Средние статистические величины. Средние величины, их сущность и значение

В процессе обработки и обобщения статистических данных возникает необходимость определения средних величин. Как правило, индивидуальные значения одного и того же признака у разных единиц совокупности неодинаковы.

Средняя величина обобщающая характеристика изучаемого признака в исследуемой совокупности. Она отражает его типичный уровень в расчете на единицу совокупности в конкретных условиях места и времени.

Например, при изучении доходов рабочих предприятия обобщающей характеристикой служит средний доход одного рабочего. Для его определения общую сумму средств, направленных на потребление, в виде заработной платы, социальных и трудовых льгот, материальной помощи, дивидендов по акциям и процентов по вкладам в имущество предприятия за рассматриваемый период (год, квартал, месяц) делят на численность рабочих предприятия. Средний доход характеризует то общее, что свойственно всей совокупности рабочих предприятия, т.е. уровень дохода массы рабочих в конкретных условиях функционирования данного предприятия в рассматриваемом периоде.

Средняя, рассчитанная по совокупности в целом, называется общей средней.

Средние, исчисленные для каждой группы, называются групповыми средними.

Чем больше единиц совокупности, по которым рассчитывается средняя, тем она устойчивее, т.е. точнее. Расчет средней величины включает две операции:

I– суммирование данных по всем единицам (обобщение данных);

II – деление суммированных данных на число единиц совокупности.

средняя величина для признака; n – количество единиц совокупности;

х i индивидуальное значение признака каждой единицы совокупности.

Сущность средней величины определяет её особую значимость в условиях рыночной экономики. Средняя величина через единичное и случайное позволяет выявить общее и необходимое, выявить тенденцию закономерности экономического развития.

Степенные средние :

ü средняя арифметическая;

ü средняя геометрическая;

ü средняя гармоническая;

ü средняя квадратическая;

ü средняя хронологическая.

Структурные средние: мода и медиана.

Выбор того или иного вида средней производится в зависимости от цели исследования, экономической сущности усредняемого показателя и характера имеющихся исходных данных. Только тогда, когда средняя применима правильно, получают величины, имеющие реальный экономический смысл.

Средняя арифметическая – наиболее распространённый вид средней.

Под средней арифметической понимается такое значение признака, которое имела бы каждая единица совокупности, если бы общий итог всех значений признака был распределён равномерно между всеми единицами совокупности.

Она исчисляется в тех случаях, когда объём осредняемого признака образуется как сумма его значений у отдельных единиц изучаемой статистической совокупности. В зависимости от характера исходных данных средняя арифметическая определяется следующим образом:

Простая арифметическая средняя исчисляется путем деления суммы значений на их количество.

Пример : Заработная плата за январь у 3-х рабочих одного цеха составила: 6500, 4955, 5323 рубля. Средняя з/плата за месяц составляет: руб.

Пример: Вычислить средний стаж десяти работников торгового предприятия. Одиночное значение признака (лет): 6,5,4,3,3,4,5,4,5,4.

= (6+5+4+3+3+4+5+4+5+4) : 10 = 43: 10 = 4,3 года.

Как видим, средняя арифметическая может оказаться дробным числом, если даже индивидуальные значения признака заданы только целыми числами. Это вытекает из сущности средней арифметической, которая есть величина абстрактная (теоретическая), т.е. она может принимать такое числовое значение, которое не встречается в представленной совокупности индивидуальных значений признака.

Средняя арифметическая взвешенная

Часто приходится рассчитывать среднее значение признака по ряду распределения, когда одно и то же значение признака встречается несколько раз. Объединив данные по величине признака (т.е. сгруппировав) и подсчитав число случаев повторения каждого из них, мы получим следующий вариационный ряд.

Следовательно, для исчисления взвешенной средней выполняются следующие последовательные операции: умножение каждого варианта на его частоту, суммирование полученных произведений, деление полученной суммы на сумму частот.

Средняя арифметическая взвешенная учитывает различное значение отдельных вариантов в пределах совокупности. Поэтому она должна употребляться во всех тех случаях, когда варианты имеют различную численность. Употребление простой средней в этих случаях недопустимо, так как оно неизбежно приводит к искажению статистических показателей.

Арифметическая средняя как бы распределяет поровну между отдельными объектами общую величину признака, в действительности варьирующую у каждого из них.

Иногда вычисление средних величин приходится производить и по данным, сгруппированным в виде интервальных рядов распределения, когда варианты признака, из которых исчисляется средняя, представлены в виде интервалов (от – до). Для вычисления средней величины надо в каждом варианте определить серединное значение х, после чего произвести взвешивание обычным порядком х у

В закрытом интервале серединное значение определяется как полусумма значений нижней и верхней границ.

Задача исчисления средней по величинам интервального ряда осложняется тем, что неизвестны крайние границы начального и конечного интервалов. В этом случае предполагается, что расстояние между границами данного интервала такое же, как и в соседнем интервале.

Необходимо отметить, что, хотя мы и используем для расчета средней из интервального ряда формулу средней арифметической взвешенной, исчисленная средняя не является точной величиной, так как в результате умножения средних значений групп на их численность, мы не получим действительного значения. Степень расхождения зависит от ряда причин: 1 – число вариант. Чем больше число вариант, тем вероятнее, что середина интервала будет мало отличаться от групповой средней. Если же на каждую группу приходится малое число единиц, групповые средние могут находиться не только в середине, но и в близи верхней, либо нижней границы интервала.

Пример, требуется вычислить средний стаж работы 12 работников рекламного агентства. При этом известны индивидуальные значения признака (стажа) в годах: 6,5,4,3,3,5,5,6,3,7,4,5.

Объединив данные по величине признака и подсчитав число случаев повторения каждого из них, проведём расчет среднего стажа по сгруппированным данным с помощью формулы средней взвешенной арифметической.

X = (3*3+4*2+5*4+6*2+7*1) : 12 = 56 : 12 = 4,7 года.

В практике статистической обработки материала возникают различные задачи, имеющие особенности в изучении явлений и требующие применения различных средних в их решении. Учитывая, что статистические средние всегда выражают качественные свойства изучаемых общественных процессов и явлений, важно правильно выбрать форму средней, исходя из взаимосвязи явлений и их признаков.

Свойства средней арифметической:

Средняя арифметическая обладает рядом свойств, знание которых необходимо для понимания сущности средних, а также для упрощения их вычисления.

1. Средняя арифметическая суммы варьирующих величин равна сумме средних арифметических величин:

Если x i = y i + z i то

Это правило показывает, в каких случаях можно суммировать средние величины. Если, например, выпускаемые изделия состоят из двух деталей y и z и на изготовление каждой из них расходуется в среднем у = 3 ч, z = 5 ч, то средние затраты времени на изготовление одного изделия (х ), будут равны: 3+5 = 8 ч, т.е. х = у + z..

2. Алгебраическая сумма отклонений индивидуальных значений варьирующего признака от средней равна нулю, так как сумма отклонений в одну сторону погашается суммой отклонений в другую сторону, т.е.

, потому что

Это правило показывает, что средняя является равнодействующей.

3. Если все варианты ряда уменьшить или увеличить на одно и то же число а, то средняя уменьшится или увеличится на это же число а:

4. Если все варианты ряда уменьшить или увеличить в А раз, то средняя также соответственно уменьшится или соответственно увеличится в А раз:

5. Если все частоты ряда разделить или умножить на одно и то же число d, то средняя не изменится:

Это свойство показывает, что средняя зависит не от размеров весов, а от соотношения между ними. Следовательно, в качестве весов могут выступать не только абсолютные, но и относительные величины.

Средняя хронологическая

Иногда, при анализе социально-экономических показателей, необходимо определить среднюю величину, если имеются данные равностоящего моментного ряда динамики. Например, среднемесячный запас товаров; среднесписочную численность продавцов за квартал, за полугодие, если известна численность продавцов на начало месяца; или определить среднегодовую численность населения территории, то используют среднюю хронологическую.

Х=( х 1 + х 2 +х 3 +…+х n -1 + х n) : (n-1)

Х – индивидуальное значение признака каждой единицы совокупности;

n – число единиц совокупности.

Средняя гармоническая

Средняя гармоническая – это величина обратная средней арифметической. Когда статистическая информация не содержит частот по отдельным вариантам совокупности, а представлена как их произведение, применяется формула средней гармонической взвешенной.

Средняя в такой форме называется средней гармонической взвешенной и обозначается х гар м.взв . Следовательно, средняя гармоническая тождественна средней арифметической. Она применяется тогда, когда неизвестны действительные веса, а известно произведение f x = z

В тех случаях, когда произведения f х одинаковы или равны единице (m=1), применяется средняя гармоническая простая, вычисляемая по формуле

где х - отдельные варианты; п - их число.

Средняя геометрическая

Этой средней удобно пользоваться, когда уделяется внимание не абсолютным разностям, а отношениям двух чисел. Поэтому средняя геометрическая используется в расчетах среднегодовых темпов роста

или

Это формула средней геометрической, которую можно сформулировать следующим образом:

Средняя геометрическаяравна корню степени п из произведения коэффициентов роста, характеризующих отношение величины каждого последующего периода к величине предыдущего.

Геометрическая средняя величина дает наиболее правильный ответ по содержанию результат осреднения, если задача состоит в нахождении такого значения признака, который качественно был бы равноудалён как от максимального, так и от минимального значения признака.

Пример, В результате инфляции за первый год цена товара возросла в два раза к предыдущему; за второй год – ещё в три раза к уровню предыдущего года. Ясно, что за два года цена выросла в 6 раз. Рассчитать средний темп роста цены за год?

В расчете среднего темпа роста арифметическая средняя – непригодна. Геометрическая средняя даёт правильный ответ.

Х = х 1 *х 2 = 2*3 = 6 = 2,45 раза.

Средняя квадратическая


Похожая информация.


Средние величины представляют собой второй тип производных величин, находящих широкое применение в медицинской статистике. Средняя величина является сводной, обобщающей характеристикой статистической совокупности по определенному изменяющемуся количественному признаку (средний рост, средний вес, средний возраст умерших). Средняя величина отражает общее определяющее свойство всей статистической совокупности в целом, заменяя его одним числом с типичным значением данного признака. Средняя величина нивелирует, ослабляет случайные отклонения индивидуальных наблюдений в ту или иную сторону и характеризует постоянное свойство явлений.

В медицине средние величины могут использоваться для характеристики физического развития, основных антропометрических признаков (морфологических и функциональных: рост, вес, динамометрия и др.) и их динамики (средние величины прироста или убыли признака). Разработка этих показателей и их сочетаний в виде стандартов имеет большое практическое значение для анализа здоровья населения (в особенности детей, спортсменов). Эпидемиологи рассчитывают среднее число заболеваний в очаге, распределение очагов по срокам и средние сроки производства дезинфекции.

В демографических и медико-социальных исследованиях рассчитываются: средняя продолжительность предстоящей жизни, средний возраст умерших, средняя численность населения и т.д.

В экспериментально-лабораторных исследованиях также используются средние величины: температура, число ударов пульса в минуту, уровень артериального давления, средняя скорость или среднее время реакции на тот или иной раздражитель, средние уровни содержания биохимических элементов в крови и др.

И статистические коэффициенты, и средние величины представляют собой вероятностные величины, однако между ними существуют значительные различия:

  • 1) Статистические коэффициенты характеризуют признак, встречающийся только у некоторой части совокупности (так называемый альтернативный признак), который может наступить, но может и не наступить (рождение, смерть, заболевание). Средние величины характеризуют, признаки, присущие всей совокупности, но в разной степени (вес, рост, дни лечения).
  • 2) Статистические коэффициенты применяются для измерения качественных (атрибутивных или описательных) признаков, а средние - для варьирующих количественных признаков, где речь идет об отличиях в числовых размерах признака, а не о факте его наличия или отсутствия.

Основное достоинство средних величин их типичность - средняя сразу дает общую характеристику явления. В связи с этим можно выделить два основных требования для вычисления средних величин:

  • - однородность совокупности;
  • - достаточное число наблюдений.

Любое распределение случайной величины, не обязательно подчиняющееся определенному закону распределения вероятностей, характеризуется параметрами распределения: средняя величина (М), среднее квадратическое отклонение (), коэффициент вариации (Сv) и др.

Например, при изучении распределения 10 больных по срокам лечения, мы получим ряд числовых значений: 38, 13, 17, 20, 14, 18, 25, 32, 23, 25 - неупорядоченный ряд.

Рассчитать параметры распределения можно, пользуясь и таким рядом. Однако охарактеризовать ряд несколькими параметрами еще недостаточно, необходимо исследовать, есть ли в статистическом ряду какая-либо устойчивая закономерность. Но, пользуясь неупорядоченным рядом, возможную закономерность обнаружить сложно, поэтому строят ранжированные ряды.

Ряд, в котором дается распределение единиц изучаемой совокупности по значениям варьирующего признака, называется вариационным. Другими словами - вариационный ряд - ряд однородных величин, расположенных в возрастающем или убывающем порядке, где варианты (группы вариант) отличаются друг от друга на определенную величину, называемую интервалом (i).

Таким образом, ряд распределения больных по срокам лечения можно представить следующим образом:

13 14 17 18 20 22 23 25 32 38

1 1 1 1 1 1 1 1 1 1

Меняющийся, варьирующий признак изучаемого явления (рост, вес и др.), его числовое значение называется вариантой (V).

Числа случаев наблюдения данного признака, указывающие сколько раз встречается данная варианта, называются частотами (р).

Вариационные ряды могут быть:

  • 1) в зависимости от изучаемого явления:
    • - дискретные (прерывные) - образуются на основе прерывно меняющихся признаков, значения которых выражаются только в целых числах (частота пульса, количество студентов в группе и т.д.);
    • - интервальные (непрерывные) - образуются обычно на основе признаков, которые могут принимать любые значения и выражаются любым числом (рост, вес и т.д.)
  • 2) в зависимости от числа наблюдений:
    • - простые - варианта представлена одним числовым значением;
    • - сгруппированные - варианты группируются по определенному признаку. Например, при изучении физического развития может производиться группировка по весу: 40-44 кг; 45-49 кг. и т.д.
  • 3) в зависимости от порядка расположения вариант:
    • - возрастающие - варианты располагаются в порядке возрастания;
    • - убывающие - варианты располагаются в порядке убывания.

Отдельный вариационный ряд может одновременно включать в себя несколько характеристик. Например, простой, убывающий, прерывный; или - сгруппированный, возрастающий, непрерывный.

Виды средних величин, которые обычно используются в медицинской статистике, - это медиана, мода, средняя арифметическая. Другие виды средних: средняя гармоническая, средняя квадратическая, средняя кубическая, средняя геометрическая и другие - применяются лишь в специальных исследованиях.

Медиана (Me) - это серединная, центральная варианта, делящая вариационный ряд пополам на две равные части.

Например, если число наблюдений составляет 33, медианой будет варианта, занимающая 17-е ранговое место, так как в обе стороны от нее находится по 16 наблюдений.

В ряде с четным числом наблюдений в центре находятся две величины. Если они одинаковы по своему значению, не возникает затруднений в приближенном определении медианы, если же числовые значения двух величин различны, то за медиану принимается их полусумма.

Мода (Мо) - это чаще всего встречающаяся или наиболее часто повторяющаяся величина признака. При приближенном нахождении моды в простом (не сгруппированном) ряде, она определяется как варианта с наибольшим количеством частот.

Отличие медианы и моды от средней арифметической заключается в том, что при упрощенном, ориентировочном определении эти величины легко и быстро найти по их положению в вариационном ряду (позиционные средние), кроме того, они не зависят от значений крайних вариант или от степени рассеяния ряда.

Чаще всего используется в медицинской статистике средняя арифметическая величина (М - от латинского Media). Средняя арифметическая может быть простая и взвешенная.

Примером средней арифметической простой может служить результат измерения веса, например, 6 человек:

59 60 61 62 63 64 = 369

1 1 1 1 1 1 р = n = 6

Таким образом, средняя арифметическая простая получается как сумма величин (вариант), деленная на их число. Среднюю арифметическую простую можно вычислить лишь в тех случаях, когда каждая величина (варианта) представлена единичным наблюдением, т. е. когда частоты равны единице.

Если частоты вариант больше единицы, простая средняя неприменима - здесь надо вычислять среднюю арифметическую взвешенную, которая получается как сумма произведений вариант на соответствующие частоты, деленная на общее число наблюдений.

Например: частота пульса (число ударов в минуту) у 18 студентов после проведения атропиновой пробы составила: 86, 92, 100, 96, 90, 102, 88, 92, 80, 92, 96, 100, 86, 84, 102, 90, 86, 92.

80 84 86 88 90 92 96 100 102

1 1 3 1 2 4 2 2 2 р = n = 18

80 84 258 88 180 358 192 200 204 Vp = 1644

Средняя арифметическая простая - это частный случай средней арифметической взвешенной, поэтому формула средней арифметической взвешенной может использоваться и для расчета средней арифметической простой. В последнем случае частоты равны единице и умножение излишне.

Все три средние величины (Мо, Ме, М) совпадают (либо практически очень близки) в симметричном вариационном ряду: средняя арифметическая соответствует середине ряда (в симметричном ряду отклонения в сторону увеличения и в сторону уменьшения вариант соответственно уравновешиваются); медиана (как центральная величина) также соответствует середине ряда; мода (как наиболее насыщенная величина) приходится на наивысшую точку ряда, также находящуюся в его центре. Поэтому для всех симметричных рядов нет необходимости вычислять другие средние величины, кроме средней арифметической.

Свойства средней арифметической величины:

  • 1. Средняя величина является обобщающей характеристикой статистической совокупности по определенному изменяющемуся количественному признаку, отражает общее определяющее свойство всей статистической совокупности в целом, заменяя его одним числом с типичным значением данного признака. Средняя величина нивелирует, ослабляет случайные отклонения индивидуальных наблюдений в ту или иную сторону и характеризует постоянное свойство явлений.
  • 2. Сумма отклонений вариант от средней арифметической величины равна 0.
  • 3. В строго симметричном вариационном ряду средняя арифметическая занимает срединное положение и равна Мо, Ме.

Средние арифметические величины, взятые сами по себе без дополнительных приемов оценки, часто имеют ограниченное значение, так как они не отражают степени рассеяния (разнообразия) ряда. Одинаковые по размеру средние величины могут быть получены из рядов с различной степенью рассеяния. Средние - это величины, вокруг которых рассеяны различные варианты, и чем ближе друг к другу отдельные варианты, чем меньше рассеяние ряда, тем типичнее средняя величина.

Приближенным методом оценки разнообразия ряда может служить определение амплитуды. Амплитуда - разность между наибольшим и наименьшим значением вариант:

А = Vmax - Vmin

Но амплитуда не учитывает промежуточные значения вариант внутри ряда, кроме того, ее размеры могут зависеть и от числа наблюдений.

Основной мерой оценки разнообразия ряда является среднее квадратическое отклонение ().

Для вычисления сигмы необходимо:

определить отклонения (d) от средней (V - M);

возвести отклонения в квадрат (d 2);

  • 3) перемножить квадраты отклонений на частоты (d 2р);
  • 4) суммировать произведения квадратов отклонений на частоты;
  • 5) разделить эту сумму на число наблюдений;
  • 6) извлечь из частного квадратный корень.

При помощи сигмы можно установить степень типичности средней, пределы рассеяния ряда, пределы колебаний вокруг средней отдельных вариант. Чем меньше сигма, тем меньше рассеяние ряда, тем точнее и типичнее получается вычисленная для этого ряда средняя величина.

Применение сигмы дает возможность оценки и сравнения разнообразия нескольких однородных рядов распределения, так как - величина именная, выражается абсолютным числом в единицах изучаемой совокупности (см, кг, мг/л и т.д.). В этом случае принимаются во внимание абсолютные размеры сигмы. Например, при сравнении двух рядов распределения по признаку веса, при условии, что средние будут близки по уровню, но сигма в одном ряду будет ± 5,6 кг., а в другом ± 2,1 кг. - второй ряд менее рассеян, и его средняя более типична.

При оценке разнообразия неоднородных рядов (например, таких признаков как вес и рост), непосредственное сравнение размеров сигмы невозможно. В этом случае, для установления степени относительного разнообразия рядов, прибегают к производной величине - коэффициенту изменчивости (вариации), который является относительной величиной, выражается в % и обозначаемому буквой Сv (V).

Например, при изучении физического развития студентов - мужчин 1 курса получены следующие показатели: М (вес) = 67,5 кг.; М (рост) = 178,1 см. Соответственно = ± 2,8 кг. и ± 6,2 см. Среднее квадратическое отклонение по росту более чем в 2 раза превышает сигму по весу.

Коэффициент вариации по росту меньше, чем по весу, то есть рост оказался более устойчивым признаком, чем вес.

Различают три степени разнообразия коэффициентов вариации:

до 10% - слабое разнообразие;

10 - 20 % - среднее разнообразие;

более 20 % - сильное разнообразие.

Этот же метод вычисления коэффициента разнообразия пригоден и при анализе однородных рядов, у которых средние величины очень разнятся по размеру, а также для оценки изолированного, единичного ряда.

Пример вычисления средней арифметической (М); среднего квадратического отклонения (); коэффициента вариации (Cv).

Длительность лечения ангины у 45 больных составила: 20, 20, 19, 16, 19, 16, 14, 13, 15, 13, 12, 13, 13, 3, 12, 11, 12, 11, 10, 12, 11, 10, 11, 8, 7, 11, 11, 10, 10, 10, 9, 8, 8, 9, 5, 5, 6, 9, 5, 5, 9, 6, 7, 7, 14, и 15 дней.

Первый этап: Строим вариационный ряд, с учетом частоты встречаемости каждой варианты; даем характеристику ряда; находим произведения вариант на соответствующую частоту, суммируем полученные произведения и рассчитываем среднюю арифметическую:

Первый этап

Второй этап

Длительность лечения (в днях) V

Число больных p

Ряд простой, убывающий, прерывный

Второй этап: рассчитываем d (V-M); d 2; d 2p.

Заключение: Средняя длительность лечения ангины в поликлинике составила 11 дней. Средняя является недостаточно типичной для данного ряда, о чем свидетельствует коэффициент вариации, равный 36,5% (большая степень разнообразия признака).

В целях анализа и получения статистических выводов по результатом сводки и группировки исчисляют обобщающие показатели – средние и относительные величины.

Задача средних величин – охарактеризовать все единицы статистической совокупности одним значением признака.

Средними величинами характеризуются качественные показатели предпринимательской деятельности: издержки обращения, прибыль, рентабельность и др.

Средняя величина – это обобщающая характеристика единиц совокупности по какому–либо варьирующему признаку.

Средние величины позволяют сравнивать уровни одного и того же признака в различных совокупностях и находить причины этих расхождений.

В анализе изучаемых явлений роль средних величин огромна. Английский экономист В. Петти (1623-1687 гг.) широко использовал средние величины. В. Петти хотел использовать средние величины в качестве меры стоимости расходов на среднее дневное пропитание одного работника. Устойчивость средней величины – это отражение закономерности изучаемых процессов. Он считал что информацию можно преобразовать, даже если нет достаточного объема исходных данных.

Применял средние и относительные величины английский ученый Г. Кинг (1648-1712) при анализе данных о населении Англии.

Теоретические разработки бельгийского статистика А. Кетле (1796-1874 гг.) основаны на противоречивости природы социальных явлений – высокоустойчивых в массе, но сугубо индивидуальных.

Согласно А. Кетле постоянные причины действуют одинаково на каждое изучаемое явление и делают эти явления похожими друг на друга, создают общие для всех них закономерности.

Следствием учения А. Кетле явилось выделение средних величин в качестве основного приема статистического анализа. Он говорил, что статистические средние величины представляют собой не категорию объективной действительности.

А. Кетле выразил взгляды на среднюю величину в своей теории среднего человека. Средний человек – это человек, обладающий всеми качествами в среднем размере (средняя смертность или рождаемость, средний рост и вес, средняя быстрота бега, средняя наклонность к браку и самоубийству, к добрым делам и т. д.). Для А. Кетле средний человек – это идеал человека. Несостоятельность теории среднего человека А. Кетле была доказана в русской статистической литературе в конце XIX-XX вв.

Известный русский статистик Ю. Э. Янсон (1835-1893 гг.) писал, что А. Кетле предполагает существование в природе типа среднего человека как чего–то данного, от которого жизнь отклонила средних людей данного общества и данного времени, а это приводит его к совершенно механическому взгляду и на законы движения социальной жизни: движение – это постепенное возрастание средних свойств человека, постепенное восстановление типа; следовательно, такое нивелирование всех проявлений жизни социального тела, за которым всякое поступательное движение прекращается.

Сущность данной теории нашла свое дальнейшее развитие в работах ряда теоретиков статистики как теория истинных величин. У А. Кетле были последователи – немецкий экономист и статистик В. Лексис (1837-1914 гг.), перенесший теорию истинных величин на экономические явления общественной жизни. Его теория известна под названием теория устойчивости. Другая разновидность идеалистической теории средних величин основана на философии

Ее основатель – английский статистик А. Боули (1869– 1957гг.) – один из самых видных теоретиков новейшего времени в области теории средних величин. Его концепция средних величин изложена в книге «Элементы статистики».

А. Боули рассматривает средние величины лишь с количественной стороны, тем самым отрывает количество от качества. Определяя значение средних величин (или «их функцию»), А. Боули выдвигает махистский принцип мышления. А. Боули писал, что функция средних величин должна выражать сложную группу

с помощью немногих простых чисел. Статистические данные должны быть упрощены, сгруппированы и приведены к средним Эти взгляды: разделяли Р. Фишер (1890-1968 гг.), Дж. Юл (1871 – 1951 гг.), Фредерик С. Миллс (1892 г) и др.

В 30-е гг. XX в. и последующие годы средняя величина рассматривается как социально значимая характеристика, информативность которой зависит от однородности данных.

Виднейшие представители итальянской школы Р. Бенини (1862-1956 гг.) и К. Джини (1884-1965 гг.), считая статистику отраслью логики, расширили область применения статистической индукции, но познавательные принципы логики и статистики они связывали с природой изучаемых явлений, следуя традициям социологической трактовки статистики.

В работах К. Маркса и В. И. Ленина средним величинам отводится особая роль.

К. Маркс утверждал, что в средней величине погашаются индивидуальные отклонения от общего уровня и средний уровень становится обобщающей характеристикой массового явления Такой характеристикой массового явления средняя величина становится лишь при условии, если взято значительное число единиц и эти единицы качественно однородны. Маркс писал, чтобы находимая средняя величина была средней «…многих различных индивидуальных величин одного и того же вида».

Средняя величина приобретает особую значимость в условиях рыночной экономики. Она помогает определить необходимое и общее, тенденцию закономерности экономического развития непосредственно через единичное и случайное.

Средние величины являются обобщающими показателями, в которых находят выражение действие общих условий, закономерность изучаемого явления.

Статистические средние величины рассчитываются на основе массовых данных статистически правильно организованного массового наблюдения. Если статистическая средняя рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений), то она будет объективной.

Средняя величина абстрактна, так как характеризует значение абстрактной единицы.

От разнообразия признака у отдельных объектов абстрагируется средняя. Абстракция – ступень научного исследования. В средней величине осуществляется диалектическое единство отдельного и общего.

Средние величины должны применяться исходя из диалектического понимания категорий индивидуального и общего, единичного и массового.

Средняя отображает что–то общее, которое складывается в определенном единичном объекте.

Для выявления закономерностей в массовых общественных процессах средняя величина имеет большое значение.

Отклонение индивидуального от общего – проявление процесса развития.

В средней величине отражается характерный, типичный, реальный уровень изучаемых явлений. Задачей средних величин является характеристика этих уровней и их изменений во времени и пространстве.

Средний показатель – это обычное значение, потому что формируется в нормальных, естественных, общих условиях существования конкретного массового явления, рассматриваемого в целом.

Объективное свойство статистического процесса или явления отражает средняя величина.

Индивидуальные значения исследуемого статистического признака у каждой единицы совокупности различны. Средняя величина индивидуальных значений одного вида – продукт необходимости, который является результатом совокупного действия всех единиц совокупности, проявляющийся в массе повторяющихся случайностей.

Одни индивидуальные явления имеют признаки, которые существуют во всех явлениях, но в разных количествах – это рост или возраст человека. Другие признаки индивидуального явления, качественно различные в различных явлениях, т. е. имеются у одних и не наблюдаются у других (мужчина не станет женщиной). Средняя величина вычисляется для признаков качественно однородных и различных только количественно, которые присущи всем явлениям в данной совокупности.

Средняя величина является отражением значений изучаемого признака и измеряется в той же размерности, что и этот признак.

Теория диалектического материализма учит, что все в мире меняется, развивается. А также изменяются признаки, которые характеризуются средними величинами, а соответственно – и сами средние.

В жизни происходит непрерывный процесс создания чего–то нового. Носителем нового качества являются единичные объекты, далее количество этих объектов возрастает, и новое становится массовым, типичным.

Средняя величина характеризует изучаемую совокупность только по одному признаку. Для полного и всестороннего представления изучаемой совокупности по ряду определенных признаков необходимо располагать системой средних величин, которые могут описать явление с разных сторон.

2. Виды средних величин

В статистической обработке материала возникают различные задачи, которые необходимо решать, и поэтому в статистической практике используются различные средние величины. Математическая статистика использует различные средние, такие как: средняя арифметическая; средняя геометрическая; средняя гармоническая; средняя квадратическая.

Для того чтобы применить одну из вышеперечисленных видов средней, необходимо проанализировать изучаемую совокупность, определить материальное содержание изучаемого явления, все это делается на основе выводов, полученных из принципа осмысленности результатов при взвешивании или суммировании.

В изучении средних величин применяются следующие показатели и обозначения.

Признак, по которому находится средняя, называется осредняемым признаком и обозначается х; величина осредняемого признака у любой единицы статистической совокупности называют индивидуальным его значением, или вариантами, и обозначают как x 1 , х 2 , x 3 ,… х п ; частота – это повторяемость индивидуальных значений признака, обозначается буквой f.

Средняя арифметическая

Один из наиболее распространенных видов средней – средняя арифметическая, которая исчисляется тогда, когда объем ос–редняемого признака образуется как сумма его значений у отдельных единиц изучаемой статистической совокупности.

Для вычисления средней арифметической величины сумму всех уровней признака делят на их число.


Если некоторые варианты встречаются несколько раз, то сумму уровней признака можно получить умножением каждого уровня на соответствующее число единиц совокупности с последующим сложением полученных произведений, исчисленная таким образом средняя арифметическая называется средней арифметической взвешенной.

Формула средней арифметической взвешенной выглядит следующим образом:


гдех i – варианты,

f i – частоты или веса.

Взвешенная средняя величина должна употребляться во всех случаях, когда варианты имеют различную численность.

Арифметическая средняя как бы распределяет поровну между отдельными объектами общую величину признака, в действительности варьирующуюся у каждого из них.

Вычисление средних величин производят по данным, сгруппированным в виде интервальных рядов распределения, когда варианты признака, из которых исчисляется средняя, представлены в виде интервалов (от – до).

Свойства средней арифметической:

1) средняя арифметическая суммы варьирующих величин равна сумме средних арифметических величин: Если х i = y i +z i , то


Данное свойство показывает в каких случаях можно суммировать средние величины.

2) алгебраическая сумма отклонений индивидуальных значений варьирующего признака от средней равна нулю, так как сумма отклонений в одну сторону погашается суммой отклонений в другую сторону:


Это правило демонстрирует, что средняя является равнодействующей.

3) если все варианты ряда увеличить или уменьшить на одно и тоже число?, то средняя увеличится или уменьшится на это же число?:


4) если все варианты ряда увеличить или уменьшить в А раз, то средняя также увеличится или уменьшится в А раз:


5) пятое свойство средней показывает нам, что она не зависит от размеров весов, но зависит от соотношения между ними. В качестве весов могут быть взяты не только относительные, но и абсолютные величины.

Если все частоты ряда разделить или умножить на одно и тоже число d, то средняя не изменится.


Средняя гармоническая. Для того чтобы определить среднюю арифметическую, необходимо иметь ряд вариантов и частот, т. е. значения х и f.

Допустим, известны индивидуальные значения признака х и произведения х/, а частоты f неизвестны, тогда, чтобы рассчитать среднюю, обозначим произведение = х/; откуда:



Средняя в этой форме называется средней гармонической взвешенной и обозначается х гарм. взв.

Соответственно, средняя гармоническая тождественна средней арифметической. Она применима, когда неизвестны действительные веса f , а известно произведение = z

Когда произведения одинаковы или равны единицы (m = 1) применяется средняя гармоническая простая, вычисляемая по формуле:


где х – отдельные варианты;

n – число.

Средняя геометрическая

Если имеется n коэффициентов роста, то формула среднего коэффициента:


Это формула средней геометрической.

Средняя геометрическая равна корню степени n из произведения коэффициентов роста, характеризующих отношение величины каждого последующего периода к величине предыдущего.

Если осреднению подлежат величины, выраженные в виде квадратных функций, применяется средняя квадратическая. Например, с помощью средней квадратической можно определить диаметры труб, колес и т. д.

Средняя квадратическая простая определяется путем извлечения квадратного корня из частного от деления суммы квадратов отдельных значений признака на их число.


Средняя квадратическая взвешенная равна:

3. Структурные средние величины. Мода и медиана

Для характеристики структуры статистической совокупности применяются показатели, которые называют структурными средними. К ним относятся мода и медиана.

Мода (М о ) – чаще всего встречающийся вариант. Модой называется значение признака, которое соответствует максимальной точке теоретической кривой распределений.

Мода представляет наиболее часто встречающееся или типичное значение.

Мода применяется в коммерческой практике для изучения покупательского спроса и регистрации цен.

В дискретном ряду мода – это варианта с наибольшей частотой. В интервальном вариационном ряду модой считают центральный вариант интервала, который имеет наибольшую частоту (частность).

В пределах интервала надо найти то значение признака, которое является модой.


где х о – нижняя граница модального интервала;

h – величина модального интервала;

f m – частота модального интервала;

f т -1 – частота интервала, предшествующего модальному;

f m +1 – частота интервала, следующего за модальным.

Мода зависит от величины групп, от точного положения границ групп.

Мода – число, которое в действительности встречается чаще всего (является величиной определенной), в практике имеет самое широкое применение (наиболее часто встречающийся тип покупателя).

Медиана (M e – это величина, которая делит численность упорядоченного вариационного ряда на две равные части: одна часть имеет значения варьирующего признака меньшие, чем средний вариант, а другая – большие.

Медиана – это элемент, который больше или равен и одновременно меньше или равен половине остальных элементов ряда распределения.

Свойство медианы заключается в том, что сумма абсолютных отклонений значений признака от медианы меньше, чем от любой другой величины.

Применение медианы позволяет получить более точные результаты, чем при использовании других форм средних.

Порядок нахождения медианы в интервальном вариационном ряду следующий: располагаем индивидуальные значения признака по ранжиру; определяем для данного ранжированного ряда накопленные частоты; по данным о накопленных частотах находим медианный интервал:


где х ме – нижняя граница медианного интервала;

i Me – величина медианного интервала;

f/2 – полусумма частот ряда;

S Me -1 – сумма накопленных частот, предшествующих медианному интервалу;

f Me – частота медианного интервала.

Медиана делит численность ряда пополам, следовательно, она там, где накопленная частота составляет половину или больше половины всей суммы частот, а предыдущая (накопленная) частота меньше половины численности совокупности.


Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования "Уральский Государственный Экономический Университет"

Центр дистанционного образования

КОНТРОЛЬНАЯ РАБОТА

по дисциплине: "Статистика "

Исполнитель:

студент группы: ЭТр-09 СР

Трошева Наталья Юрьевна

г. Екатеринбург

2009г.

Введение

1.1 Виды средних величин и способы расчета

1.2 Структурные средние величины

2. Практическое задание

Заключение

Список литературы

Введение

Данная контрольная работа состоит из двух частей – теоретической и практической.

В теоретической части будет подробно рассмотрена такая важная статистическая категория как средняя величина с целью выявления её сущности и условий применения, а также выделения видов средних и способов их расчёта.

Практическая часть посвящена расчету и анализу важнейших показателей работы любого предприятия – планового уровня развития явления и общего индекса цен с целью выделения основных факторов, влияющих на изменение этих показателей.

1. Среднее величины: виды, свойства, область применения

Средняя величина – это обобщающая величина изучаемого признака в исследуемой совокупности, которая отражает его типичный уровень в расчете на единицу совокупности в конкретных условиях места и времени.

Средние величины относятся к обобщающим статистическим показателям, которые дают сводную характеристику массовых общественных явлений, так как строятся на основе большого количества индивидуальных значений варьирующего признака.

Средняя величина отражает то общее, что характерно для всех единиц изучаемой совокупности. В то же время она уравновешивает влияние всех факторов, действующих на величину признака отдельных единиц совокупности, как бы взаимно погашая их. Уровень любого общественного явления обусловлен действием двух групп факторов. Одни из них являются общими и главными, постоянно действующими, тесно связанными с природой изучаемого явления или процесса, и формируют то типичное для всех единиц изучаемой совокупности, которое и отражается в средней величине. Другие являются индивидуальными, их действие выражено слабее и носит эпизодический, случайный характер. Отсюда средняя величина выступает как "обезличенная", которая может отклоняться от индивидуальных значений признаков, не совпадая количественно ни с одним из них. Средняя величина отражает общее, характерное и типичное для всей совокупности благодаря взаимопогашению в ней случайных, нетипичных различий между признаками отдельных ее единиц, так как ее величина определяется как бы общей равнодействующей из всех причин.

Для того, чтобы средняя величина отражала наиболее типичное значение признака, она должна определяться только для совокупностей, состоящих из качественно однородных единиц. Это требование является основным условием научно обоснованного применения средних величин и предполагает тесную связь метода средних величин и метода группировок в анализе социально-экономических явлений.

Необходимо подчеркнуть, что правильное исчисление любой средней величины предполагает выполнение следующих требований:

    качественная однородность совокупности, по которой вычислена средняя величина.

    исключение влияния на вычисление средней величины случайных, сугубо индивидуальных причин и факторов

    при вычислении средней величины важно установить цель ее расчета и так называемый определяющий показатель, на который она должна быть ориентирована.

Средняя величина, рассчитанная в целом по совокупности, называется общей средней - отражает общие черты изучаемого явления; средние величины, рассчитанные для каждой группы групповыми средними - дают характеристику явления, складывающуюся в конкретных условиях данной группы.

1.1 Способы расчета могут быть разные, поэтому в статистике различают несколько видов средней величины

Средние величины делятся на 2 больших вида:

степенные средние (средняя гармоническая, средняя геометрическая, средняя арифметическая и др.). Для вычисления степенных средних необходимо использовать все имеющиеся значения признака. Если рассчитывать все виды степенных средних для одних и тех же данных, то их значения окажутся одинаковыми. Тогда действует правило мажорантности средних: с увеличением показателя степени средних увеличивается и сама средняя величина ().

структурные средние (мода, медиана). Мода и медиана определяются лишь структурой распределения. Поэтому их именуют "структурными позиционными средними". Медиану и моду часто используют как среднюю характеристику в тех совокупностях, где расчет средней степенной невозможен или нецелесообразен.

Для наглядности наиболее часто применяемые в практических исследованиях формулы вычисления различных видов степенных средних величин представлены в Таблице 1.

Таблица 1 Виды степенных средних

Вид степенной средней

Показатель степени

Формула расчета

Взвешенная

1. Гармоническая

, где

2. Геометрическая

3. Арифметическая

Средняя арифметическая величина представляет собой такое среднее значение признака, при вычислении которого общий объем признака в совокупности сохраняется неизменным. Для того чтобы исчислить среднюю арифметическую, необходимо сумму всех значений признаков разделить на их число. Она применяется в тех случаях, когда объем варьирующего признака для всей совокупности является суммой значений признаков отдельных ее единиц. Примером средней арифметической может служить общий фонд заработной платы.

Средняя арифметическая простая величина равна простой сумме отдельных значений осредняемого признака, деленной на общее число этих значений. Она применяется в тех случаях, когда имеются несгруппированные индивидуальные значения признака.

Средняя арифметическая взвешенная – это средняя их вариант, которые повторяются различное число раз или имеют различный вес.

Основные свойства средней арифметической:

    Если индивидуальные значения признака, т.е. варианты, уменьшить или увеличить в i раз, то среднее значение нового признака соответственно уменьшится или увеличится в i раз.

    Если все варианты осредняемого признака уменьшить или увеличить на число А, то средняя арифметическая соответственно уменьшится или увеличится на это же число.

    Если веса всех осредняемых вариантов уменьшить или увеличить в k раз, то средняя арифметическая не изменится.

    Сумма отклонений отдельных значений признака (вариант) от средней арифметической равна нулю.

Прежде чем выполнять расчет средней величины необходимо преобразовать интервальный ряд в дискретный. Для этого находят середину интервала в каждой группе. Ее определяют делением суммы верхней и нижней границы пополам.

Формула средней гармонической взвешенной величины применяется когда информация не содержит частот по отдельным вариантам x совокупности, а представлена как произведение . Для того чтобы исчислить среднюю, необходимо обозначить
, откуда
. Теперь преобразуем формулу средней арифметической таким образом, чтобы по имеющимся данным x и m можно было исчислить среднюю. В формулу средней арифметической взвешенной вместо подставим m, а вместо f – отношение , и таким образом получим формулу средней гармонической взвешенной.

Средняя гармоническая простая величина применяется в тех случаях, когда вес каждого варианта равен единице, т.е. ,

Средняя геометрическая величина применяется в тех случаях, когда индивидуальные значения признака представляют собой относительные величины динамики, построенные в виде цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики, т.е. характеризует средний коэффициент роста.