Онлайн тесты огэ география. Подготовка к ОГЭ по географии

Содержание статьи

ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ, измерение электрических величин, таких, как напряжение, сопротивление, сила тока, мощность. Измерения производятся с помощью различных средств – измерительных приборов, схем и специальных устройств. Тип измерительного прибора зависит от вида и размера (диапазона значений) измеряемой величины, а также от требуемой точности измерения. В электрических измерениях используются основные единицы системы СИ: вольт (В), ом (Ом), фарада (Ф), генри (Г), ампер (А) и секунда (с).

ЭТАЛОНЫ ЕДИНИЦ ЭЛЕКТРИЧЕСКИХ ВЕЛИЧИН

Электрическое измерение – это нахождение (экспериментальными методами) значения физической величины, выраженного в соответствующих единицах (например, 3 А, 4 В). Значения единиц электрических величин определяются международным соглашением в соответствии с законами физики и единицами механических величин. Поскольку «поддержание» единиц электрических величин, определяемых международными соглашениями, сопряжено с трудностями, их представляют «практическими» эталонами единиц электрических величин. Такие эталоны поддерживаются государственными метрологическими лабораториями разных стран. Например, в США юридическую ответственность за поддержание эталонов единиц электрических величин несет Национальный институт стандартов и технологии. Время от времени проводятся эксперименты по уточнению соответствия между значениями эталонов единиц электрических величин и определениями этих единиц. В 1990 государственные метрологические лаборатории промышленно развитых стран подписали соглашение о согласовании всех практических эталонов единиц электрических величин между собой и с международными определениями единиц этих величин.

Электрические измерения проводятся в соответствии с государственными эталонами единиц напряжения и силы постоянного тока, сопротивления постоянному току, индуктивности и емкости. Такие эталоны представляют собой устройства, имеющие стабильные электрические характеристики, или установки, в которых на основе некоего физического явления воспроизводится электрическая величина, вычисляемая по известным значениям фундаментальных физических констант. Эталоны ватта и ватт-часа не поддерживаются, так как более целесообразно вычислять значения этих единиц по определяющим уравнениям, связывающим их с единицами других величин.

ИЗМЕРИТЕЛЬНЫЕ ПРИБОРЫ

Электроизмерительные приборы чаще всего измеряют мгновенные значения либо электрических величин, либо неэлектрических, преобразованных в электрические. Все приборы делятся на аналоговые и цифровые. Первые обычно показывают значение измеряемой величины посредством стрелки, перемещающейся по шкале с делениями. Вторые снабжены цифровым дисплеем, который показывает измеренное значение величины в виде числа. Цифровые приборы в большинстве измерений более предпочтительны, так как они более точны, более удобны при снятии показаний и, в общем, более универсальны. Цифровые универсальные измерительные приборы («мультиметры») и цифровые вольтметры применяются для измерения со средней и высокой точностью сопротивления постоянному току, а также напряжения и силы переменного тока. Аналоговые приборы постепенно вытесняются цифровыми, хотя они еще находят применение там, где важна низкая стоимость и не нужна высокая точность. Для самых точных измерений сопротивления и полного сопротивления (импеданса) существуют измерительные мосты и другие специализированные измерители. Для регистрации хода изменения измеряемой величины во времени применяются регистрирующие приборы – ленточные самописцы и электронные осциллографы, аналоговые и цифровые.

ЦИФРОВЫЕ ПРИБОРЫ

Во всех цифровых измерительных приборах (кроме простейших) используются усилители и другие электронные блоки для преобразования входного сигнала в сигнал напряжения, который затем преобразуется в цифровую форму аналого-цифровым преобразователем (АЦП). Число, выражающее измеренное значение, выводится на светодиодный (СИД), вакуумный люминесцентный или жидкокристаллический (ЖК) индикатор (дисплей). Прибор обычно работает под управлением встроенного микропроцессора, причем в простых приборах микропроцессор объединяется с АЦП на одной интегральной схеме. Цифровые приборы хорошо подходят для работы с подключением к внешнему компьютеру. В некоторых видах измерений такой компьютер переключает измерительные функции прибора и дает команды передачи данных для их обработки.

Аналого-цифровые преобразователи.

Существуют три основных типа АЦП: интегрирующий, последовательного приближения и параллельный. Интегрирующий АЦП усредняет входной сигнал по времени. Из трех перечисленных типов это самый точный, хотя и самый «медленный». Время преобразования интегрирующего АЦП лежит в диапазоне от 0,001 до 50 с и более, погрешность составляет 0,1–0,0003%. Погрешность АЦП последовательного приближения несколько больше (0,4–0,002%), но зато время преобразования – от ~10мкс до ~1 мс. Параллельные АЦП – самые быстродействующие, но и наименее точные: их время преобразования порядка 0,25 нс, погрешность – от 0,4 до 2%.

Методы дискретизации.

Сигнал дискретизируется по времени путем быстрого измерения его в отдельные моменты времени и удержания (сохранения) измеренных значений на время преобразования их в цифровую форму. Последовательность полученных дискретных значений может выводиться на дисплей в виде кривой, имеющей форму сигнала; возводя эти значения в квадрат и суммируя, можно вычислять среднеквадратическое значение сигнала; их можно использовать также для вычисления времени нарастания, максимального значения, среднего по времени, частотного спектра и т.д. Дискретизация по времени может производиться либо за один период сигнала («в реальном времени»), либо (с последовательной или произвольной выборкой) за ряд повторяющихся периодов.

Цифровые вольтметры и мультиметры.

Цифровые вольтметры и мультиметры измеряют квазистатическое значение величины и указывают его в цифровой форме. Вольтметры непосредственно измеряют только напряжение, обычно постоянного тока, а мультиметры могут измерять напряжение постоянного и переменного тока, силу тока, сопротивление постоянному току и иногда температуру. Эти самые распространенные контрольно-измерительные приборы общего назначения с погрешностью измерения от 0,2 до 0,001% могут иметь 3,5- или 4,5-значный цифровой дисплей. «Полуцелый» знак (разряд) – это условное указание на то, что дисплей может показывать числа, выходящие за пределы номинального числа знаков. Например, 3,5-значный (3,5-разрядный) дисплей в диапазоне 1–2 В может показывать напряжение до 1,999 В.

Измерители полных сопротивлений.

Это специализированные приборы, измеряющие и показывающие емкость конденсатора, сопротивление резистора, индуктивность катушки индуктивности или полное сопротивление (импеданс) соединения конденсатора или катушки индуктивности с резистором. Имеются приборы такого типа для измерения емкости от 0,00001 пФ до 99,999 мкФ, сопротивления от 0,00001 Ом до 99,999 кОм и индуктивности от 0,0001 мГ до 99,999 Г. Измерения могут проводиться на частотах от 5 Гц до 100 МГц, хотя ни один прибор не перекрывает всего диапазона частот. На частотах, близких к 1 кГц, погрешность может составлять лишь 0,02%, но точность снижается вблизи границ диапазонов частоты и измеряемых значений. Большинство приборов могут показывать также производные величины, такие, как добротность катушки или коэффициент потерь конденсатора, вычисляемые по основным измеренным значениям.

АНАЛОГОВЫЕ ПРИБОРЫ

Для измерения напряжения, силы тока и сопротивления на постоянном токе применяются аналоговые магнитоэлектрические приборы с постоянным магнитом и многовитковой подвижной частью. Такие приборы стрелочного типа характеризуются погрешностью от 0,5 до 5%. Они просты и недороги (пример – автомобильные приборы, показывающие ток и температуру), но не применяются там, где требуется сколько-нибудь значительная точность.

Магнитоэлектрические приборы.

В таких приборах используется сила взаимодействия магнитного поля с током в витках обмотки подвижной части, стремящаяся повернуть последнюю. Момент этой силы уравновешивается моментом, создаваемым противодействующей пружиной, так что каждому значению тока соответствует определенное положение стрелки на шкале. Подвижная часть имеет форму многовитковой проволочной рамки с размерами от 3ґ 5 до 25ґ 35 мм и делается как можно более легкой. Подвижная часть, установленная на каменных подшипниках или подвешенная на металлической ленточке, помещается между полюсами сильного постоянного магнита. Две спиральные пружинки, уравновешивающие крутящий момент, служат также токопроводами обмотки подвижной части.

Магнитоэлектрический прибор реагирует на ток, проходящий по обмотке его подвижной части, а потому представляет собой амперметр или, точнее, миллиамперметр (так как верхний предел диапазона измерений не превышает примерно 50 мА). Его можно приспособить для измерения токов большей силы, присоединив параллельно обмотке подвижной части шунтирующий резистор с малым сопротивлением, чтобы в обмотку подвижной части ответвлялась лишь малая доля полного измеряемого тока. Такое устройство пригодно для токов, измеряемых многими тысячами ампер. Если последовательно с обмоткой присоединить добавочный резистор, то прибор превратится в вольтметр. Падение напряжения на таком последовательном соединении равно произведению сопротивления резистора на ток, показываемый прибором, так что его шкалу можно проградуировать в вольтах. Чтобы сделать из магнитоэлектрического миллиамперметра омметр, нужно присоединять к нему последовательно измеряемые резисторы и подавать на это последовательное соединение постоянное напряжение, например от батареи питания. Ток в такой схеме не будет пропорционален сопротивлению, а потому необходима специальная шкала, корректирующая нелинейность. Тогда можно будет производить по шкале прямой отсчет сопротивления, хотя и с не очень высокой точностью.

Гальванометры.

К магнитоэлектрическим приборам относятся и гальванометры – высокочувствительные приборы для измерения крайне малых токов. В гальванометрах нет подшипников, их подвижная часть подвешена на тонкой ленточке или нити, используется более сильное магнитное поле, а стрелка заменена зеркальцем, приклеенным к нити подвеса (рис. 1). Зеркальце поворачивается вместе с подвижной частью, а угол его поворота оценивается по смещению отбрасываемого им светового зайчика на шкале, установленной на расстоянии около 1 м. Самые чувствительные гальванометры способны давать отклонение по шкале, равное 1 мм, при изменении тока всего лишь на 0,00001 мкА.

РЕГИСТРИРУЮЩИЕ ПРИБОРЫ

Регистрирующие приборы записывают «историю» изменения значения измеряемой величины. К таким приборам наиболее распространенных типов относятся ленточные самописцы, записывающие пером кривую изменения величины на диаграммной бумажной ленте, аналоговые электронные осциллографы, развертывающие кривую процесса на экране электронно-лучевой трубки, и цифровые осциллографы, запоминающие однократные или редко повторяющиеся сигналы. Основное различие между этими приборами – в скорости записи. Ленточные самописцы с их движущимися механическими частями наиболее подходят для регистрации сигналов, изменяющихся за секунды, минуты и еще медленнее. Электронные осциллографы же способны регистрировать сигналы, изменяющиеся за время от миллионных долей секунды до нескольких секунд.

ИЗМЕРИТЕЛЬНЫЕ МОСТЫ

Измерительный мост – это обычно четырехплечая электрическая цепь, составленная из резисторов, конденсаторов и катушек индуктивности, предназначенная для определения отношения параметров этих компонентов. К одной паре противоположных полюсов цепи подключается источник питания, а к другой – нуль-детектор. Измерительные мосты применяются только в тех случаях, когда требуется наивысшая точность измерения. (Для измерений со средней точностью лучше пользоваться цифровыми приборами, поскольку они проще в обращении.) Наилучшие трансформаторные измерительные мосты переменного тока характеризуются погрешностью (измерения отношения) порядка 0,0000001%. Простейший мост для измерения сопротивления носит имя своего изобретателя Ч.Уитстона.

Двойной измерительный мост постоянного тока.

К резистору трудно подсоединить медные провода, не привнеся при этом сопротивления контактов порядка 0,0001 Ом и более. В случае сопротивления 1 Ом такой токоподвод вносит ошибку порядка всего лишь 0,01%, но для сопротивления 0,001 Ом ошибка будет составлять 10%. Двойной измерительный мост (мост Томсона), схема которого представлена на рис. 2, предназначен для измерения сопротивления эталонных резисторов малого номинала. Сопротивление таких четырехполюсных эталонных резисторов определяют как отношение напряжения на их потенциальных зажимах (р 1 , р 2 резистора R s и р 3 , p 4 резистора R x на рис. 2) к току через их токовые зажимы (с 1 , с 2 и с 3 , с 4). При такой методике сопротивление присоединительных проводов не вносит ошибки в результат измерения искомого сопротивления. Два дополнительных плеча m и n исключают влияние соединительного провода 1 между зажимами с 2 и с 3 . Сопротивления m и n этих плеч подбирают так, чтобы выполнялось равенство M /m = N /n . Затем, изменяя сопротивление R s , сводят разбаланс к нулю и находят

R x = R s (N /M ).

Измерительные мосты переменного тока.

Наиболее распространенные измерительные мосты переменного тока рассчитаны на измерения либо на сетевой частоте 50–60 Гц, либо на звуковых частотах (обычно вблизи 1000 Гц); специализированные же измерительные мосты работают на частотах до 100 МГц. Как правило, в измерительных мостах переменного тока вместо двух плеч, точно задающих отношение напряжений, используется трансформатор. К исключениям из этого правила относится измерительный мост Максвелла – Вина.

Измерительный мост Максвелла – Вина.

Такой измерительный мост позволяет сравнивать эталоны индуктивности (L ) с эталонами емкости на не известной точно рабочей частоте. Эталоны емкости применяются в измерениях высокой точности, поскольку они конструктивно проще прецизионных эталонов индуктивности, более компактны, их легче экранировать, и они практически не создают внешних электромагнитных полей. Условия равновесия этого измерительного моста таковы: L x = R 2 R 3 C 1 и R x = (R 2 R 3) /R 1 (рис. 3). Мост уравновешивается даже в случае «нечистого» источника питания (т.е. источника сигнала, содержащего гармоники основной частоты), если величина L x не зависит от частоты.

Трансформаторный измерительный мост.

Одно из преимуществ измерительных мостов переменного тока – простота задания точного отношения напряжений посредством трансформатора. В отличие от делителей напряжения, построенных из резисторов, конденсаторов или катушек индуктивности, трансформаторы в течение длительного времени сохраняют постоянным установленное отношение напряжений и редко требуют повторной калибровки. На рис. 4 представлена схема трансформаторного измерительного моста для сравнения двух однотипных полных сопротивлений. К недостаткам трансформаторного измерительного моста можно отнести то, что отношение, задаваемое трансформатором, в какой-то степени зависит от частоты сигнала. Это приводит к необходимости проектировать трансформаторные измерительные мосты лишь для ограниченных частотных диапазонов, в которых гарантируется паспортная точность.

Заземление и экранирование.

Типичные нуль-детекторы.

В измерительных мостах переменного тока чаще всего применяются нуль-детекторы двух типов. Нуль-детектор одного из них представляет собой резонансный усилитель с аналоговым выходным прибором, показывающим уровень сигнала. Нуль-детектор другого типа – это фазочувствительный детектор, который разделяет сигнал разбаланса на активную и реактивную составляющие и пригоден в тех случаях, когда требуется точно уравновешивать только одну из неизвестных составляющих (скажем, индуктивность L , но не сопротивление R катушки индуктивности).

ИЗМЕРЕНИЕ СИГНАЛОВ ПЕРЕМЕННОГО ТОКА

В случае изменяющихся во времени сигналов переменного тока обычно требуется измерять некоторые их характеристики, связанные с мгновенными значениями сигнала. Чаще всего желательно знать среднеквадратические (эффективные) значения электрических величин переменного тока, поскольку мощности нагревания при напряжении 1 В постоянного тока соответствует мощность нагревания при напряжении 1 В (эфф.) переменного тока. Наряду с этим могут представлять интерес и другие величины, например максимальное или среднее абсолютное значение. Среднеквадратическое (эффективное) значение напряжения (или силы) переменного тока определяется как корень квадратный из усредненного по времени квадрата напряжения (или силы тока):

где Т – период сигнала Y (t ). Максимальное значение Y макс – это наибольшее мгновенное значение сигнала, а среднее абсолютное значение Y AA – абсолютное значение, усредненное по времени. При синусоидальной форме колебаний Y эфф = 0,707Y макс и Y AA = 0,637Y макс.

Измерение напряжения и силы переменного тока.

Почти все приборы для измерения напряжения и силы переменного тока показывают значение, которое предлагается рассматривать как эффективное значение входного сигнала. Однако в дешевых приборах зачастую на самом деле измеряется среднее абсолютное или максимальное значение сигнала, а шкала градуируется так, чтобы показание соответствовало эквивалентному эффективному значению в предположении, что входной сигнал имеет синусоидальную форму. Не следует упускать из виду, что точность таких приборов крайне низка, если сигнал несинусоидален. Приборы, способные измерять истинное эффективное значение сигналов переменного тока, могут быть основаны на одном из трех принципов: электронного умножения, дискретизации сигнала или теплового преобразования. Приборы, основанные на первых двух принципах, как правило, реагируют на напряжение, а тепловые электроизмерительные приборы – на ток. При использовании добавочных и шунтовых резисторов всеми приборами можно измерять как ток, так и напряжение.

Электронное умножение.

Возведение в квадрат и усреднение по времени входного сигнала в некотором приближении осуществляются электронными схемами с усилителями и нелинейными элементами для выполнения таких математических операций, как нахождение логарифма и антилогарифма аналоговых сигналов. Приборы такого типа могут иметь погрешность порядка всего лишь 0,009%.

Дискретизация сигнала.

Сигнал переменного тока преобразуется в цифровую форму с помощью быстродействующего АЦП. Дискретизированные значения сигнала возводятся в квадрат, суммируются и делятся на число дискретных значений в одном периоде сигнала. Погрешность таких приборов составляет 0,01–0,1%.

Тепловые электроизмерительные приборы.

Наивысшую точность измерения эффективных значений напряжения и тока обеспечивают тепловые электроизмерительные приборы. В них используется тепловой преобразователь тока в виде небольшого откачанного стеклянного баллончика с нагревательной проволочкой (длиной 0,5–1 см), к средней части которой крохотной бусинкой прикреплен горячий спай термопары. Бусинка обеспечивает тепловой контакт и одновременно электроизоляцию. При повышении температуры, прямо связанном с эффективным значением тока в нагревательной проволочке, на выходе термопары возникает термо-ЭДС (напряжение постоянного тока). Такие преобразователи пригодны для измерения силы переменного тока с частотой от 20 Гц до 10 МГц.

На рис. 5 показана принципиальная схема теплового электроизмерительного прибора с двумя подобранными по параметрам тепловыми преобразователями тока. При подаче на вход схемы напряжения переменного тока V ас на выходе термопары преобразователя ТС 1 возникает напряжение постоянного тока, усилитель А создает постоянный ток в нагревательной проволочке преобразователя ТС 2 , при котором термопара последнего дает такое же напряжение постоянного тока, и обычный прибор постоянного тока измеряет выходной ток.

С помощью добавочного резистора описанный измеритель тока можно превратить в вольтметр. Поскольку тепловые электроизмерительные приборы непосредственно измеряют токи лишь от 2 до 500 мА, для измерения токов большей силы необходимы резисторные шунты.

Измерение мощности и энергии переменного тока.

Мощность, потребляемая нагрузкой в цепи переменного тока, равна среднему по времени произведению мгновенных значений напряжения и тока нагрузки. Если напряжение и ток изменяются синусоидально (как это обычно и бывает), то мощность Р можно представить в виде P = EI cosj , где Е и I – эффективные значения напряжения и тока, а j – фазовый угол (угол сдвига) синусоид напряжения и тока. Если напряжение выражается в вольтах, а ток в амперах, то мощность будет выражена в ваттах. Множитель cosj , называемый коэффициентом мощности, характеризует степень синхронности колебаний напряжения и тока.

С экономической точки зрения, самая важная электрическая величина – энергия. Энергия W определяется произведением мощности на время ее потребления. В математической форме это записывается так:

Если время (t 1 - t 2) измеряется в секундах, напряжение е – в вольтах, а ток i – в амперах, то энергия W будет выражена в ватт-секундах, т.е. джоулях (1 Дж = 1 ВтЧ с). Если же время измеряется в часах, то энергия – в ватт-часах. На практике электроэнергию удобнее выражать в киловатт-часах (1 кВтЧ ч = 1000 ВтЧ ч).

Счетчики электроэнергии с разделением времени.

В счетчиках электроэнергии с разделением времени используется весьма своеобразный, но точный метод измерения электрической мощности. Такой прибор имеет два канала. Один канал представляет собой электронный ключ, который пропускает или не пропускает входной сигнал Y (или обращенный входной сигнал - Y ) на фильтр нижних частот. Состоянием ключа управляет выходной сигнал второго канала с отношением временных интервалов «закрыто»/«открыто», пропорциональным его входному сигналу. Средний сигнал на выходе фильтра равен среднему по времени произведению двух входных сигналов. Если один входной сигнал пропорционален напряжению на нагрузке, а другой – току нагрузки, то выходное напряжение пропорционально мощности, потребляемой нагрузкой. Погрешность таких счетчиков промышленного изготовления составляет 0,02% на частотах до 3 кГц (лабораторных – порядка всего лишь 0,0001% при 60 Гц). Как приборы высокой точности они применяются в качестве образцовых счетчиков для поверки рабочих средств измерения.

Дискретизирующие ваттметры и счетчики электроэнергии.

Такие приборы основаны на принципе цифрового вольтметра, но имеют два входных канала, дискретизирующих параллельно сигналы тока и напряжения. Каждое дискретное значение e (k ), представляющее мгновенные значения сигнала напряжения в момент дискретизации, умножается на соответствующее дискретное значение i (k ) сигнала тока, полученное в тот же момент времени. Среднее по времени таких произведений есть мощность в ваттах:

Сумматор, накапливающий произведения дискретных значений с течением времени, дает полную электроэнергию в ватт-часах. Погрешность счетчиков электроэнергии может составлять всего лишь 0,01%.

Индукционные счетчики электроэнергии.

Индукционный счетчик представляет собой не что иное, как маломощный электродвигатель переменного тока с двумя обмотками – токовой и обмоткой напряжения. Проводящий диск, помещенный между обмотками, вращается под действием крутящего момента, пропорционального потребляемой мощности. Этот момент уравновешивается токами, наводимыми в диске постоянным магнитом, так что частота вращения диска пропорциональна потребляемой мощности. Число оборотов диска за то или иное время пропорционально полной электроэнергии, полученной за это время потребителем. Число оборотов диска считает механический счетчик, который показывает электроэнергию в киловатт-часах. Приборы такого типа широко применяются в качестве бытовых счетчиков электроэнергии. Их погрешность, как правило, составляет 0,5%; они отличаются большим сроком службы при любых допустимых уровнях тока.

Литература:

Атамалян Э.Г. и др. Приборы и методы измерения электрических величин . М., 1982
Малиновский В.Н. и др. Электрические измерения . М., 1985
Авдеев Б.Я. и др. Основы метрологии и электрические измерения . Л., 1987



Государственная итоговая аттестация 2019 года по географии для выпускников 9 класса общеобразовательных учреждений проводится с целью оценки уровня общеобразовательной подготовки выпускников по данной дисциплине. В заданиях проверяются следующие виды деятельности в рамках дисциплины география:

  1. Знать и понимать географические особенности природы материков и океанов, народов Земли; различия в хозяйственном освоении разных территорий и акваторий; результаты выдающихся географических открытий и путешествий.
  2. Знать специфику географического положения России.
  3. Знать и понимать особенности природы России.
  4. Знать и понимать природные и антропогенные причины возникновения геоэкологических проблем; меры по сохранению природы и защите людей от стихийных природных и техногенных явлений.
  5. Знать и понимать особенности основных отраслей хозяйства России, природно-хозяйственных зон и районов.
  6. Уметь приводить примеры природных ресурсов, их использования и охраны, формирования культурно-бытовых особенностей народов под влиянием среды их обитания; уметь находить в разных источниках информацию, необходимую для изучения экологических пробле.
  7. Знать и понимать особенности населения России.
  8. Уметь находить информацию, необходимую для изучения разных территорий Земли, их обеспеченности природными и человеческими ресурсами.
  9. Уметь анализировать в разных источниках информацию, необходимую для изучения разных территорий Земли, их обеспеченности природными и человеческими ресурсами.
  10. Понимать географические явления и процессы в геосферах.
  11. Знать и понимать природные и антропогенные причины возникновения геоэкологических проблем.
  12. Уметь выделять (узнавать) существенные признаки географических объектов и явлений.
  13. Уметь определять на карте географические координаты.
  14. Знать и понимать основные термины и понятия; уметь использовать приобретенные знания и умения в практической деятельности и повседневной жизни для решения практических задач.
  15. Уметь использовать приобретенные знания и умения в практической деятельности и повседневной жизни для чтения карт различного содержания.
Дата сдачи ОГЭ по географии 2019 года:
4 июня (вторник), 14 июня (пятница) .
Изменения структуры и содержания экзаменационной работы 2019 года по сравнению с 2018 годом отсутствуют .
В данном разделе вы найдёте онлайн тесты, которые помогут вам подготовиться к сдаче ОГЭ (ГИА) по географии. Желаем успехов!

Стандартный тест ОГЭ (ГИА-9) формата 2019-го года по географии состоит из 27 заданий с кратким ответом и 3 задания с развёрнутым ответом. В данном тесте представлены только 27 заданий, требующие краткого ответа. Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 17 заданиях. В трех заданиях предполагается запись ответа в виде слова или словосочетания, а в оставшихся 7 заданиях - в виде числа или последовательности цифр. Но для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Однако для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМ) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.


Стандартный тест ОГЭ (ГИА-9) формата 2019-го года по географии состоит из 27 заданий с кратким ответом и 3 задания с развёрнутым ответом. В данном тесте представлены только 27 заданий, требующие краткого ответа. Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 17 заданиях. В трех заданиях предполагается запись ответа в виде слова или словосочетания, а в оставшихся 7 заданиях - в виде числа или последовательности цифр. Но для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Однако для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМ) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.


Стандартный тест ОГЭ (ГИА-9) формата 2018-го года по географии состоит из 27 заданий с кратким ответом и 3 задания с развёрнутым ответом. В данном тесте представлены только 27 заданий, требующие краткого ответа. Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 17 заданиях. В трех заданиях предполагается запись ответа в виде слова или словосочетания, а в оставшихся 7 заданиях - в виде числа или последовательности цифр. Но для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Однако для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМ) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.



Стандартный тест ОГЭ (ГИА-9) формата 2018-го года по географии состоит из 27 заданий с кратким ответом и 3 задания с развёрнутым ответом. В данном тесте представлены только 27 заданий, требующие краткого ответа. Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 17 заданиях. В трех заданиях предполагается запись ответа в виде слова или словосочетания, а в оставшихся 7 заданиях - в виде числа или последовательности цифр. Но для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Однако для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.


Стандартный тест ОГЭ (ГИА-9) формата 2018-го года по географии состоит из 27 заданий с кратким ответом и 3 задания с развёрнутым ответом. В данном тесте представлены только 27 заданий, требующие краткого ответа. Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 17 заданиях. В трех заданиях предполагается запись ответа в виде слова или словосочетания, а в оставшихся 7 заданиях - в виде числа или последовательности цифр. Но для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Однако для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.


Стандартный тест ОГЭ (ГИА-9) формата 2018-го года по географии состоит из 27 заданий с кратким ответом и 3 задания с развёрнутым ответом. В данном тесте представлены только 27 заданий, требующие краткого ответа. Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 17 заданиях. В трех заданиях предполагается запись ответа в виде слова или словосочетания, а в оставшихся 7 заданиях - в виде числа или последовательности цифр. Но для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Однако для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.


Стандартный тест ОГЭ (ГИА-9) формата 2017-го года по географии состоит из 27 заданий с кратким ответом и 3 задания с развёрнутым ответом. В данном тесте представлены только 27 заданий, требующие краткого ответа. Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 17 заданиях. В трех заданиях предполагается запись ответа в виде слова или словосочетания, а в оставшихся 7 заданиях - в виде числа или последовательности цифр. Но для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Однако для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.



Стандартный тест ОГЭ (ГИА-9) формата 2016-го года по географии состоит из 27 заданий с кратким ответом и 3 задания с развёрнутым ответом. В данном тесте представлены только 27 заданий, требующие краткого ответа. Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 17 заданиях. В трех заданиях предполагается запись ответа в виде слова или словосочетания, а в оставшихся 7 заданиях - в виде числа или последовательности цифр. Но для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Однако для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.


Стандартный тест ОГЭ (ГИА-9) формата 2016-го года по географии состоит из 27 заданий с кратким ответом и 3 задания с развёрнутым ответом. В данном тесте представлены только 27 заданий, требующие краткого ответа. Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 17 заданиях. В трех заданиях предполагается запись ответа в виде слова или словосочетания, а в оставшихся 7 заданиях - в виде числа или последовательности цифр. Но для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Однако для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.


Стандартный тест ОГЭ (ГИА-9) формата 2016-го года по географии состоит из 27 заданий с кратким ответом и 3 задания с развёрнутым ответом. В данном тесте представлены только 27 заданий, требующие краткого ответа. Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 17 заданиях. В трех заданиях предполагается запись ответа в виде слова или словосочетания, а в оставшихся 7 заданиях - в виде числа или последовательности цифр. Но для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Однако для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.


Стандартный тест ОГЭ (ГИА-9) формата 2016-го года по географии состоит из 27 заданий с кратким ответом и 3 задания с развёрнутым ответом. В данном тесте представлены только 27 заданий, требующие краткого ответа. Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 17 заданиях. В трех заданиях предполагается запись ответа в виде слова или словосочетания, а в оставшихся 7 заданиях - в виде числа или последовательности цифр. Но для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Однако для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.


Стандартный тест ОГЭ (ГИА-9) формата 2016-го года по географии состоит из 27 заданий с кратким ответом и 3 задания с развёрнутым ответом. В данном тесте представлены только 27 заданий, требующие краткого ответа. Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 17 заданиях. В трех заданиях предполагается запись ответа в виде слова или словосочетания, а в оставшихся 7 заданиях - в виде числа или последовательности цифр. Но для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Однако для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.



Стандартный тест ОГЭ (ГИА-9) формата 2015-го года по географии состоит из 27 заданий с кратким ответом и 3 заданий с развёрнутым ответом. В данном тесте представлены только 27 заданий, требующие краткого ответа. Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 17 заданиях. Но для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Однако для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.


Стандартный тест ОГЭ (ГИА-9) формата 2015-го года по географии состоит из 27 заданий с кратким ответом и 3 заданий с развёрнутым ответом. В данном тесте представлены только 27 заданий, требующие краткого ответа. Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 17 заданиях. Но для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Однако для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.


Стандартный тест ОГЭ (ГИА-9) формата 2015-го года по географии состоит из 27 заданий с кратким ответом и 3 заданий с развёрнутым ответом. В данном тесте представлены только 27 заданий, требующие краткого ответа. Согласно текущей структуре экзамена, среди этих заданий варианты ответов предлагаются только в 17 заданиях. Но для удобства прохождения тестов администрация сайта сайт приняла решение предложить варианты ответов во всех заданиях. Однако для заданий, в которых варианты ответов составителями реальных контрольно измерительных материалов (КИМов) не предусмотрены, количество вариантов ответов было значительно увеличено, чтобы максимально приблизить наш тест к тому, с чем Вам придется столкнуться в конце учебного года.


В тесте представлены вопросы только с выбором одного правильного ответа .
Так что если у вас был номер вопроса 14, а потом вышел 18, то означает, что на 15, 16, 17 вопросы нужно ответить письменно с развернутым ответом, поэтому мы не стали их включать.

Образование :

University of London, UK
Московский технологический университет

Кандидат технических наук

Педагогический стаж: 17 лет

«Если студент дает неверный ответ, я сразу не говорю ему об этом. Вместо этого я спрашиваю, почему он так считает и как он пришел к такому выводу. Только общаясь и взаимодействуя с материалом, студент может научиться. Нельзя оперировать лишь единственным правильным ответом. Мне близки идеи Сократа о преподавании».

  • Илья

    Образование:

    МГУ им. М. В. Ломоносова
    University of Bern, Switzerland

    PhD in Chemistry and Molecular Science

    Педагогический стаж: 9 лет

    «Хорошее образование имеет мало общего с изучением хитростей успешной сдачи тестов. Хорошее образование развивает личность, дает глубокое понимание мира вокруг нас».

  • Сергей

    Образование:

    МПГУ, факультет физики
    Harvard University, USA

    Кандидат физико-математических наук

    Педагогический стаж: 14 лет

    «Физика — это просто. Математика — это легко».

  • Екатерина

    Образование:

    МГУ им. М. В. Ломоносова

    Кандидат биологических наук

    Педагогический стаж: 10 лет

    «Я думаю, что обучение — это не просто передача знаний по предмету. Задача учителя сделать предмет интересным, показать его внутреннюю структуру и логику, научить ученика думать в рамках этой структуры, устанавливать связи между отдельными темами, а также с другими областями науки. Биология очень увлекательна и тесно связана с другими науками. Мы используем математику для расчетов, привлекаем понятия из физики, опираемся на химию, и даже обсуждаем этические и экономические вопросы. Биология касается всех нас — мы часть живой природы, постоянно с ней взаимодействуем и часто используем в своих целях. Мне хочется показать ученикам, что знания о нашем организме и мире, который нас окружает очень важны для каждого, а актуальность биологических и медицинских исследований будет только расти».

  • Василий

    Образование:

    МГУ им. М. В. Ломоносова
    Российская Экономическая Школа

    Педагогический стаж: 9 лет

    «В современном мире математика занимает одно из важнейших мест, как в науке, так и повседневной жизни. Моя цель – объяснить студентам, что математика – это очень интересно и совсем несложно».

  • Анастасия

    Образование:

    The University of Leeds, UK
    Cambridge CELTA Certificate

    Педагогический стаж: 5 лет

    «Мне нравится работать с людьми. Для меня важно видеть, что моя работа имеет значение в жизни людей. Я бы назвала себя энергичным, воодушевленным и инновационным преподавателем. Мое отношение к работе — всегда стремиться к развитию и обучению».

  • Елена

    Образование :

    РГГУ, Институт филологии и истории
    Bucknell University, USA
    Cambridge CELTA Certificate

    Педагогический стаж: 7 лет

    «Больше всего в моей работе мне нравится видеть прогресс своих учеников. Именно поэтому я в своё время и пришла в эту профессию. Самое главное качество хорошего учителя, по моему мнению, это неподдельный интерес к собственному предмету, который непременно передаётся ученикам. Однако, важны и более практические навыки преподавания, такие как планирование уроков, подбор материалов и разработка интересных, интерактивных заданий. Только так можно сделать процесс обучения одновременно и эффективным, и увлекательным. Я стараюсь любыми способами повысить интерес учеников к гуманитарным дисциплинам и привить им такие необходимые на сегодняшний день навыки, как критическое мышление, анализ текста, и умение ясно и структурированно излагать свои мысли на письме».

  • Наталья

    Образование:

    Финансовый Университет при Правительстве РФ
    МГИМО

    Педагогический стаж: 7 лет

    «Студент – это не сосуд, который надо заполнить, а факел, который надо зажечь».

  • Алексей

    Образование:

    Московский институт иностранных языков

    Педагогический стаж: 6 лет

    «За годы преподавания у меня сложилось мнение, что работа с детьми и подростками — это отдельный вид искусства. Еще будучи студентом, я увлекся процессом преподавания языков изнутри, и с тех пор продолжаю открывать для себя все новые грани. Говоря на иностранных языках, люди получают безграничные возможности познавать другие культуры и общества. В нашем ремесле важно не только грамотно научить, но и мотивировать ученика, ведь мир вокруг нас даёт столько возможностей для познания нового!»

  • Екатерина

    Образование :

    American University, Lebanon
    Hokkaido University, Japan

    PhD in Biological sciences

    Педагогический стаж: 10 лет

    «Думаю, я рождена, чтобы быть учителем. Мне нравится заинтересовывать студентов любой темой, которую я преподаю. Биология – моя любимая, это самый захватывающий предмет, который можно изучать и исследовать. Как учитель, я ставлю перед собой три важные задачи: заинтересовать студентов своим предметом, сделать так, чтобы они поняли каждую деталь и показали хороший результат на экзамене».

  • Стивен

    Образование:

    University of Oxford, Keble College

    Педагогический стаж: 11 лет

    «Уверенность и любовь к изучаемому предмету. Без этих двух качеств, уверен, не получится настоящей учебы. Человек может научиться чему-либо, и выдавать знания, когда нужно, но истинное понимание предмета происходит только тогда, когда человек искренне верит, что этот предмет является его частью. И студент достигает этого с помощью вопросов, споров, размышлений и рисков».