эталона для измерения и теоретических исследований физики приняли воображаемое абсолютное черное тело. По определению, абсолютно черным называется тело, которое поглощает все падающее на него излучение и ничего не отражает. Излучение, испускаемое абсолютно черным телом, зависит только от его температуры. Хотя такого идеального тела не существует, неким приближением к нему может служить замкнутая оболочка с небольшим отверстием (например, надлежащим образом сконструированная печь, стенки и содержимое которой находятся в равновесии при одной и той же температуре).

Одно из доказательств чернотельных характеристик такой оболочки сводится к следующему. Излучение, падающее на отверстие, попадает в полость и, отражаясь от стенок, частично отражается и частично поглощается. Поскольку вероятность того, что излучение в результате многочисленных отражений выйдет через отверстие наружу, очень мала, оно практически полностью поглощается. Излучение, берущее начало в полости и выходящее из отверстия, принято считать эквивалентным излучению, испускаемому площадкой размером с отверстие на поверхности абсолютно черного тела при температуре полости и оболочки. Подготавливая собственные исследования, П. прочитал работу Кирхгофа о свойствах такой оболочки с отверстием. Точное количественное описание наблюдаемого распределения энергии излучения в этом случае получило название проблемы черного тела.

Как показали эксперименты с черным телом, график зависимости энергии (яркости) от частоты или длины волны является характеристической кривой. При низких частотах (больших длинах волн) она прижимается к оси частот, затем на некоторой промежуточной частоте достигает максимума (пик с округлой вершиной), а затем при более высоких частотах (коротких длинах волн) спадает. При повышении температуры кривая сохраняет свою форму, но сдвигается в сторону более высоких частот. Были установлены эмпирические соотношения между температурой и частотой пика на кривой излучения черного тела (закон смещения Вина, названный так в честь Вильгельма Вина) и между температурой и всей излученной энергией (закон Стефана – Больцмана, названный так в честь австрийских физиков Йозефа Стефана и Людвига Больцмана), но никому не удавалось вывести кривую излучения черного тела из основных принципов, известных в то время.

Вину удалось получить полуэмпирическую формулу, которую можно подогнать так, что она хорошо описывает кривую при высоких частотах, но неверно передает ее ход при низких частотах. Дж. У. Стретт (лорд Рэлей) и английский физик Джеймс Джинс применили принцип равного распределения энергии по частотам колебаний осцилляторов, заключенных в пространстве черного тела, и пришли к другой формуле (формуле Рэлея – Джинса). Она хорошо воспроизводила кривую излучения черного тела при низких частотах, но расходилась с ней на высоких частотах.

П. под влиянием теории электромагнитной природы света Джеймса Клерка Максвелла (опубликованной в 1873 г. и подтвержденной экспериментально Генрихом Герцем в 1887 г.) подошел к проблеме черного тела с точки зрения распределения энергии между элементарными электрическими осцилляторами, физическая форма которых никак не конкретизируется. Хотя на первый взгляд может показаться, что выбранный им метод напоминает вывод Рэлея – Джинса, П. отверг некоторые из принятых этими учеными допущений.

В 1900 г., после продолжительных и настойчивых попыток создать теорию, которая удовлетворительно объясняла бы экспериментальные данные, П. удалось вывести формулу, которая, как обнаружили физики-экспериментаторы из Государственного физико-технического института, согласовывалась с результатами измерений с замечательной точностью. Законы Вина и Стефана – Больцмана также следовали из формулы Планка. Однако для вывода своей формулы ему пришлось ввести радикальное понятие, идущее вразрез со всеми установленными принципами. Энергия планковских осцилляторов изменяется не непрерывно, как следовало бы из традиционной физики, а может принимать только дискретные значения, увеличивающиеся (или уменьшающиеся) конечными шагами. Каждый шаг по энергии равен некоторой постоянной (называемой ныне постоянной Планка), умноженной на частоту. Дискретные порции энергии впоследствии получили название квантов. Введенная П. гипотеза ознаменовала рождение квантовой теории, совершившей подлинную революцию в физике. Классическая физика в противоположность современной физике ныне означает «физика до Планка».

П. отнюдь не был революционером, и ни он сам, ни другие физики не сознавали глубокого значения понятия «квант». Для П. квант был всего лишь средством, позволившим вывести формулу, дающую удовлетворительное согласие с кривой излучения абсолютно черного тела. Он неоднократно пытался достичь согласия в рамках классической традиции, но безуспешно. Вместе с тем он с удовольствием отметил первые успехи квантовой теории, последовавшие почти незамедлительно. Его новая теория включала в себя, помимо постоянной Планка, и другие фундаментальные величины, такие, как скорость света и число, известное под названием постоянной Больцмана. В 1901 г., опираясь на экспериментальные данные по излучению черного тела, П. вычислил значение постоянной Больцмана и, используя другую известную информацию, получил число Авогадро (число атомов в одном моле элемента). Исходя из числа Авогадро, П. сумел с замечательной точностью найти электрический заряд электрона.

Позиции квантовой теории укрепились в 1905 г., когда Альберт Эйнштейн воспользовался понятием фотона – кванта электромагнитного излучения – для объяснения фотоэлектрического эффекта (испускание электронов поверхностью металла, освещаемой ультрафиолетовым излучением). Эйнштейн предположил, что свет обладает двойственной природой: он может вести себя и как волна (в чем нас убеждает вся предыдущая физика), и как частица (о чем свидетельствует фотоэлектрический эффект). В 1907 г. Эйнштейн еще более упрочил положение квантовой теории, воспользовавшись понятием кванта для объяснения загадочных расхождений между предсказаниями теории и экспериментальными измерениями удельной теплоемкости тел – количества тепла, необходимого для того, чтобы поднять на один градус температуру одной единицы массы твердого тела.

Еще одно подтверждение потенциальной мощи введенной П. новации поступило в 1913 г. от Нильса Бора, применившего квантовую теорию к строению атома. В модели Бора электроны в атоме могли находиться только на определенных энергетических уровнях, определяемых квантовыми ограничениями. Переход электронов с одного уровня на другой сопровождается выделением разности энергий в виде фотона излучения с частотой, равной энергии фотона, деленной на постоянную Планка. Тем самым получали квантовое объяснение характеристические спектры излучения, испускаемого возбужденными атомами.

В 1919 г. П. был удостоен Нобелевской премии по физике за 1918 г. «в знак признания его заслуг в деле развития физики благодаря открытию квантов энергии». Как заявил А.Г. Экстранд, член Шведской королевской академии наук, на церемонии вручения премии, «теория излучения П. – самая яркая из путеводных звезд современного физического исследования, и пройдет, насколько можно судить, еще немало времени, прежде чем иссякнут сокровища, которые были добыты его гением». В Нобелевской лекции, прочитанной в 1920 г., П. подвел итог своей работы и признал, что «введение кванта еще не привело к созданию подлинной квантовой теории».

20-е гг. стали свидетелями развития Эрвином Шредингером, Вернером Гейзенбергом, П.А.М. Дираком и другими квантовой механики – оснащенной сложным математическим аппаратом квантовой теории. П. пришлась не по душе новая вероятностная интерпретация квантовой механики, и, подобно Эйнштейну, он пытался примирить предсказания, основанные только на принципе вероятности, с классическими идеями причинности. Его чаяниям не суждено было сбыться: вероятностный подход устоял.

Вклад П. в современную физику не исчерпывается открытием кванта и постоянной, носящей ныне его имя. Сильное впечатление на него произвела специальная теория относительности Эйнштейна, опубликованная в 1905 г. Полная поддержка, оказанная П. новой теории, в немалой мере способствовала принятию специальной теории относительности физиками. К числу других его достижений относится предложенный им вывод уравнения Фоккера – Планка, описывающего поведение системы частиц под действием небольших случайных импульсов (Адриан Фоккер – нидерландский физик, усовершенствовавший метод, впервые использованный Эйнштейном для описания броуновского движения – хаотического зигзагообразного движения мельчайших частиц, взвешенных в жидкости). В 1928 г. в возрасте семидесяти лет Планк вышел в обязательную формальную отставку, но не порвал связей с Обществом фундаментальных наук кайзера Вильгельма, президентом которого он стал в 1930 г. И на пороге восьмого десятилетия он продолжал исследовательскую деятельность.

Личная жизнь П. была отмечена трагедией. Его первая жена, урожденная Мария Мерк, с которой он вступил в брак в 1885 г. и которая родила ему двух сыновей и двух дочерей-близнецов, умерла в 1909 г. Двумя годами позже он женился на своей племяннице Марге фон Хесслин, от которой у него также родился сын. Старший сын П. погиб в первую мировую войну, а в последующие годы обе его дочери умерли при родах. Второй сын от первого брака был казнен в 1944 г. за участие в неудавшемся заговоре против Гитлера.

Как человек сложившихся взглядов и религиозных убеждений, да и просто как справедливый человек, П. после прихода в 1933 г. Гитлера к власти публично выступал в защиту еврейских ученых, изгнанных со своих постов и вынужденных эмигрировать. На научной конференции он приветствовал Эйнштейна, преданного анафеме нацистами. Когда П. как президент Общества фундаментальных наук кайзера Вильгельма наносил официальный визит Гитлеру, он воспользовался этим случаем, чтобы попытаться прекратить преследования ученых-евреев. В ответ Гитлер разразился тирадой против евреев вообще. В дальнейшем П. стал более сдержанным и хранил молчание, хотя нацисты, несомненно, знали о его взглядах.

Как патриот, любящий родину, он мог только молиться о том, чтобы германская нация вновь обрела нормальную жизнь. Он продолжал служить в различных германских ученых обществах в надежде сохранить хоть какую-то малость немецкой науки и просвещения от полного уничтожения. После того как его дом и личная библиотека погибли во время воздушного налета на Берлин, П. и его жена пытались найти убежище в имении Рогец неподалеку от Магдебурга, где оказались между отступающими немецкими войсками и наступающими силами союзных войск. В конце концов супруги Планк были обнаружены американскими частями и доставлены в безопасный тогда Геттинген.

Скончался П. в Геттингене 4 октября 1947 г., за шесть месяцев до своего 90-летия. На его могильной плите выбиты только имя и фамилия и численное значение постоянной Планка.

Подобно Бору и Эйнштейну, П. глубоко интересовался философскими проблемами, связанными с причинностью, этикой и свободой воли, и выступал на эти темы в печати и перед профессиональными и непрофессиональными аудиториями. Исполнявший обязанности пастора (но не имевший священнического сана) в Берлине, П. был глубоко убежден в том, что наука дополняет религию и учит правдивости и уважительности.

Через всю свою жизнь П. пронес любовь к музыке, вспыхнувшую в нем еще в раннем детстве. Великолепный пианист, он часто играл камерные произведения со своим другом Эйнштейном, пока тот не покинул Германию. П. был также увлеченным альпинистом и почти каждый свой отпуск проводил в Альпах.

Кроме Нобелевской премии, П. был удостоен медали Копли Лондонского королевского общества (1928) и премии Гете г. Франкфурта-на-Майне (1946). Германское физическое общество назвал в честь него свою высшую награду медалью Планка, и сам П. был первым обладателем этой почетной награды. В честь его 80-летия одна из малых планет была названа Планкианой, а после окончания второй мировой войны Общество фундаментальных наук кайзера Вильгельма было переименовано в Общество Макса Планка. П. состоял членом Германской и Австрийской академий наук, а также научных обществ и академий Англии, Дании, Ирландии, Финляндии, Греции, Нидерландов, Венгрии, Италии, Советского Союза, Швеции, Украины и Соединенных Штатов.

Макс Планк не был единственным создателем квантовой механики. На формирование квантовой теории потребовалось больше четверти века и усилия множества ученых, включая Альберта Эйнштейна и Эрвина Шредингера. Созданная их общим трудом новая физика включала свой собственный математический аппарат вкупе с рядом ранее отсутствовавших понятий, однако все началось с решения одной конкретной проблемы.

1900 год

Начало карьеры Макса Планка было связано с теоретическими работами по термодинамике - эксперименты ученый ставить перестал еще в университете во время учебы, но зато он учился математике у самого Карла Вейерштрасса и изучал публикации Рудольфа Клаузиса. Вейерштрасс по праву считается основателем современного математического анализа, а Клаузиус фактически заложил фундамент термодинамики. С такой базой Планк уже в 1887 году, в возрасте 29 лет, возглавил кафедру теоретической физики в Берлинском университете.

В конце 1890-х годов Макс Планк, бывший тогда также и руководителем Института теоретической физики в Берлине, работал над математическим описанием спектра нагретого тела. Суть этой задачи состояла в следующем: надо было найти формулу, связывающую интенсивность свечения раскаленного объекта с длиной волны излучения - последняя величина в случае видимого света определяет цвет.

Зависимость интенсивности свечения от длины волны можно представить графиком:

По горизонтали здесь отложена длина волны, а по вертикали - интенсивность. Чем выше кривая, тем больше излучения испускает нагретое тело с данной длиной волны: можно заметить, что нагретый до 5000 кельвинов (это те же градусы Цельсия, но с отсчетом от -273 °C, абсолютного нуля) предмет сильнее всего светится желтым, а вот при нагреве «всего» до 3000 кельвинов максимум приходится на область инфракрасного излучения. Подобные графики к моменту начала работы Макса Планка уже умели получать при помощи специальных приборов-спектрографов, однако найти для них удачное математическое описание не получалось. Черная кривая на картинке соответствует одной из существовавших до Планка моделей - видно, что она очень плохо соответствует реальности.

Задача о спектре нагретого тела была важна для металлургии и производства электрических лампочек, но с фундаментальной точки зрения казалась многим исследователям чем-то второстепенным. Более того, всю физику многие ученые считали фактически законченной и построенной на сочетании нескольких больших теорий. Это были атомно-молекулярная теория, электродинамика и ньютонова механика - все вместе объясняло большую часть наблюдаемых в мире процессов, от движения планет до работы парового двигателя.

Но когда Макс Планк 14 декабря на заседании Немецкого физического общества представил свою формулу и впервые смог корректно вывести экспериментальные кривые спектров из теоретических соображений, под стройное здание классической физики была фактически заложена бомба. Доклад «К теории распределения энергии излучения нормального спектра» (Zur des Gesetzes der Energieverteilung im Normalspektrum) содержал идею о том, что испускающие электромагнитное излучение в форме света и инфракрасных лучей атомы отдают энергию вовне не непрерывным потоком, а порциями, квантами. Это была настолько революционная идея, что даже сам Макс Планк поначалу недооценил ее потенциал.

Для решения проблемы нахождения термодинамического равновесия Планк придумал красивый вычислительный прием: не прибегая к «тяжелой артиллерии» в виде интегрального исчисления, как делали все другие занимавшиеся этой проблемой физики, просто просуммировать отдельные порции энергии, полагая их конечными. Он надеялся получить ответ, который не будет зависеть от величины отдельной порции. А вместо этого получил точное значение каждой их них - hν, где ν - частота излучения, а h - постоянная Планка, имеющая размерность действия, то есть произведения энергии на время. Сам Планк называл эту постоянную квантом действия. Согласно современным данным, h = 6,626 × 10 −34 Дж×с.

Кстати, оригинальное издание доклада Планка в тот день - на сегодня раритет, цена которого составляет свыше 22 тысяч долларов .

1905 год

1905 год стал звездным для самого, пожалуй, известного в мире ученого - Альберта Эйнштейна. Ранее мало кому известный служащий патентного бюро практически одномоментно публикует три статьи, вошедшие в историю физики: первая - по теории относительности, вторая - по анализу броуновского движения (хаотичное перемещение частиц по действием ударов отдельных молекул) и третья, за которую дали Нобелевскую премию, - с теоретическим описанием фотоэффекта.

Фотоэффект, открытый изначально Генрихом Герцем и изученный Александром Столетовым, заключается в испускании металлами электронов под действием падающего света. Это явление Альберт Эйнштейн объяснил при помощи тех самых квантов излучения, которые сам Макс Планк рассматривал в качестве разве что удачного математического приема. Согласно Эйнштейну, кванты, будучи реальными частицами электромагнитного излучения, передают свою энергию электронам в веществе и выбивают эти электроны наружу.

Несмотря на то что теория Эйнштейна хорошо описывала экспериментальные данные, многие ученые отнеслись к ней скептически. Блестящий физик-экспериментатор Роберт Милликен, до этого поставивший тонкие и точные опыты по измерению заряда электрона, потратил около десяти лет на проверку предсказаний Эйнштейна, но в итоге был вынужден признать реальность квантов.

Примириться с существованием квантов было непросто и самому Планку. Он, равно как и многие другие физики, считал, что деление излучения на некие порции противоречит классической теории электромагнетизма (с ее электромагнитными волнами) и целому ряду экспериментальных данных, из которых также следовала волновая природа света. Работа Планка по спектру нагретого тела стала первым аргументом против использования классической физики для описания микромира, а статья Эйнштейна про фотоэффект и его теоретическое описание - вторым. Далее последовали попытки разных физиков создать модель атома; на этом этапе необходимость строить новую физику стала очевидной уже практически для всех специалистов.

1910-й и около

Электроны были открыты в конце XIX века, и практически сразу стало понятно, что эти частицы входят в состав атомов. Возник вопрос: если атом вовсе не элементарен, а включает в себя электроны, то как же он устроен?

Опыты британского физика Эрнеста Резерфорда в 1909 году показали, что в атомах явно должно быть некое положительно заряженное, очень маленькое и при этом массивное ядро. На основе этого ученый пришел в 1911 году к модели, в которой ядро окружают вращающиеся вокруг электроны. Но проблема этой теории заключается в том, что движущиеся по окружности заряженные электроны по законам электродинамики обязаны излучать электромагнитные волны. Атомы, во-первых, будут буквально светиться, а во-вторых, излучающий электрон очень быстро теряет энергию и должен упасть на ядро. Ни того ни другого, как можно заметить без всяких опытов, не наблюдается; кризис в науке с открытием атомного ядра обострился настолько, что в 1911 году пришлось собрать международный конгресс по теме «Излучение и кванты» с участием почти всех ученых мировой величины.

И хотя к этому моменту квантовая механика еще не получила своего математического аппарата, плодотворность идеи о квантовании энергии стала очевидна по крайней мере большинству ведущих физиков мира.

1920-е

Спустя еще полтора десятка лет квантовая механика приобрела свой математический аппарат, а число указывающих на существование квантования энергии экспериментов существенно возросло. И хотя поначалу Макс Планк не мог свыкнуться с тем, что материя на микроскопическом уровне все-таки не является непрерывной (он долгое время сомневался и в существовании атомов), появление идеи о волновой функции - разработка Эрвина Шредингера - все-таки отчасти примирило великого теоретика с квантовомеханической картиной мира.

Волновая функция стала заменой классическим частицам, которые имеют четко очерченные границы и которые можно представить, например, в виде твердых шариков. Волновые функции распределены по всему пространству, и благодаря этому понятию любой объект можно представить не как частицу, а как волну, которая способна, например, рассеиваться на препятствиях или даже проникать под барьеры, непроницаемые с точки зрения классической физики. Если бы квантовая механика работала не в масштабе микромира, а на привычных нам расстояниях, положенная на стол книга могла бы самопроизвольно провалится («туннелировать») сквозь столешницу, да и протянув к ней руку мы бы встретили желаемое лишь с определенной вероятностью. Эти странные свойства квантового мира уже не вытекают напрямую из формулы Планка для спектра нагретых тел, но они являются логическим следствием из той новой физики, которая началась с этой формулы.

После формирования основ квантовой механики последовали исследования в области строения атомного ядра (это привело к ядерному реактору и ядерному оружию), физики полупроводников (на этом выросла вся современная электроника) и квантовой химии. В середине XX века квантовая механика дополнилась теорией, описывающей кроме электромагнетизма еще и два вида взаимодействий внутри атомного ядра и между элементарными частицами. Так появилась Стандартная модель, ставшая самым фундаментальным описанием строения материи. Квантовая механика позволила создать лазеры, оптоволоконные линии связи и микропроцессоры; она позволила понять, почему светят звезды и как возникла Вселенная.

Макс Планк дожил до преклонного возраста (он скончался в возрасте 89 лет, в 1947 году), пережив нацистов и Вторую мировую войну. После прихода Гитлера к власти физик попытался стать защитником науки, которому чужда всякая политика, но это закончилось тем, что с Планком прекратил общение Эйнштейн (того не устроила слишком пассивная позиция Планка), а сам ученый стал мишенью для нападок со стороны сторонников «арийской физики»: те отрицали и квантовую механику, и теорию относительности как продукты «еврейской физики». Старший сын Планка погиб в Первую мировую войну, а обе его дочери умерли при родах. В 1945 году второго сына Макса Планка казнили за участие в антигитлеровском заговоре, сам физик чуть не погиб при бомбардировках, но после окончания войны стал главой Общества кайзера Вильгельма, объединения ведущих научно-исследовательских институтов Германии. Дом и личная библиотека Планка погибли во время воздушного налета на Берлин.

На его могильной плите выбиты только имя и фамилия ученого и численное значение постоянной Планка.

В 1948 году, вскоре после его смерти, на основе этой организации было основано Общество научных исследований имени Макса Планка, состоящее ныне из 80 институтов и научно-исследовательских организаций.