Основной закон радиоактивного распада радионуклида. Основной закон радиоактивного распада

Был сформулирован после того, как в 1896 году Беккерелем было открыто явление радиоактивности. Оно заключается в непредсказуемом переходе одних видов ядер в другие, при этом они выделяют различные и частиц элементов. Процесс бывает естественным, когда проявляется у существующих в природе изотопов, и искусственным, в случаях получения оных в То ядро, которое распадается, считается материнским, а получившееся - дочерним. Другими словами, основной закон радиоактивного распада включает в себя произвольный естественный процесс превращения одного ядра в другое.

Исследование Беккереля показало наличие в солях урана неизвестного ранее излучения, которое оказывало воздействие на фотопластинку, наполняло воздух ионами и имело свойство проходить через тонкие пластинки из металла. Опыты М. и П. Кюри с радием и полонием подтвердили вывод, описанный выше, и в науке появилось новое понятие, получившее название учения

Данная теория, отражающая закон радиоактивного распада, основана на предположении спонтанного процесса, который подчиняется статистике. Так как отдельные ядра распадаются независимо друг от друга, то считается, что в среднем число распавшихся за определенный промежуток времени пропорционально нераспавшимся к моменту окончания процесса. Если следовать экспоненциальному закону, то количество последних убывает значительно.

Интенсивность явления характеризуют два основных свойства излучения: период так называемого полураспада и среднерасчитанный промежуток жизни радиоактивного ядра. Первый колеблется между миллионными долями секунды и миллиардами лет. Ученые считают, что такие ядра не стареют, и для них не существует понятия возраста.

Закон радиоактивного распада основан на так называемых правилах смещения, а они, в свою очередь, являются следствием теории о сохранении и числа массы. Экспериментальным путем установлено, что действие магнитного поля действует по-разному: а) отклонение лучей происходит как положительно заряженных частиц; б) как отрицательных; в) не проявляют никакой реакции. Из этого следует, что излучение бывает трех видов.

Столько же насчитывается и разновидностей самого процесса распада: с выбросом электрона; позитрона; поглощение одного электрона ядром. Доказано, что ядра, соответствующие своим строением свинцу, переживают распад с испусканием. Теория получила название альфа-распада и была сформулирована Г. в 1928 году. Вторая разновидность была сформулирована в 1931 году Э. Ферми. Его исследования показали, что вместо электронов некоторые виды ядер испускают противоположные частицы - позитроны, и это всегда сопровождается излучением частицы с нулевым электрическим зарядом и массой покоя, нейрино. Простейшим примером бета-распада считается переход нейрона в протон с временным периодом в 12 минут.

Эти теории, рассматривающие законы радиоактивного распада, являлись основными до 1940 года 19 века, пока советские физики Г. Н. Флеров и К. А. Петржак не открыли еще один вид, во время которого ядра урана самопроизвольно делятся две равные частицы. В 1960 году была предсказана радиоактивность двухпротонная и двухнейтронная. Но до наших дней этот вид распада подтверждения экспериментальным путем не получил и обнаружен не был. Было открыто только протонное излучение, при котором происходит выброс из ядра протона.

Разобраться со всеми этими вопросами довольно сложно, хотя сам закон радиоактивного распада прост. Нелегко уяснить его физический смысл и, конечно, изложение этой теории выходит далеко за пределы программы физики как предмета в школе.

Радиоактивный распад ядер одного и того же элемента происходит постепенно и с разной скоростью для разных радиоактивных элементов. Нельзя указать заранее момент распада ядра, но можно установить вероятность распада одного ядра за единицу времени. Вероятность распада характеризуется коэффициентом "λ" - постоянной распада, который зависит только от природы элемента.

Закон радиоактивного распада. (Слайд 32)

Экспериментально установлено, что:

За равные промежутки времени распадается одинаковая доля наличных (т.е. еще не распавшихся к началу данного промежутка) ядер данного элемента.

Дифференциальная форма закона радиоактивного распада. (слайд 33)

Устанавливает зависимость количества не распавшихся атомов в данный момент времени от начального количества атомов в нулевой момент начала отсчета, а так же от времени распада"t" и постоянной распада "λ".

N t - наличное количество ядер.

dN - убыль наличного количества атомов;

dt - время распада.

dN ~ N t · dt Þ dN = –λ N t dt

"λ" - коэффициент пропорциональности, постоянная распада, характеризует долю наличных, еще не распавшихся ядер;

"–" - говорит том, что с течением времени количество распадающихся атомов уменьшается.

Следствие № 1: (слайд 34)

λ = –dN/N t · dt - относительная скорость радиоактивного распада для данного вещества есть величина постоянная.

Следствие № 2:

dN/N t = – λ · Nt - абсолютная скорость радиоактивного распада пропорциональна количеству не распавшихся ядер к моменту времени dt. Она не является "const", т.к. уменьшатся с течением времени.

4. Интегральная форма закона радиоактивного распада. (слайд 35)

Устанавливает зависимость числа оставшихся атомов в данный момент времени (N t) от их исходного количества (N o), времени (t) и постоянной распада "λ". Интегральная форма получается из дифференциальной:

1. Разделим переменные:

2. Проинтегрируем обе части равенства:

3. Найдем интегралы Þ -общее решение

4. Найдем частное решение:

Если t = t 0 = 0 Þ N t = N 0 , подставим эти условия в общее решение

(начало (исходное число

распада) атомов)

Þ Таким образом:

интегральная форма закона р/акт. распада

N t - число не распавшихся атомов к моменту времени t ;

N 0 - исходное число атомов при t = 0 ;

λ - постоянная распада;

t - время распада

Вывод: Наличное количество не распавшихся атомов ~ исходному количеству и убывает с течением времени по экспоненциальному закону. (слайд 37)

Nt= N 0 ·2 λ 1 λ 2 >λ 1 Nt = N 0 ·e λ · t

5. Период полураспада и его связь с постоянной распада. (слайд 38,39)

Период полураспада (Т) - это время, в течение которого распадается половина исходного числа радиоактивных ядер.

Он характеризует скорость распада различных элементов.

Основные условия определения "Т":

1. t = Т - период полураспада.

2. - половина от исходного числа ядер за "Т".

Формулу связи можно получить, если эти условия подставить в интегральную форму закона радиоактивного распада

1.

2. Сократим «N 0 ». Þ

3.

4. Потенцируем.

Þ

5.

Период полураспада изотопов различается в широких пределах: (слайд40)

238 U ® T = 4,51· 10 9 лет

60 Co ® T = 5,3 года

24 Na ® T = 15,06 часов

8 Li ® T = 0,84 c

6. Активность. Её виды, единицы измерения и количественная оценка. Формула активности. (слайд 41)

На практике основное значение имеет общее число распадов, приходящихся в источнике радиоактивного излучения в единицу времени => количественно меру распада определяют активностью радиоактивного вещества.

Активность (А) зависит от относительной скорости распада "λ" и от наличного числа ядер (т.е. от массы изотопа).

"А" - характеризует абсолютную скорость распада изотопа.

3 варианта записи формулы активности: (слайд 42,43)

I. Из закона радиоактивного распада в дифференциальной форме следует:

Þ

активность (абсолютная скорость радиоактивного распада).

активность

II. Из закона радиоактивного распада в интегральной форме следует:

1. (домножим обе части равенства на «λ»).

Þ

2. ; ( исходная активность при t = 0)

3. убыль активности идет по экспоненциальному закону

III. При использовании формулы связи постоянной распада "λ" с периодом полураспада "Т" следует:

1. (домножим обе части равенства на «N t », что бы получить активность). Þ и получаем формулу для активности

2.

Единицы измерения активности: (слайд 44)

А. Системные единицы измерения.

A = dN/dt

1[расп/с] = 1[Бк] – беккерель

1Мрасп/с =10 6 расп/с = 1 [Рд] - резерфорд

Б. Внесистемные единицы измерения.

[Ки] - кюри (соответствует активности 1г радия).

1[Ки] = 3,7 · 10 10 [расп/с] - в 1г радия за 1с распадается 3,7· 10 10 радиоактивных ядер.

Виды активности: (слайд 45)

1. Удельная - это активность единицы массы вещества.

А уд. = dA/dm [Бк/кг].

Её используют для характеристики порошкообразных и газообразных веществ.

2. Объёмная - это активность в единице объёма вещества или среды.

А об = dA/dV [Бк/м 3 ]

Её используют для характеристики жидких веществ.

На практике убыль активности измеряется с помощью специальных радиометрических приборов. Например, зная активность препарата и продукта, образующегося при распаде 1 ядра, можно вычислить, сколько частиц каждого вида испускает препарат за 1 секунду.

Если при делении ядра образуется нейтронов"n", то за 1с испускается поток нейтронов "N". N = n · А.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-08

В результате всех видов радиоактивных превращений количество ядер данного изотопа постепенно уменьшается. Убывание количества распадающихся ядер происходит по экспоненте и записывается в следующем виде:

N=N 0 е t , (10)

где N 0 – количество ядер радионуклида в момент начала отсчета времени (t=0); - постоянная распада, которая для различных радионуклидов разная;N – количество ядер радионуклида спустя времяt ; е – основание натурального логарифма (е = 2,713….). Это и есть основной закон радиоактивного распада.

Вывод формулы (10). Естественный радиоактивный распад ядер протекает самопроизвольно, без всякого воздействия извне. Этот процесс статистический, и для отдельно взятого ядра можно лишь указать вероятность распада за определенное время. Поэтому скорость распада можно характеризовать временемt. Пусть имеется числоN атомов радионуклида. Тогда, число распадающихся атомовdN за времяdt пропорционально числу атомовN и промежутку времениdt:

Знак минус показывает, что число N исходных атомов уменьшается во времени. Экспериментально показано, что свойства ядер со временем не меняются. Отсюда следует, чтоlесть величина постоянная и носит название – постоянная распада. Из (11) следует, чтоl= –dN/N=const, приdt= 1, т.е. постояннаяlравна вероятности распада одного радионуклида за единицу времени.

В уравнении (11) поделим правую и левую части на N и проинтегрируем:

dN/N = – l dt (12)

(13)

ln N/N 0 = – λt и N = N 0 е – λt , (14)

где N 0 есть начальное число распадающихся атомов (N 0 приt=0).

Формула (14) имеет два недостатка. Для определения числа распадающихся ядер необходимо знать N 0 . Прибора для его определения не существует. Второй недостаток – хотя постоянная распадаλ имеется в таблицах, но прямой информации о скорости распада она не несет.

Чтобы избавиться от величины λ вводится понятиепериод полураспада Т (иногда в литературе обозначается Т 1/2). Периодом полураспада называется промежуток времени, в течение которого исходное число радиоактивных ядер уменьшается вдвое, а число распадающихся ядер за времяТ остается постоянным (λ=const).

В уравнении (10) правую и левую часть поделим на N , и приведем к виду:

N 0 /N = е t (15)

Полагая, что N 0 / N = 2, приt = T , получимln 2 = Т , откуда:

ln 2 = 0,693 = 0,693/ T (16)

Подставив выражение (16) в (10) получим:

N = N 0 е –0.693t/T (17)

На графике (рис.2.) показана зависимость числа распадающихся атомов от времени распада. Теоретически кривая экспонента никогда не может слиться с осью абсцисс, но на практике можно считать, что примерно через 10–20 периодов полураспада радиоактивное вещество распадается полностью.

Для того, чтобы избавиться от величин NиN 0, пользуются следующим свойством явления радиоактивности. Есть приборы, которые регистрируют каждый распад. Очевидно, что можно определить количество распадов за определенный промежуток времени. Это есть не что иное, как скорость распада радионуклида, которую можно назвать активностью: чем больше распадается за одно и тоже время ядер, тем больше активность.

Итак, активность – это физическая величина, характеризующая число радиоактивных распадов в единицу времени:

А = dN / dt (18)

Исходя из определения активности, следует, что она характеризует скорость ядерных переходов в единицу времени. С другой стороны, количество ядерных переходов зависит от постоянной распада l . Можно показать, что:

A = A 0 е –0,693t/T (19)

Вывод формулы (19). Активность радионуклида характеризует число распадов в единицу времени (в секунду) и равна производной по времени от уравнения (14):

А = d N/ dt = l N 0 е –- t = l N (20)

Соответственно начальная активность в момент времени t = 0 равна:

А o = l N o (21)

Исходя из уравнения (20) и с учетом (21), получим:

А = А o е t илиА = А 0 е – 0,693 t / T (22)

Единицей активности в системе СИ принят 1 распад/с=1 Бк (назван Беккерелем в честь французского ученого (1852–1908 г), открывшего в 1896 году естественную радиоактивность солей урана). Используют также кратные единицы: 1 ГБк=10 9 Бк – гигабеккерель, 1 МБк=10 6 Бк – мегабеккерель, 1 кБк=10 3 Бк – килобеккерель и др.

Существует и внесистемная единица Кюри, которая изымается из употребления согласно ГОСТ 8.417-81 и РД 50-454-84. Однако на практике и в литературе она используется. За1Кu принята активность 1г радия.

1Кu = 3,7 10 10 Бк; 1Бк = 2,7 10 –11 Ки (23)

Используют также кратную единицу мегакюри 1Мки=110 6 Ки и дольные – милликюри, 1мКи=10 –3 Ки; микрокюри, 1мкКи=10 –6 Ки.

Радиоактивные вещества могут находиться в различном агрегатном состоянии, в том числе аэрозольном, взвешенном состоянии в жидкости или в воздухе. Поэтому в дозиметрической практике часто используют величину удельной, поверхностной или объемной активности или концентрации радиоактивных веществ в воздухе, жидкости и в почве.

Удельную, объемную и поверхностную активность можно записать соответственно в виде:

А m = А/m; А v = А/v; А s = A/s (24)

где: m – масса вещества;v – объем вещества;s – площадь поверхности вещества.

Очевидно, что:

А m = A / m = A / s r h = А s / r h = A v / r (25)

где: r – плотность почвы, принимается в Республике Беларусь равной 1000кг/м 3 ;h – корнеобитаемый слой почвы, принимается равным 0,2м;s – площадь радиоактивного заражения, м 2 . Тогда:

А m = 5 10 –3 А s ; А m = 10 –3 A v (26)

А m может быть выражена в Бк/кг или Кu/кг;A s может быть выражена в Бк/м 2 ,Кu/ м 2 , Кu/км 2 ;A v может быть выражена в Бк/м 3 или Кu/м 3 .

На практике могут быть использованы как укрупненные, так и дробные единицы измерения. Например: Кu/ км 2 , Бк/см 2 , Бк/г и др.

В нормах радиационной безопасности НРБ-2000 дополнительно введены еще несколько единиц активности, которыми удобно пользоваться при решении задач радиационной безопасности.

Активность минимально значимая (МЗА) – активность открытого источника ионизирующего излучения в помещении или на рабочем месте, при превышении которой требуется разрешение органов санитарно-эпидемиологической службы Министерства здравоохранения на использование этих источников, если при этом также превышено значение минимально значимой удельной активности.

Активность минимально значимая удельная (МЗУА) – удельная активность открытого источника ионизирующего излучения в помещении или на рабочем месте, при превышении которой требуется разрешение органов санитарно-эпидемиологической службы Министерства здравоохранения на использование этого источника, если при этом также превышено значение минимально значимой активности.

Активность эквивалентная равновесная (ЭРОА) дочерних продуктов изотопов радона 222 Rn и 220 Rn – взвешенная сумма объемных активностей короткоживущих дочерних продуктов изотопов радона – 218 Ро (RaA ); 214 Pb (RaB ); 212 Pb (ThB ); 212 В i (ThC ) соответственно:

(ЭРОА) Rn = 0,10 А RaA + 0,52 А RaB + 0,38 А RaC ;

(ЭРОА) Th = 0,91 А ThB + 0,09 А ThC ,

где А – объемные активности дочерних продуктов изотопов радона и тория.

>> Закон радиоактивного распада. Период полураспада

§ 101 ЗАКОН РАДИОАКТИВНОГО РАСПАДА. ПЕРИОД ПОЛУРАСПАДА

Радиоактивный распад подчиняется статистическому закону. Резерфорд , исследуя превращения радиоактивных веществ, установил опытным путем, что их активность убывает с течением времени. Об этом говорилось в предыдущем параграфе. Так, активность радона убывает в 2 раза уже через 1 мин. Активность таких элементов, как уран, торий и радий, тоже убывает со временем, но гораздо медленнее. Для каждого радиоактивного вещества существует определенный интервал времени, на протяжении которого активность убывает в 2 раза. Этот интервал носит название период полураспада. Период полураспада Т - это время, в течение которого распадается половина начального числа радиоактивных атомов.

Спад активности, т. е. числа распадов в секунду, в зависимости от времени для одного из радиоактивных препаратов изображен на рисунке 13.8. Период полураспада этого вещества равен 5 сут.

Выведем теперь математическую форму закона радиоактивного распада. Пусть число радиоактивных атомов в начальный момент времени (t= 0) равно N 0 . Тогда по истечении периода полураспада это число будет равно

Спустя еще один такой же интервал времени это число станет равным:

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Необходимое условие радиоактивного распада заключается в том, что масса исходного ядра должна превышать сумму масс продуктов распада. Поэтому каждый радиоактивный распад происходит с выделением энергии .

Радиоактивность подразделяют на естественную и искусственную. Первая относится к радиоактивным ядрам, существующим в природных условиях, вторая - к ядрам, полученным посредством ядерных реакций в лабораторных условиях. Принципиально они не отличаются друг от друга.

К основным типам радиоактивности относятся α-, β- и γ-распады. Прежде чем характеризовать их более подробно, рассмотрим общий для всех видов радиоактивности закон протекания этих процессов во времени.

Одинаковые ядра претерпевают распад за различные времена, предсказать которые заранее нельзя. Поэтому можно считать, что число ядер, распадающихся за малый промежуток времени dt , пропорционально как числу N имеющихся ядер в этот момент, так и dt :

Интегрирование уравнения (3.4) дает:

Соотношение (3.5) называют основным законом радиоактивного распада. Как видно, число N еще не распавшихся ядер убывает со временем экспоненциально.

Интенсивность радиоактивного распада характеризуют числом ядер, распадающихся в единицу времени. Из (3.4) видно, что эта величина | dN / dt | = λN . Ее называют активностью A . Таким образом активность:

.

Ее измеряют в беккерелях (Бк) , 1 Бк = 1 распад / с; а также в кюри (Ки) , 1 Ки = 3.7∙10 10 Бк.

Активность в расчете на единицу массы радиоактивного препарата называют удельной активностью.

Вернемся к формуле (3.5). Наряду с постоянной λ и активностью A процесс радиоактивного распада характеризуют еще двумя величинами: периодом полураспада T 1/2 и средним временем жизни τ ядра.

Период полураспада T 1/2 - время, за которое исходное число радиоактивных ядер в среднем уменьшится в двое:

,
откуда
.

Среднее время жизни τ определим следующим образом. Число ядер δN (t ), испытавших распад за промежуток времени (t , t + dt ), определяется правой частью выражения (3.4): δN (t ) = λNdt . Время жизни каждого из этих ядер равно t . Значит сумма времен жизни всех N 0 имевшихся первоначально ядер определяется интегрированием выражения tδN (t ) по времени от 0 до ∞. Разделив сумму времен жизни всех N 0 ядер на N 0 , мы и найдем среднее время жизни τ рассматриваемого ядра:

Заметим, что τ равно, как следует из (3.5) промежутку времени, за которое первоначальное количество ядер уменьшается в e раз.

Сравнивая (3.8) и (3.9.2), видим, что период полураспада T 1/2 и среднее время жизни τ имеют один и тот же порядок и связаны между собой соотношением:

.

Сложный радиоактивный распад

Сложный радиоактивный распад может протекать в двух случаях:

Физический смысл этих уравнений состоит в том, что количество ядер 1 убывает за счет их распада, а количество ядер 2 пополняется за счет распада ядер 1 и убывает за счет своего распада. Например, в начальный момент времени t = 0 имеется N 01 ядер 1 и N 02 ядер 2. С такими начальными условиями решение системы имеет вид:

Если при этом N 02 = 0, то

.

Для оценки значения N 2 (t ) можно использовать графический метод (см. рисунок 3.2) построения кривых e −λt и (1 − e −λt ). При этом ввиду особых свойств функции e −λt очень удобно ординаты кривой строить для значений t , соответствующих T , 2T , … и т.д. (см. таблицу 3.1). Соотношение (3.13.3) и рисунок 3.2 показывают, что количество радиоактивного дочернего вещества возрастает с течением времени и при t >> T 2 (λ 2 t >> 1) приближается к своему предельному значению:

и носит название векового , или секулярного равновесия . Физический смысл векового уравнения очевиден.

t e −λt 1 − e −λt
0 1 0
1T 1/2 = 0.5 0.5
2T (1/2) 2 = 0.25 0.75
3T (1/2) 3 = 0.125 0.875
... ... ...
10T (1/2) 10 ≈ 0.001 ~0.999


Рисунок 3.3. Сложный радиоактивный распад.
Так как, согласно уравнению (3.4), λN равно числу распадов в единицу времени, то соотношение λ 1 N 1 = λ 2 N 2 означает, что число распадов дочернего вещества λ 2 N 2 равно числу распадов материнского вещества, т.е. числу образующихся при этом ядер дочернего вещества λ 1 N 1 . Вековое уравнение широко используется для определения периодов полураспада долгоживущих радиоактивных веществ. Этим уравнением можно пользоваться при сравнении двух взаимно превращающихся веществ, из которых второе имеет много меньший период полураспада, чем первое (T 2 << T 1 ) при условии, что это сравнение производится в момент времени t >> T 2 (T 2 << t << T 1 ). Примером последовательного распада двух радиоактивных веществ является превращение радия Ra в радон Rn. Известно, что 88 Ra 226 , испуская с периодом полураспада T 1 >> 1600 лет α-частицы, превращается в радиоактивный газ радон (88 Rn 222), который сам является радиоактивным и испускает α-частицы с периодом полураспада T 2 ≈ 3.8 дня . В этом примере как раз T 1 >> T 2 , так что для моментов времени t << T 1 решение уравнений (3.12) может быть записано в форме (3.13.3).

Для дальнейшего упрощения надо, чтобы начальное количество ядер Rn было равно нулю (N 02 = 0 при t = 0). Это достигается специальной постановкой опыта, в котором изучается процесс превращения Ra в Rn. В этом опыте препарат Ra помещается в стеклянную колбочку с трубкой, соединенной с насосом. Во время работы насоса выделяющийся газообразный Rn сразу же откачивается, и концентрация его в колбочке равна нулю. Если в некоторый момент при работающем насосе изолировать колбочку от насоса, то с этого момента, который можно принять за t = 0, количество ядер Rn в колбочке начнет возрастать по закону (3.13.3):N Ra и N Rn - точным взвешиванием, а λ Rn - по определению периода полураспада Rn, который имеет удобное для измерений значение 3.8 дня . Таким образом, четвертая величина λ Ra может быть вычислена. Это вычисление дает для периода полураспада радия T Ra ≈ 1600 лет , что совпадает с результатами определения T Ra методом абсолютного счета испускаемых α-частиц.

Радиоактивность Ra и Rn была выбрана в качестве эталона при сравнении активностей различных радиоактивных веществ. За единицу радиоактивности - 1 Ки - приняли активность 1 г радия или находящегося с ним в равновесии количества радона. Последнее легко может быть найдено из следующих рассуждений.

Известно, что 1 г радия претерпевает в секунду ~3.7∙10 10 распадов . Следовательно.