С чего начиналось зарождение физики как науки. История физика

Сколько стоит написать твою работу?

Выберите тип работы Дипломная работа (бакалавр/специалист) Часть дипломной работы Магистерский диплом Курсовая с практикой Курсовая теория Реферат Эссе Контрольная работа Задачи Аттестационная работа (ВАР/ВКР) Бизнес-план Вопросы к экзамену Диплом МВА Дипломная работа (колледж/техникум) Другое Кейсы Лабораторная работа, РГР Он-лайн помощь Отчет о практике Поиск информации Презентация в PowerPoint Реферат для аспирантуры Сопроводительные материалы к диплому Статья Тест Чертежи далее »

Спасибо, вам отправлено письмо. Проверьте почту .

Хотите промокод на скидку 15% ?

Получить смс
с промокодом

Успешно!

?Сообщите промокод во время разговора с менеджером.
Промокод можно применить один раз при первом заказе.
Тип работы промокода - "дипломная работа ".

История физика

Федеральное государственное образовательное учреждение

Среднего профессионального образования

Черногорский механико-технологический техникум


по дисциплине: Физика


выполнил:

студент 1 курса

специальности

"Теплоснабжения и

теплотехнического

оборудования"

Крылов А.Е.

проверил: Тимошкин А.И.


Черногорск 2009

План


1.История физики

2. Предмет и структура физики

3. Основные этапы истории развития физики

4. Связь современной физики с техникой и другими естественными науками

5. Роль тепловых машин в жизни человека

1. История физики


Физика (греч. ta physika, от physis - природа), наука о природе, изучающая простейшие и вместе с тем наиболее общие свойства материального мира. По изучаемым объектам физика подразделяется на физику элементарных частиц, атомных ядер, атомов, молекул, твердого тела, плазмы и т. д. К основным разделам теоретической физики относятся: механика, электродинамика, оптика, термодинамика, статистическая физика, теория относительности, квантовая механика, квантовая теория поля.

Физика начала развиваться еще до н. э. (Демокрит, Архимед и др.); в 17 в. создается классическая механика (И. Ньютон); к кон. 19 в. было в основном завершено формирование классической физики. В нач. 20 в. в физике происходит революция, она становится квантовой (М. Планк, Э. Резерфорд, Н. Бор). В 20-е гг. была разработана квантовая механика - последовательная теория движения микрочастиц (Л. де Бройль, Э. Шредингер, В. Гейзенберг, В. Паули, П. Дирак). Одновременно (в нач. 20 в.) появилось новое учение о пространстве и времени - теория относительности (А. Эйнштейн), физика делается релятивистской. Во 2-й пол. 20 в. происходит дальнейшее существенное преобразование физики, связанное с познанием структуры атомного ядра, свойств элементарных частиц (Э. Ферми, Р. Фейнман, М. Гелл-Ман и др.), конденсированных сред (Д. Бардин, Л. Д. Ландау, Н. Н. Боголюбов и др.).

Физика стала источником новых идей, преобразовавших современную технику: ядерная энергетика (И. В. Курчатов), квантовая электроника (Н. Г. Басов, А. М. Прохоров и Ч. Таунс), микроэлектроника, радиолокация и др. возникли и развились в результате достижений физики.


2. Предмет и структура физики


Греческое слово физика (от цэуйт - природа) означает науку о природе. В эпоху ранней греч. культуры наука была еще нерасчленённой и охватывала всё, что было известно о земных и небесных явлениях. В Англии до настоящего времени за Ф. сохранилось наименование «натуральной философии». По мере накопления фактич. материала и его научного обобщения, по мере дифференциации научных знаний и методов исследования из натурфилософии, как общего учения о природе, выделились астрономия, физика, химия, биология, геология, технич. науки.

Границы, отделяющие Ф. от других дисциплин, никогда не были чёткими. Круг явлений, изучавшихся Ф., в разные периоды её истории изменялся. Напр., в 18 в. кристаллы изучались только минералогией; в 20 в. строение и физич. свойства кристаллов являются предметом кристаллофизики. Поэтому попытки дать строгое определение Ф. как науки путём ограничения класса изучаемых ею объектов оказываются неудачными. У любого объекта имеются такие общие свойства (механические, электрические и т. д.), к-рые служат предметом изучения Ф. Вместе с тем было бы неправильно сохранить и старое определение Ф. как науки о природе. Ближе всего к истине определение современной Ф. как науки, изучающей общие свойства и законы движения вещества и поля. Это определение даёт возможность уяснить взаимоотношения Ф. с другими естественными науками. Оно объясняет, почему Ф. играет столь большую роль в современном естествознании.

Ф. середины 20 в. можно разделить: по изучаемым объектам - на молекулярную Ф., атомную Ф., электронную Ф. (включая учение об электромагнитном поле), ядерную Ф., физику элементарных частиц, учение о гравитационном поле; а по процессам и явлениям - на механику и акустику, учение о теплоте, учение об электричестве и магнетизме, оптику, учение об атомных и ядерных процессах. Эти два способа подразделения Ф. частично перекрываются, поскольку между объектами и процессами имеется определённое соответствие. Важно подчеркнуть, что между различными разделами Ф. также нет резких граней. Напр., оптика в широком смысле слова (как учение об электромагнитных волнах) может рассматриваться как часть электричества, Ф. элементарных частиц обычно относят к ядерной Ф.

Наиболее общими теориями современной Ф. являются: теория относительности, квантовая механика, статистич. Ф., общая теория колебаний и волн. По методам исследования различают экспериментальную Ф. и теоретич. Ф. По целям исследования часто выделяют также прикладную Ф.

Широкая разветвлённость современной Ф., её тесная связь с другими отраслями естествознания и техникой обусловили появление многих пограничных дисциплин. В течение 19 и 20 вв. в пограничных областях образовался ряд научных дисциплин: астрофизика, геофизика, биофизика, агрофизика, химич. Ф.; развились физико-технич. науки: тепло-физика, электрофизика, радиофизика, металлофизика, прикладная оптика, электроакустика и др.

Такой раздел Ф., как механика, в 19 в. выделился в самостоятельную науку со своими специфич. методами и областями применения. Современная механика, охватывающая механику точки и системы точек, теорию упругости, гидродинамику и аэродинамику, составляет основу учения о механизмах, о прочности и устойчивости сооружений, основу авиации и гидротехники.


3. Основные этапы истории развития физики


Предыстория физики . Наблюдение физических явлений происходило еще в глубокой древности. В то время процесс накопления фактически знаний еще не был дифференцирован; физические, геометрические и астрономические представления развивались совместно.

Экономическая необходимость отделять земельные участки и измерять время привела к развитию измерений пространства и времени еще в древности - в Египте, Китае, Вавилонии и Греции. Система-тич. накопление фактов и попытки их объяснения и обобщения, предшествовавшие созданию Ф. (в современном понимании слова), особенно интенсивно происходили в эпоху греческо-римской культуры (6 в. до н. э.- 2 в. н. э.). В эту эпоху зародились первоначальные идеи об атомном строении вещества (Демокрит, Эпикур, Лукреций), была создана гео-центрич. система мира (Птолемей), появились зачатки гелиоцентрич. системы (Аристарх Самосский), были установлены нек-рые простые законы статики (правила рычага, центра тяжести), получены первые результаты прикладной оптики (изготовлены зеркала, открыт закон отражения света, обнаружено явление преломления), открыты простейшие начала гидростатики (закон Архимеда). Простейшие явления магнетизма и электричества были известны еще в глубокой древности.

Учение Аристотеля подвело итог знаниям предшествующего периода. Однако физика Аристотеля, основанная на принципе целесообразности природы, хотя и включала отдельные верные положения, вместе с тем отвергала передовые идеи предшественников, в т. ч. идеи гелиоцентрич. астрономии и атомизма.

Канонизированное церковью учение Аристотеля превратилось в тормоз дальнейшего развития науки. После тысячелетнего застоя и бесплодия наука возродилась лишь в 15-16 вв. в борьбе против взглядов Аристотеля. В 1543 Н. Коперник напечатал сочинение «Об обращениях небесных сфер»; опубликование его было революционным актом, с к-рого «начинает свое летосчисление освобождение естествознания от теологии» (Энгельс Ф., Диалектика природы, 1955, стр. 5). Возрождение науки было обусловлено гл. обр. потребностями производства в мануфактурный период. Великие географич. открытия, в частности открытие Америки, содействовали накоплению множества новых наблюдений и ниспровержению старых предрассудков. Развитие ремёсел, судоходства и артиллерии создало стимулы для научного исследования. Научная мысль сосредоточилась на задачах строительства, гидравлики и баллистики, усилился интерес к математике. Развитие техники создало возможности для эксперимента. Леонардо да Винчи поставил целую серию физич. вопросов и пытался разрешить их путём опыта. Ему принадлежит изречение: «опыт никогда не обманывает, обманчивы только наши суждения».

Первый период развития физики начинается с трудов Г. Галилея. Именно Галилей был творцом экспериментального метода в Ф. Тщательно продуманный эксперимент, отделение второстепенных факторов от главного в изучаемом явлении, стремление к установлению точных количественных соотношений между параметрами явления - таков метод Галилея. С помощью этого метода Галилей заложил первоначальные основы динамики. Он сумел показать, что не скорость, а ускорение есть следствие внешнего воздействия на тело. В своём труде «Беседы и математические доказательства, касающиеся двух новых отраслей науки...» (1638) Галилей убедительно обосновывает этот вывод, представляющий собой первую формулировку закона инерции, устраняет видимые противоречия. Он доказывает на опыте, что ускорение свободного падения тел не зависит от их плотности и массы. Рассматривая движение брошенного тела, Галилей находит закон сложения движений и по существу высказывает положение о независимости действия сил. В «Беседах» излагаются также сведения о прочности тел.

В трудах Галилея и Б. Паскаля (а ещё ранее - голл. учёного С. Стевина) были заложены основы гидростатики. Галилею принадлежат важные открытия и в других областях Ф. Он впервые подтверждает на опыте явление поверхностного натяжения, изученное много позже. Галилей обогащает прикладную оптику своим телескопом, а его термометр привёл к количественному изучению тепловых явлений.

Таким образом, в 17 в. были созданы основы механики и начаты исследования в важнейших направлениях Ф.- в учении об электричестве и магнетизме, о теплоте, физич. оптике и акустике.

В 18 в. продолжается дальнейшая разработка всех областей Ф. Ньютоновская механика становится разветвлённой системой знаний, охватывающей законы движения земных и небесных тел. Трудами Л. Эйлера, франц. учёного А. Клеро и др. создаётся небесная механика, доведённая до высокого совершенства П. Лапласом. Открытие нем. астрономом И. Галле в 1846 новой планеты - Нептуна, явилось свидетельством мощи небесной механики.

Важным стимулом для развития механики послужили запросы мануфактурного, а затем машинного производства. Л. Эйлер закладывает основы динамики твёрдого тела. Ж. Д"Аламбер разрабатывает динамику несвободных систем. Д. Бернулли, Л. Эйлер и Ж. Лагранж создают основы гидродинамики идеальной жидкости. Ш. Кулон исследует законы трения и кручения. В «Аналитической механике» Лагранжа уравнения механики представлены в столь обобщённой форме, что она делает их применимыми и к немеханич. процессам, напр. электромагнитным (при соответствующем истолковании входящих в них функций). В своём развитом виде механика становится основой машинной техники того времени, в частности гидравлики.

В других разделах Ф. в 18 в. происходит дальнейшее накопление опытных данных, формулируются простейшие законы. Французский физик Ш. Дюфе открывает существование двух родов электричества. В. Франклин формулирует закон сохранения заряда. В середине 18 в. был создан первый электрич. конденсатор (лейденская банка П. Мушенбрука в Голландии), давший возможность накапливать большие электрич. заряды, что облегчило исследование закона их взаимодействия. Этот закон, являющийся основой электростатики, был открыт независимо друг от друга Г. Кавендишем и Дж. Пристли (Англия) и Ш. Кулоном (Франция). С помощью крутильных весов Кулон нашёл не только закон взаимодействия неподвижных зарядов, но и аналогичный закон для магнитных полюсов. Таким же прибором Кавендиш измерил гравитационную постоянную. И. Вильке (Германия) открыл электростатич. индукцию. Возникло учение об атмосферном электричестве. В. Франклин в 1752 и годом позднее М. В. Ломоносов и Г. В. Рихман изучали грозовые разряды и доказали электрич. природу молнии. В оптике продолжалось совершенствование объектива телескопа (Л. Эйлер, англ. учёный Дж. Дол-лонд). Трудами П. Бугера (Франция) и И. Ламберта (Германия) начала создаваться фотометрия. Англ. учёные В. Гершель и У. Волластон открыли инфракрасные лучи, а нем. учёный И. Риттер - ультрафиолетовые. Большое внимание стали уделять явлениям люминесценции. Стали разрабатываться методы термометрии, устанавливаться термо-метрич. шкалы. Развитие химии и металлургии стимулировало разработку учения о теплоте. Дж. Блэк (Англия) установил различие между температурой и количеством тепла, открыв скрытую теплоту плавления льда. Было сформулировано понятие теплоёмкости, измерены теплоёмкости различных веществ, основана калориметрия. Ломоносов предсказал существование абсолютного нуля. Были начаты исследования теплопроводности и теплового излучения, изучение теплового расширения тел. В этот же период была создана и начала совершенствоваться паровая машина.

Теория относительности является одной из наиболее общих теорий современной Ф. Не менее важным и действенным обобщением физич. фактов и закономерностей явилась квантовая механика (см.), созданная в конце 1-й четверти 20 в. в результате исследований взаимодействия излучения с частицами вещества и изучения состояний внутриатомных электронов.

Еще в конце 19 в. выяснилось, что закон распределения энергии теплового излучения по спектру, выведенный на основе классич. закона о равном распределении энергии по степеням свободы, противоречит действительности. Согласно закону Рэлея - Джинса, интенсивность излучения должна быть пропорциональна температуре и квадрату частоты излучения. Отсюда получался явно не соответствующий действительности вывод, что любое тело должно испускать достаточно интенсивный видимый свет при любой температуре. Немецкий учёный М. Планк в 1900 нашёл соответствующий опыту закон распределения энергии в спектре теплового излучения, сделав новое предположение, что атомы вещества при излучении теряют энергию только определёнными порциями (квантами), пропорциональными частоте излучения; коэфициент пропорциональности (постоянная Планка) должен быть универсальной постоянной. Гипотеза Планка о квантовании энергии излучения явилась исходным пунктом квантовой теории. Вслед затем Эйнштейн (в 1905) сумел объяснить законы фотоэффекта, предположив, что поле излучения представляет собой газ особых частиц света - фотонов. Фотонная теория света позволила правильно объяснить и другие явления взаимодействия излучения с частицами вещества. Таким образом, оказалось, что свет обладает двойственной природой - корпускулярно-волновой. Квантование излучения, испускаемого или поглощаемого атомами вещества, привело к заключению, что энергия внутриатомных движений может также изменяться скачкообразно. Это следствие находилось в противоречии с теми моделями атома, к-рые создавались до 1913.Наиболее совершенной моделью атома к этому времени была ядерная модель Резерфорда, построенная на учёте известных тогда фактов прохождения быстрых а -частиц сквозь вещество. В этой модели электроны двигались вокруг атомного ядра по законам классич. механики и непрерывно излучали свет по законам классич. электродинамики, что находилось в противоречии с фактом квантования излучения. Первый шаг по пути разрешения этого противоречия сделал в 1913 датский учёный Н. Бор, к-рый в своей модели атома сохранил классич. орбиты для электронов в стационарных состояниях атома, но сделал предположение о том, что дозволены не все мыслимые орбиты, а лишь дискретный ряд их. Поскольку с каждой орбитой связано определённое значение энергии и момента количества движения, то эти величины также оказались квантованными. При переходе с одной дозволенной орбиты на другую атом испускает или поглощает фотон. Дискретность энергии атома нашла прямое подтверждение в закономерностях атомных спектров и в явлениях столкновений атомов с электронами.

За последнее 20-летие число известных элементарных частиц возросло в несколько раз. Помимо электронов и позитронов, протонов и нейтронов (а также фотонов), открыто несколько видов мезонов. Доказано существование нейтральной частицы - нейтрино. После 1953 сделаны новые открытия, имеющие принципиальное значение: обнаружены тяжёлые нестабильные частицы с массами, большими масс нуклонов,- т. н. гипероны, к-рые рассматриваются как возбуждённые состояния нуклонов. В 1955 обнаружено существование антипротона.

Все эти открытия свидетельствуют о том, что любой вид элементарных частиц способен к превращениям, что элементарные частицы могут возникать («рождаться») и исчезать, превращаясь в частицы другого вида. Это доказывает наличие генетич. связи между различными элементарными частицами, и ближайшая задача этой области Ф. состоит в разработке их взаимосвязи. Эти факты говорят также о том, что элементарные частицы отнюдь не элементарны, в абсолютном смысле слова, а обладают сложной структурой, к-рую еще предстоит раскрыть. Современная Ф. подтвердила предсказание В. И. Ленина о неисчерпаемости электрона.Современная теория элементарных частиц трактует их как проявления различных полей - электромагнитного, электронно-позитронного, мезонных и т. д. Основанием для такой трактовки является указанная выше способность частиц к превращениям, к возникновению и исчезновению с появлением частиц другого поля (или других полей). Замечательный результат этой теории - вывод о том, что и при отсутствии частиц данного типа в данной области пространства сохраняется т. н. нулевое (наименьшее) поле вакуума данного типа, проявляющееся в ряде эффектов.

При непонимании этих основных положений научного материализма каждый новый этап, открывавший новые объекты и новые стороны в явлениях природы, воспринимался частью физиков как полное отрицание теории, построенной на обширном фактич. материале, как опровержение материальности мира. В действительности речь идёт всегда о новом развитии теории, об охвате новой стороны явлений. Непривычность новых свойств материи приводилась идеалистами как основание для отрицания самой материи, тогда как на самом деле происходит пополнение понятия материи более многообразным содержанием. Так, напр., установленный квантовой теорией двойственный корпускулярно-волновой характер микрочастиц истолковывался как довод в пользу «призрачности» материи, взаимосвязь массы и энергии - как отрицание материи как носителя энергии. Непривычность новых представлений используется нек-рыми философами-идеалистами для отрицания самой возможности познания сущности вещей и явлений. Этой превратной картине действительности, пользующейся влиянием и в соседних с Ф. областях-биологии и астрономии, противостоит научно обоснованная философия диалектич. материализма.


4. Связь современной физики с техникой и другими естественными науками


Ф. выросла из потребностей техники и непрерывно использует её опыт; техника в большой степени определяет тематику физич. исследований. Но также верно (в особенности для современной Ф.) и то, что техника вырастает из Ф., что в физич. лабораториях создаются новые отрасли техники и новые методы решения технич. задач. Достаточно вспомнить электрич. машины, радиотехнику и прикладную электронику с постоянно прогрессирующими и изменяющимися средствами: искрой, вакуумными лампами, полупроводниковыми приборами. Напр., полупроводники находят всё более разнообразное применение в технике в виде выпрямителей переменного тока, фотосопротивлений и термисторов, в сигнализации, автоматике и телеуправлении, в виде детекторов, усилителей и генераторов радиоколебаний, люминесцентных источников света, катодов вакуумных приборов, а в последнее время в виде приборов для использования энергии тепла, света и радиоактивных излучений.

Бурный расцвет техники в 20 в. самым непосредственным образом связан с развитием Ф. Если в 19 в. между физич. открытием и первым его технич. применением проходили десятки лет, то теперь этот срок сократился до нескольких лет. Технич. Ф. с её многочисленными разделами - это громадный участок современной науки. Взаимосвязь Ф. и техники - основной путь развития той и другой. Никогда эта связь не носила такого всеобъемлющего характера, как в настоящее время. Научные физич. институты всё полнее и успешнее сочетают в своей тематике физич. теорию, экспериментальное изучение и технич. применение новых фактов и обобщений. Сотни отраслевых лабораторий и институтов в промышленности разрабатывают физич. и технологич. вопросы по всему фронту современной техники.

Физич. методы исследования получили решающее значение для всех естественных наук. Электронный микроскоп на два порядка превысил границы, поставленные оптич. методами исследования, и дал возможность наблюдать отдельные крупные молекулы. Рентгеновский анализ раскрыл атомное строение вещества и структуру кристаллов. Уточнённый спектральный анализ оказался действенным средством исследования в геологии и органич. химии. Масс-спектрограф измеряет массы атомов и молекул с небывалой точностью. Радиотехнич. и осциллографич. методы позволяют наблюдать процессы, протекающие в миллионные и миллиардные доли секунды. Возможность наблюдения за перемещением химич. элементов и даже отдельных атомов даёт метод радиоактивных изотопов, проникший уже во все области знания. Ядерные излучения видоизменяют течение биологич. процессов и изменяют наследственные признаки.

Все эти приёмы далеко выходят за пределы Не только непосредственного наблюдения, но и тех рамок, к-рые ставили измерительные приборы 19 в. Электронно-счётные машины настолько упростили математич. расчёты, что строгому расчёту становятся доступны самые сложные явления, обусловленные сотнями различных факторов.

Значение современной Ф. для всего естествознания сильно возросло. Теория относительности и ядерная Ф. сделались основой астрофизики - важнейшего раздела астрономии. В свою очередь, выводы астрофизики вносят новые черты в Ф. Квантовая теория легла в основу учения о химич. реакциях, неорганич. и органич. химии. Идеи ядерной Ф. становятся неотъемлемой частью геологич. концепций. Всё теснее взаимное влияние Ф. и биологии; биофизика в связи с этим вырастает в самостоятельную науку.


5. Роль тепловых машин в жизни человека


В настоящее время невозможно назвать ни одну область производственной деятельности человека, где бы ни использовались тепловые установки. Космическая техника, металлургия, станкостроение, транспорт, энергетика, сельское хозяйство, химическая промышленность, производство пищевых продуктов – вот далеко не полный перечень отраслей народного хозяйства, где приходится решать научные и технические вопросы, связанные с тепло установками.

В тепловых двигателях и тепловых установках происходит преобразования теплоты в работу или работы в теплоту.

Паровая турбина-это тепловой двигатель, в котором потенциальная энергия пара превращается в кинетическую, а кинетическая - в механическую энергию вращения ротора. Ротор турбины непосредственно соединяется с валом рабочей машины, который может быть электрогенератор, гребной вент и др.

Применение тепловых двигателей в железнодорожном транспорте особенно велико, т.к. с появление тепловозов на железнодорожных магистралях облегчило перевоз основных масс грузов и пассажиров во всех направлениях. Тепловозы появились на советских железных дорогах более полувека назад по инициативе В.И. Ленина. Дизели приводят в движение тепловоз непосредственно, а с помощью электрической передачи – генераторов электрического тока и электродвигателей. На одном валу с каждым дизелем тепловоза находится генератор постоянного электрического тока. Вырабатываемый генератором электрический ток поступает в тяговые электродвигатели, находящиеся на осях тепловоза. Тепловоз сложнее электровоза и стоит дороже, зато он не требует контактной сети, тяговых подстанций. Тепловоз можно использовать везде, где только уложены железнодорожные пути, и в этом его огромное преимущество. Дизель – экономичный двигатель, запаса нефтетоплива на тепловозе хватает на долгий путь. Для перевозки крупногабаритных и тяжелых грузов построили тяжелые грузовые автомобили, где вместо бензиновых двигателей появились более мощные дизельные двигатели. Такие же двигатели работают на тракторах, комбайнах, судах. Применение этих двигателей намного облегчает работу человека. В 1897 г. немецкий инженер Р. Дизель предложил двигатель с воспламенением от сжатия, который мог бы работать не только на бензине, но и на любом другом топливе: керосине, нефти. Также двигатели назвали дизелями.

История тепловых машин уходит в далекое прошлое. Еще две с лишним тысячи лет назад, в 3 веке до н. эры, великим греческим механиком и математиком Архимедом построившим пушку, которая стреляла с помощью пара.

Сегодня в мире насчитывается сотни миллионов тепловых двигателей. Например, двигатели внутреннего сгорания устанавливают на автомобили, корабли, тракторы, моторные лодки и т. д. Наблюдение, что изменения температуры тел постоянно сопровождаются изменениями их объемов, относятся уже к отдаленной древности, тем не менее, определение абсолютной величины отношения этих изменений принадлежит только новейшему времени. До изобретения термометров о подобных определениях, разумеется, нельзя было и думать, но зато с развитием термометрии точное исследование этой связи становилось совершенно необходимым. Сверх того, в конце прошлого XVIII и в начале нынешнего XIX века накопилось множество различных явлений, побуждавших заняться тщательными измерениями расширения тел от теплоты; таковы были: необходимость поправок барометрических показаний при определении высот, определение астрономической рефракции, вопрос об упругости газов и паров, постепенно возраставшее применение металлов для научных приборов и технических целей и т. д.

Прежде всего, естественно, обратилась к определению расширения воздуха, которое по своей величине больше всего бросалось в глаза и представлялось наиболее легко измеримым. Множество физиков вскоре получило большое количество результатов, но частично довольно разноречивых. Амонтон для регулирования своего нормального термометра измерил расширение воздуха при нагревании его от 0° до 80° R и сравнительно точно определил его в 0,380 части его объема при 0°. С другой стороны, Нюге в 1705 г. получил при посредстве несколько видоизмененного прибора один раз число, вдвое большее, а другой раз - число, даже в 16 раз большее. Ла-Гир (1708) тоже получил вместо амонтоновского числа 1,5 и даже 3,5. Гоуксби (1709) нашел число 0,455; Крюкиус (1720) - 0,411; Полени - 0,333; Бонн - 0,462; Мушенбрек - 0,500; Ламбер («Pyromйtrie», стр. 47)-0,375; Делюк - 0,372; И. Т. Мейер - 0,3755 и 0,3656; Соссюр - 0,339; Вандермонд, Бертолле и Монж получили (1786) - 0,4328. Пристли, получивший для расширения воздуха значительно отклоняющееся от истинного число 0,9375, утверждал, сверх того, что кислород, азот, водород, угольная кислота, пары азотной, соляной, сернистой, плавиковой кислот и аммиака - все они отличаются по своему расширению от воздуха. Г. Г. Шмидт («Green"s Neues Journ.», IV, стр. 379) получил для расширения воздуха число 0,3574, для кислорода 0,3213, наконец, для водорода, угольной кислоты и азота 0,4400, 0,4352, 0,4787. Морво и Дювернуа примкнули к мнению Пристли, но вообще нашли, что расширение газов не вполне пропорционально изменению температуры.

Теоретический материал

С давних времён человек хотел освободиться от физических усилий или облегчить их при перемещении чего-либо, располагать большей силой, быстротой.

Создавались сказания о коврах самолётах, семимильных сапогах и волшебниках, переносящих человека за тридевять земель мановением жезла. Таская тяжести, люди изобрели тележки, ведь катить легче. Потом они приспособили животных – волов, оленей, собак, больше всего лошадей. Так появились повозки, экипажи. В экипажах люди стремились к комфорту, всё более совершенствуя их.

Стремление людей увеличить скорость ускоряло и смену событий в истории развития транспорта. Из греческого «аутос» – «сам» и латинского «мобилис» – «подвижный» в европейских языках сложилось прилагательное «самодвижущийся», буквально «авто – мобильный».

Оно относилось к часам, куклам-автоматам, ко всяким механизмам, в общем, ко всему, что служило как бы дополнением «продолжением», «усовершенствованием» человека. В ХVIII веке попробовали заменить живую силу силой пара и применяли к безрельсовым повозкам термин «автомобиль».

Почему же счёт возраста автомобиля ведут от первых «бензиномобилей» с двигателем внутреннего сгорания, изобретённых и построенных в 1885-1886 годах? Как бы забыв о паровых и аккумуляторных (электрических) экипажах. Дело в том, что ДВС произвёл подлинный переворот в транспортной технике. В течение длительного времени он оказался наиболее отвечающим идее автомобиля и потому надолго сохранил своё главенствующее положение. Доля автомобилей с ДВС составляет на сегодня более 99,9% мирового автомобильного транспорта. <Приложение 1>

Основные части теплового двигателя

В современной технике механическую энергию получают главным образом за счет внутренней энергии топлива. Устройства, в которых происходит преобразование внутренней энергии в механическую, называют тепловыми двигателями. Для совершения работы за счет сжигания топлива в устройстве, называемом нагревателем, можно воспользоваться цилиндром, в котором нагревается и расширяется газ и перемещает поршень. <Приложение 3> Газ, расширение которого вызывает перемещение поршня, называют рабочим телом. Расширяется же газ потому, что его давление выше внешнего давления. Но при расширении газа его давление падает, и рано или поздно оно станет равным внешнему давлению. Тогда расширение газа закончится, и он перестанет совершать работу.

Как же следует поступить, чтобы работа теплового двигателя не прекращалась? Для того чтобы двигатель работал непрерывно, необходимо, чтобы поршень после расширения газа возвращался каждый раз в исходное положение, сжимая газ до первоначального состояния. Сжатие же газа может происходить только под действием внешней силы, которая при этом совершает работу (сила давления газа в этом случае совершает отрицательную работу). После этого вновь могут происходить процессы расширения и сжатия газа. Значит, работа теплового двигателя должна состоять из периодически повторяющихся процессов (циклов) расширения и сжатия.

Рисунок 1


На Рисунке 1 изображены графически процессы расширения газа (линия АВ) и сжатия до первоначального объема (линия CD). Работа газа в процессе расширения положительна (AF > 0) и численно равна площади фигуры ABEF. Работа газа при сжатии отрицательна (так как AF < 0) и численно равна площади фигуры CDEF. Полезная работа за этот цикл численно равна разности площадей под кривыми АВ и CD (закрашена на рисунке).

Наличие нагревателя, рабочего тела и холодильника принципиально необходимое условие для непрерывной циклической работы любого теплового двигателя.

Коэффициент полезного действия тепловой машины

Рабочее тело, получая некоторое количество теплоты Q1от нагревателя, часть этого количества теплоты, по модулю равную |Q2|,отдает холодильнику. Поэтому совершаемая работа не может быть больше A = Q1 - |Q2|. Отношение этой работы к количеству теплоты, полученному расширяющимся газом от нагревателя, называется коэффициентом полезного действия тепловой машины.

Зарождение и развитие физики как науки. Физика - одна из древнейших наук о природе. Первыми физиками были греческие мыслители, которые предприняли попытку объяснить наблюдаемые явления природы. Величайшим из древних мыслителей был Аристотель (384-322 pp. До н. Н.э.), который ввел слово «<{> vai ?,» («фюзис»)

Что в переводе с греческого означает природа. Но не подумайте, что "Физика" Аристотеля хоть как-то похожа на современные учебники по физике. Нет! В ней вы не найдете ни одного описания опыта или прибора, ни рисунка или чертежа, ни одной формулы. В ней - философские размышления о вещах, о времени, о движении вообще. Такими же были все труды ученых-мыслителей античного периода. Вот как римский поэт Лукреций (ок. 99-55 pp. До н. Н.э.) описывает в философской поэме «О природе вещей» движение пылинок в солнечном луче: От древнегреческого философа Фалеса (624-547 pp. До н. Э) берут начало наши знания по электричеству и магнетизму, Демокрит (460-370 pp. до н. э) является основоположником учения о строении вещества, именно он предположил, что все тела состоят из мельчайших частиц - атомов, Евклиду (III в. до н. н.э.) принадлежат важные исследования в области оптики - он впервые сформулировал основные законы геометрической оптики (закон прямолинейного распространения света и закон отражения), описал действие плоских и сферических зеркал.

Среди выдающихся ученых и изобретателей этого периода первое место занимает Архимед (287-212 pp. До н. Н.э.). Из его работ «О равновесии плоскостей», «О плавающих телах», «О рычаги» начинают свое развитие такие разделы физики, как механика, гидростатика. Яркий инженерный талант Архимеда проявился в сконструированных им механических устройствах.

С середины XVI в. наступает качественно новый этап развития физики - в физике начинают применять эксперименты и опыты. Одним из первых является опыт Галилея с бросания ядра и пули с Пизанской башни. Этот опыт стал знаменитым, поскольку его считают «днем рождения» физики как экспериментальной науки.

Мощным толчком к формированию физики как науки стали научные труды Исаака Ньютона. В работе «Математические начала натуральной философии» (1684 г.) он разрабатывает математический аппарат для объяснения и описания физических явлений. На сформулированных им законах было построено так называемое классическое (Ньют-новский) механику.

Быстрый прогресс в изучении природы, открытие новых явлений и законов природы способствовали развитию общества. Начиная с конца XVIII в., Развитие физики вызывает бурное развитие техники. В это время появляются и совершенствуются паровые машины. В связи с широким их использованием в производстве и на транспорте этот период времени называют «возрастом пары». Одновременно углубленно изучаются тепловые процессы, в физике выделяется новый раздел - термодинамика. Наибольший вклад в исследовании тепловых явлений принадлежит С. Карно, Р. Клаузиуса, Д. Джоуля, Д. Менделеев, Д. Кельвину и многим другим.

Предыстория физики . Наблюдение физич. явлений происходило еще в глубокой древности. В то время процесс накопления фактических знаний еще не был дифференцирован: физические, геометрические и астрономические представления развивались совместно.

Систематическое накопление фактов и попытки их объяснения и обобщения, предшествовавшие созданию физики (в современном понимании слова), особенно интенсивно происходило в эпоху греческо-римской культуры (6 в. до н. э. - 2 в. н. э.). В эту эпоху зародились первоначальные идеи об атомном строении вещества (Демокрит, Эпикур, Лукреций), была создана геоцентрическая система мира (Птолемей), появились зачатки гелиоцентрической системы (Аристарх Самосский), были установлены некоторые простые законы статики (правила рычага, центра тяжести), получены первые результаты прикладной оптики (изготовлены зеркала, открыт закон отражения света, обнаружено явление преломления), открыты простейшие начала гидростатики (закон Архимеда). Простейшие явления магнетизма и электричества были известны еще в глубокой древности.

Учение Аристотеля (389 – 322 до н.э.) подвело итог знаниям предшествующего периода 1 . Канонизированное церковью учение Аристотеля превратилось в тормоз дальнейшего развития физической науки. После тысячелетнего застоя и бесплодия физика возродилась лишь в 15-16 вв. в борьбе против схоластической философии. Возрождение науки было обусловлено главным образом потребностями производства в мануфактурный период. Великие географические открытия, в частности открытие Америки, содействовали накоплению множества новых наблюдений и ниспровержению старых предрассудков. Развитие ремёсел, судоходства и артиллерии создало стимулы для научного исследования . Научная мысль сосредоточилась на задачах строительства, гидравлики и баллистики, усилился интерес к математике. Развитие техники создало возможности для эксперимента . Леонардо да Винчи поставил целую серию физических вопросов и пытался разрешить их путём опыта. Ему принадлежит изречение: «опыт никогда не обманывает, обманчивы только наши суждения» .

Однако в 15-16 веках отдельные физические наблюдения и опытные исследования носили случайный характер . Лишь 17 век положил начало систематическому применению экспериментального метода в физике и непрекращающемуся с тех пор росту физического знания.

Первый период развития физики , получивший название классического, начинается с трудов Галилео Галилея (1564 – 1642) . Именно Галилей был творцом экспериментального метода в физике . Тщательно продуманный эксперимент, отделение второстепенных факторов от главного в изучаемом явлении, стремление к установлению точных количественных соотношений между параметрами явления - таков метод Галилея. С помощью этого метода Галилей заложил первоначальные основы динамики . Галилей опроверг ошибочные утверждения механики Аристотеля: он, в частности, сумел показать, что не скорость, а ускорение есть следствие внешнего воздействия на тело. В своём труде «Беседы и математические доказательства, касающиеся двух новых отраслей науки...» (1638) Галилей убедительно обосновывает этот вывод, представляющий собой первую формулировку закона инерции , устраняет видимые противоречия. Он доказывает на опыте, что ускорение свободного падения тел не зависит от их плотности и массы. Рассматривая движение брошенного тела, Галилей находит закон сложения движений и по существу высказывает положение о независимости действия сил. В «Беседах» излагаются также сведения о прочности тел. Им были сформулированы также идеи об относительности движения (принцип относительности), движения тел по наклонной плоскости (фактически он открыл два первых закона Ньютона).

В трудах Галилея и Блеза Паскаля были заложены основы гидростатики . Галилею принадлежат важные открытия и в других областях физики. Он впервые подтверждает на опыте явление поверхностного натяжения, изученное много позже. Галилей обогащает прикладную оптику своим телескопом, а его термометр привёл к количественному изучению тепловых явлений .

В 1-й половине 17 века возникает физическое учение о газах, имевшее большое практическое значение. Ученик Галилея Э. Торричелли открывает существование давления воздуха и создаёт первый барометр . О. Герике изобретает воздушный насос и окончательно опровергает аристотелевское утверждение о «боязни пустоты». Р. Бойль и несколько позднее Э. Мариотт исследуют упругость газов и открывают известный под их именем закон. В. Снеллиус (Голландия) и Р. Декарт (Франция) открывают закон преломления света. К этому же времени относится создание микроскопа. Наблюдения над магнитами (в кораблевождении) и над электризацией при трении дают ценные сведения в области электростатики и магнитостатики, зачинателем к-рых следует признать английского естествоиспытателя У. Гильберта .

Ещё богаче событиями 2-я половина 17 века. «Беседы» Галилея положили начало исследованиям основ механики . Изучение криволинейного движения (X. Гюйгенс ) подготовило открытие основного закона механики - соотношения между силой, массой и ускорением, впервые сформулированного И. Ньютоном в его «Математических началах натуральной философии» (1687) . Ньютоном был установлен и основной закон динамики системы (равенство действия противодействию), в котором нашли своё обобщение предшествующие исследования удара тел (X. Гюйгенс). Впервые выкристаллизовываются основные понятия физики -- понятия пространства и времени .

Исходя из законов движений планет, установленных Кеплером, Ньютон в «Началах» впервые формулирует закон всемирного тяготения , который пытались найти многие учёные 17 века. Ньютон подтвердил этот закон, вычислив ускорение Луны на её орбите исходя из измеренного в 70-х годах 17 века значения ускорения силы тяжести. Он объяснил также возмущения движения Луны и причину морских приливов и отливов. Значение этого открытия Ньютона невозможно переоценить. Оно показало современникам могущество науки. Оно изменило всю прежнюю картину мироздания .

В это же время X. Гюйгенс и Г. Лейбниц формулируют закон сохранения количества движения (ранее высказанный Декартом в неточной форме) и закон сохранения живых сил. Гюйгенс создаёт теорию физического маятника и конструирует часы с маятником. Один из разностороннейших учёных 17 века Р. Гук (Англия) открывает известный под его именем закон упругости . М. Мерсенн (Франция) закладывает основы физической акустики ; он изучает звучание струны и измеряет скорость звука в воздухе.

В эти годы, в связи со всё большим применением зрительных труб, быстро развивается геометрическая оптика и закладываются основы физической оптики . Ф. Гримальди (Италия) в 1665 открывает диффракцию света. Ньютон разрабатывает своё учение о дисперсии и интерференции света. Он выдвигает гипотезу световых корпускул. С оптических исследований Ньютона берёт начало спектроскопия. О. Рёмер (Дания) в 1672 измеряет скорость света. Современник Ньютона Гюйгенс разрабатывает первоначальные основы волновой оптики , формулирует известный под его именем принцип распространения волн (световых), исследует и объясняет явление двойного лучепреломления в кристаллах 2 .

Таким образом, в 17 веке были созданы основы механики и начаты исследования в важнейших направлениях физики -- в учении об электричестве и магнетизме, о теплоте, физической оптике и акустике.

В 18 в. продолжается дальнейшая разработка всех областей физики. Ньютоновская механика становится разветвлённой системой знаний, охватывающей законы движения земных и небесных тел. Трудами Л. Эйлера , франц. учёного А. Клеро и др. создаётся небесная механика , доведённая до высокого совершенства П. Лапласом . В своём развитом виде механика становится основой машинной техники того времени, в частности гидравлики.

В других разделах физики в 18 веке происходит дальнейшее накопление опытных данных, формулируются простейшие законы. В. Франклин формулирует закон сохранения заряда . В середине 18 века был создан первый электрический конденсатор (лейденская банка П. Мушенбрука в Голландии), давший возможность накапливать большие электрические заряды, что облегчило исследование закона их взаимодействия. Этот закон, являющийся основой электростатики, был открыт независимо друг от друга Г. Кавендишем и Дж. Пристли (Англия) и Ш. Кулоном (Франция). Возникло учение об атмосферном электричестве . В. Франклин в 1752 и годом позднее М. В. Ломоносов и Г. В. Рихман изучали грозовые разряды и доказали электрическую природу молнии.

В оптике начала создаваться фотометрия: английские учёные В. Гершель и У. Волластон открыли инфракрасные лучи , а немецкий учёный И. Риттер - ультрафиолетовые . Развитие химии и металлургии стимулировало разработку учения о теплоте : было сформулировано понятие теплоёмкости, измерены теплоёмкости различных веществ, основана калориметрия. Ломоносов предсказал существование абсолютного нуля. Были начаты исследования теплопроводности и теплового излучения, изучение теплового расширения тел. В этот же период была создана и начала совершенствоваться паровая машина .

Правда, теплоту представляли себе в виде особой невесомой жидкости - теплорода. Аналогичным образом наэлектризованность тел объяснялась при помощи гипотезы электрической жидкости, магнитные явления - магнитной жидкостью. В целом, в течение 18 века модели невесомой жидкости проникли во все разделы физики. В их существовании не сомневалось подавляющее большинство исследователей! Это было следствием убеждения, что различные физические явления - тепловые, электрические, магнитные, оптические - между собой не связаны, независимы друг от друга . Полагали, что каждое явление имеет своего «носителя», особую субстанцию. Лишь немногие передовые умы, в числе которых были Эйлер и Ломоносов, отрицали наличие невесомых материй и усматривали в тепловых явлениях и свойствах газов скрытое, но непрекращающееся движение мельчайших частиц. В этом различии мнений проявлялось различие физических «картин мира» - ньютоновской и картезианской , возникших еще в 17 веке.

Последователи Декарта (Картезия) рассматривали все физические явления как разнообразные движения одной и той же первоматерии, единственными свойствами которой являются протяжённость и инертность. Он полагал, что в результате различных движений и столкновений частей первоматерии образуются частицы вещества (корпускулы) различного объёма и формы, между которыми двигаются частицы наиболее утонченной формы материи - эфира. Задачу физики последователи Декарта усматривали в создании чисто механических моделей явлений . Всемирное тяготение, электрические и магнитные взаимодействия, химические реакции - всё объяснялось различными вихрями в эфире, связывающими или разъединяющими частицы вещества.

Однако эта картина мира встречала возражения еще в середине 17 века. Наиболее убедительно её неудовлетворительность была показана Ньютоном в «Началах». Ньютон доказал, что объяснение всемирного тяготения, данное картезианцами, противоречит фактам: вихри в эфире, к-рые, по мнению Декарта, сплошь заполняют всю солнечную систему и увлекают с собой планеты, исключают возможность свободного прохождения комет сквозь солнечную систему без потери ими движения.

Картина мира Ньютона основана на представлении об атомах, разделённых пустотой и мгновенно взаимодействующих через пустоту силами притяжения или отталкивания (дальнодействие). Силы , по Ньютону, являются первичным, изначальным свойством тех или иных видов частиц ; такая сила, как тяготение, свойственна всем частицам вещества. В отличие от картезианцев, Ньютон считал возможным несохранение механического движения в природе. Ньютон усматривал главную задачу физики в отыскании сил взаимодействия между телами . Он не исключал и существования эфира, но рассматривал его как тонкий упругий газ, заполняющий поры тел и взаимодействующий с веществом.

Борьба ньютоновских и картезианских идеи длилась в течение почти двух веков. Одни и те же законы природы истолковывались по-разному сторонниками этих двух направлений. В 18 веке взгляды Ньютона восторжествовали в физике и оказали глубокое влияние на её дальнейшее развитие. Они способствовали внедрению математических методов в физику . Вместе с тем они на 100 лет укрепили идею дальнодействия . Картезианские тенденции снова возродились во 2-й половине 19 века , после создания волновой теории света, открытия электромагнитного поля и закона сохранения энергии.

Второй период истории физики начинается в первом десятилетии 19 века. В 19 веке были сделаны важнейшие открытия и теоретические обобщения, придавшие физике характер единой целостной науки . Единство различных физических процессов нашло выражение в законе сохранения энергии . Решающую роль в экспериментальной подготовке этого закона сыграли открытие электрического тока и исследование его многообразных действий, а также изучение взаимных превращений теплоты и механической работы. В 1820 X. К. Эрстед (Дания) открыл действие электрического тока на магнитную стрелку. Опыт Эрстеда послужил импульсом для исследований А. Ампера, Д. Араго и др. Закон взаимодействия двух электрических токов, найденный Ампером, стал основой электродинамики . При живейшем участии других исследователей Ампер в короткое время выяснил связь магнитных явлений с электрическими , сведя, в конце концов, магнетизм к действиям токов. Так прекратила своё существование идея магнитных жидкостей . В 1831 Фарадей открыл электромагнитную индукцию, осуществив, таким образом, свой замысел: «превратить магнетизм в электричество».

На этом этапе развития значительно усилилось взаимное влияние физики и техники . Развитие паровой техники ставило многочисленные проблемы перед физикой. Физические же исследования взаимного превращения механической энергии и теплоты, увенчавшиеся созданием термодинамики , послужили основой для усовершенствования тепловых двигателей. После открытия электрического тока и его законов начинается развитие электротехники (изобретение телеграфа, гальванопластики, динамомашины), которая, в свою очередь, способствовала прогрессу электродинамики .

В 1-й половине 19 века происходит крушение идеи невесомых субстанций . Этот процесс совершался медленно и с большим трудом. Первую брешь в господствовавшем тогда физическом мировоззрении пробила волновая теория света (англ. учёный Т. Юнг , франц. учёные О. Френель и Д. Араго ) 3 . Вся совокупность явлений интерференции, диффракции и поляризации света, в особенности явления интерференции поляризованных лучей, не могла быть теоретически истолкована с корпускулярной точки зрения и в то же время находила полное объяснение в волновой теории , согласно которой свет представляет собой поперечные волны, распространяющиеся в среде (в эфире). Таким образом, световое вещество было отвергнуто еще во втором десятилетии 19-го века.

Более живучим , по сравнению со световым веществом и магнитной жидкостью, оказалось представление о теплороде . Хотя опыты Б. Румфорда , доказавшие возможность получения неограниченного количества теплоты за счёт механической работы, находились в явном противоречии с идеей особой тепловой субстанции, последняя продержалась вплоть до середины века; казалось, что только с её помощью можно объяснить скрытую теплоту плавления и испарения. Заслуга создания кинетической теории, зачатки которой относятся еще ко временам Ломоносова и Д. Бернулли, принадлежала английским учёным Дж. Джоулю, У. Томсону (Кельвину) и немецкому учёному Р. Клаузиусу .

Так, в результате многосторонних и длительных опытов, в условиях трудной борьбы с отжившими представлениями была доказана взаимная превратимость различных физических процессов и тем самым единство всех известных тогда физических явлений .

Непосредственное доказательство сохранения энергии при любых физических и химических превращениях было дано в трудах Ю. Майера (Германия), Дж. Джоуля и Г. Гельмгольца . После того как закон сохранения энергии завоевал всеобщее признание (в 50-x годах 19 века), он стал краеугольным камнем современного естествознания. Закон сохранения энергии и принцип изменения энтропии [Р. Клаузиус, У. Томсон (Кельвин)] составили основу термодинамики ; они формулируются обычно как первое и второе начала термодинамики.

Доказательство эквивалентности теплоты и работы подтвердило взгляд на теплоту как на неупорядоченное движение атомов и молекул . Трудами Джоуля, Клаузиуса, Максвелла, Больцмана и других была создана кинетическая теория газов . Уже на первых этапах развития этой теории, когда молекулы еще рассматривались как твёрдые упругие шарики, удалось раскрыть кинетический смысл таких термодинамических величин, как температура и давление. Кинетическая теория газов дала возможность рассчитать средние пути пробега молекул, размеры молекул и их число в единице объёма.

Идея единства всех физических процессов привела во 2-й половине 19 века к радикальной перестройке всей физики, к объединению её в два больших раздела - физику вещества и физику поля . Основой первой стала кинетическая теория, второй - учение об электромагнитном поле.

Кинетическая теория, оперирующая со средними величинами, впервые ввела в физику методы теории вероятностей . Она послужила исходным пунктом статистической физики - одной из самых общих физических теорий. Основы статистической физики были систематизированы уже на пороге 20 века американским учёным Дж. Гиббсом .

Столь же фундаментальное значение имело открытие электромагнитного поля и его законов . Создателем учения об электромагнитном поле был М. Фарадей . Он первый высказал мысль о том, что электрические и магнитные действия не переносятся непосредственно от одного заряда к другому, а распространяются через промежуточную среду. Воззрения Фарадея на поле были математически разработаны Максвеллом в 60-х годах 19-го века, которому удалось дать полную систему уравнений электромагнитного поля. Теория поля стала столь же последовательной, как и механика Ньютона.

Теория электромагнитного поля приводит к идее о конечной скорости распространения электромагнитных действий , высказанной Максвеллом (предвосхищенной еще ранее Фарадеем). Эта мысль дала возможность Максвеллу предсказать существование электромагнитных волн . Максвелл сделал также заключение об электромагнитной природе света . Электромагнитная теория света слила воедино электромагнетизм и оптику.

Однако общепризнанной теория электромагнитного поля стала только после того, как немецкий физик Г. Герц на опыте обнаружил электромагнитные волны и доказал, что они следуют тем же законам преломления, отражения и интерференции, что и световые волны.

Во 2-й половине 19 века значительно выросла роль физики в технике. Электричество нашло применение не только как средство связи (телеграф, телефон), но и как способ передачи и распределения энергии и как источник освещения. В конце 19 века электромагнитные волны были использованы для беспроволочной связи (А. С. Попов, Маркони ), чем было положено начало радиосвязи. Техническая термодинамика содействовала развитию двигателей внутреннего сгорания. Возникла техника низких температур . В 19 веке были сжижены все газы, за исключением гелия, который удалось получить в жидком состоянии только в 1908 (голландский физик Г. Каммерлинг-Оннес ).

Физика к концу 19 века представлялась современникам почти завершённой . Утвердилась концепция механистического детерминизма Лапласа, исходившая из возможности однозначно определить поведение системы в любой момент времени, если известные исходные условия. Многим казалось, что физические явления можно свести к механике молекул и эфира, ибо объяснить физические явления значило в то время свести их к механическим моделям, легко доступным на основе повседневного опыта . Механическая теория тепла, упругий (либо вихревой) эфир как модель электромагнитных явлений - так выглядела до конца 19 века физическая картина мира . Эфир представлялся подобным веществу по ряду своих свойств, но, в отличие от вещества, невесомым или почти невесомым (некоторые подсчёты приводили к весу шара из эфира, по объёму равного Земле, в 13 кг).

Однако механические модели наталкивались на тем большие противоречия, чем детальнее их пытались разработать и применять. Модели эфирных вихревых трубок, созданные для объяснения переменных полей, были непригодны для объяснения постоянных электрических полей. Наоборот, различные модели постоянного поля не объясняли возможности распространения электромагнитных волн. Наконец, ни одна модель эфира не была в состоянии наглядно объяснить связь поля с дискретными зарядами. Неудовлетворительными оказались и различные механические модели атомов и молекул (напр., вихревая модель атома, предложенная У. Томсоном).

Невозможность сведения всех физических процессов к механическим породила у некоторых физиков и химиков стремление вообще отказаться от признания реальности атомов и молекул, отвергнуть реальность электромагнитного поля . Э. Мах провозгласил задачей физики «чистое описание» явлений. Немецкий учёный В. Оствальд выступил против кинетической теории и атомистики в пользу так называемой энергетики -- универсальной, чисто феноменологической термодинамики, как единственно возможной теории физических явлений.

Третий (современный) период истории физики , получивший название неклассической или квантово-релятивистской физики , начинается в последние годы 19 века. Этот период характеризуется направлением исследовательской мысли вглубь вещества, к его микроструктуре . Новая эпоха в истории физики начинается с обнаружения электрона и исследования его действии и свойств (английский. учёный Дж. Томсон , голландский учёный Г. Лоренц ).

Важнейшую роль сыграли при этом исследования электрических разрядов в газах. Выяснилось, что электрон - элементарная частица определённой массы, обладающая наименьшим электрическим зарядом и входящая в состав атома любого химического элемента. Это означало, что атом не элементарен, а представляет собой сложную систему . Было доказано, что число электронов в атоме и их распределение по слоям и группам определяют электрические, оптические, магнитные и химические свойства атома; от структуры электронной оболочки зависят поляризуемость атома, его магнитный момент, оптический и рентгеновский спектры, валентность.

С динамикой электронов и их взаимодействием с полем излучения связано создание наиболее общих теорий современной физики - теории относительности и квантовой механики .

Изучение движений быстрых электронов в электрических и магнитных полях привело к заключению, что классическая ньютоновская механика к ним неприменима. Такой фундаментальный атрибут материальной частицы, как масса, оказался не постоянным, а переменным, зависящим от состояния движения электрона. Это было крушением укоренившихся в физике представлений о движении и о свойствах частиц .

Выход из противоречий был найден А. Эйнштейном , создавшим (в 1905) новую физическую теорию пространства и времени, теорию относительности . В дальнейшем Эйнштейном была создана (в 1916) общая теория относительности , преобразовавшая старое учение о тяготении

Не менее важным и действенным обобщением физических фактов и закономерностей явилась квантовая механика , созданная в конце первой четверти 20 века в результате исследований взаимодействия излучения с частицами вещества и изучения состояний внутриатомных электронов. Исходная идея квантовой механики состоит в том, что все микрочастицы обладают двойственной корпускулярно-волновой природой .

Эти радикально новые представления о микрочастицах оказались чрезвычайно плодотворными и действенными. Квантовой теории удалось объяснить свойства атомов и происходящие в них процессы, образование и свойства молекул, свойства твёрдого тела, закономерности электромагнитного излучения.

Двадцатый век. ознаменовался в физике мощным развитием экспериментальных методов исследования и измерительной техники . Обнаружение и счёт отдельных электронов, ядерных и космических частиц, определение расположения атомов и электронной плотности в кристаллах и в отдельной молекуле, измерения промежутка времени порядка 10 -10 сек., наблюдение за перемещением радиоактивных атомов в веществе - всё это характеризует скачок измерительной техники за несколько последних десятилетий.

Небывалые по мощности и масштабам средства исследования и производства были направлены на изучение ядерных процессов . Последние 25 лет ядерной физики, тесно связанной с космическими лучами, а затем с созданием мощных ускорителей, привели к технической революции и создали новые, исключительно тонкие методы исследования не только в физике, но и в химии, биологии, геологии, в самых разнообразных областях техники и сельского хозяйства.

Соответственно с ростом физических исследований и с растущим их влиянием на другие естественные науки и на технику резко увеличилось число физических журналов и книг. В конце 19 века в Германии, Англии, США и в России издавался, помимо академических, всего один физический журнал. В настоящее время в России, США, Англии, Германии издаётся более двух десятков журналов (в каждой стране).

Ещё в большей степени выросло число исследовательских учреждений и научных работников . Если в 19 веке научные исследования вели главным образом физические кафедры университетов, то в 20 веке во всех странах появились и стали увеличиваться по числу и по своим масштабам исследовательские институты по физике или по отдельным её направлениям. Некоторые из институтов, в особенности в области ядерной физики, обладают таким оборудованием, которое по своим масштабам и по стоимости превосходит масштабы и стоимость заводов.

Введение

Физические представления античности и Средних веков

Развитие физики в Новое время

Переход от классических к релятивистским представлениям в физике

Современная физика макро- и микромира

Заключение


Введение

Физика на протяжении всей новой и новейшей истории была лидером научного прогресса. Ее концепции и методы служили образцами для других наук, то есть она была как бы парадигмой естественнонаучного познания в целом. И лишь во второй половине XX века развитие других направлений привело к тому, что физика стала терять свое абсолютное лидерство. Но и сегодня во многих отношениях научно-технический прогресс базируется на основных физических концепциях и тех разработках частных вопросов, которые с этими основными концепциями связаны.

Обобщающие физические теории вполне законно стремятся раскрыть наиболее глубокую основу ещё более широкого круга явлений, но мысль физиков не удовлетворяется эти и так сказать по инерции устремляется к конкретно - физическому объяснению устройства всего мира в целом. И не раз казалось, что эта цель уже достигнута - то в виде классической механики, потом в виде термодинамики, теперь в виде обобщающих теорий полей и элементарных частиц. Но время и новые открытия неумолимо заставляют признать несбыточность подобных надежд. Применительно ко всему миру в целом приходится обходится лишь философскими размышлениями и обобщениями, лишь общей теорией диалектики, лишь качественными оценками, а не количественными расчётами.

1. Физические представления античности и Средних веков

Термин «физика» появляется в античной философской и научной мысли в VI-V веках до нашей эры. Физиками тогда, называли тех мыслителей, которые пытались дать более или менее целостную картину мира, окружающего человека. При этом они мало внимания обращали на то, каким образом, при помощи каких методов и познавательных процедур возникает это знание. К тому же разрабатываемую ими картину мира они считали абсолютной истиной, которая не нуждается ни в каком дальнейшем уточнении. И все же они выдвинули, почти не обращаясь к реальному опыту, ряд принципиальных идей, которые впоследствии получили развитие в физике Нового времени и даже стали основой ее дальнейшего прогресса.

Наиболее фундаментальной идеей в этом отношении был принцип атомизма, который позволил Демокриту и Эпикуру качественно объяснить возникновение многообразия в окружающем мире и показать, что для этого достаточно сравнительно простых моделей. Так, различие двух любых вещей полностью объясняется всего тремя свойствами: числом атомов, из которых они состоят; формой этих атомов, которая адекватно описывается геометрией; отношениями между атомами.

Всякое изменение вещи, как количественное, так и качественное, зависит от изменения этих трех характеристик и от их соотношения. Такое понимание физической реальности привело к представлению о бесконечности мира и одновременно к утверждению, что основа физической реальности, то есть атомы, абсолютно неизменны, следовательно, они существуют вне времени. Тем самым формулировался принцип несотворимости и неуничтожимости вещества и материи. Правда, для атомистов материя существовала в двух формах: как атомы, или полное, и как пустота.

Таким образом, абстрактное противоречие движущейся материи, сформулированное еще Гераклитом как единство бытия и небытия, приобрело конкретную физическую форму как отношение полного и пустого. Полное - это бытие, пустое - небытие. Противоположности оказались при этом абсолютно разделенными, что надолго предопределило развитие физических парадигм. Здесь же была поставлена еще одна проблема, а именно проблема элементарности, то есть атомы абсолютно элементарны. Ведь они никаким способом не обнаруживают своей внутренней структуры, они абсолютно неделимы.

Эта модель физической реальности использовала и такие парадигмы, которые продолжали играть важную роль на протяжении всей последующей истории физики, их коренной пересмотр произошел в сущности только в XX веке, так как только с развитием квантовой механики и исследованиями элементарных частиц были в принципе пересмотрены понятия вакуума и элементарности.

Хотя античные мыслители разрабатывали различные аспекты понимания физических явлений, они не затрагивали самой сути физической реальности. Решающее значение для дальнейшего развития физики, да и всего естествознания имели три концепции. Это атомизм Демокрита и Эпикура, концепция возникновения порядка из хаоса Эмпедокла и Анаксагора и физика Аристотеля, в которой он попытался дать описание движения исходя из принципов своей философии. Аристотель вслед за Платоном полагал, что логически может быть выражено лишь то, что не имеет в себе противоречия. Но изменение, движение противоречивы, поэтому познание направлено на то, что является причиной движения, изменения. Такой причиной, по Аристотелю, является форма, то есть система общих свойств. Форма одновременно и причина движения, изменения, и цель процесса. Поскольку форма неизменна, то следует вывод, согласно которому движение происходит лишь постольку, поскольку действует его причина. Устранение причины устраняет и само движения. Это утверждение Аристотеля стало господствующим в средневековой физике, которая разрабатывалась в европейских университетах и в сущности оставалась в рамках философии. И хотя делались попытки пересмотреть эту аристотелевскую парадигму, она продолжала господствовать в физических представлениях вплоть до XVII века.

Галилей нанес первый серьезный удар по этой физической парадигме. Введение принципа инерции показало, что если тело движется прямолинейно и равномерно, то оно будет сохранять это состояние и тогда, когда на него не будет действовать никакая сила. Таким образом, по отношению к механическому движению был сформулирован принцип тождества противоположностей. Оказалось, что состояние равномерного и прямолинейного движения и состояние покоя настолько тождественны, что, находясь внутри системы, никаким механическим экспериментом нельзя обнаружить, движется она или покоится.

Именно эти парадигмы и определили первый этап развития физики Нового времени.


Последующее развитие физики, в частности, осуществленное Ньютоном, было лишь развитием фундаментального открытия Галилея. Однако при этом были введены в физику некоторые парадигмальные идеи. Во-первых. Ньютон в сущности понимает атомизм или корпускулярную концепцию материи возможно под влиянием работ Бойля, но распространяет это на теорию света, рассматривая свет как поток корпускул. В то же время, явно или неявно, Ньютон допускает две весьма существенные идеализации. Во-вторых, мгновенность действия и дальнодействие, по крайней мере для сил гравитации. Тем самым вводится предположение о существовании вневременного процесса. Ведь как мгновенность действия, так и дальнодействие исключают временную характеристику взаимодействия. В-третьих, Ньютон предположил, что пространство и время - это самостоятельные и независимые от материи сущности. Все физические процессы разворачиваются во времени и пространстве, но не взаимодействуют с ними.

Используя эти представления о физической реальности, Ньютон построил первую космологическую модель. Согласно этой модели в бесконечном пространстве относительно равномерно распределены звезды, их также бесконечно много. Если бы пространство было конечно или число звезд было конечным, то силы гравитации стянули бы все звезды в единое тело. Устойчивость космоса основана, таким образом, на бесконечности пространства, бесконечном числе звезд и относительной равномерности распределения этих звезд в пространстве.

Успехи механики в ХVII-ХVIII веках привели как самих физиков, так и философов-материалистов к методологической установке парадигмального характера: познать что-либо - это значит построить механическую модель изучаемой области и таким образом свести ее к законам механики. Эти законы являются наиболее фундаментальными, и любой другой закон - это лишь конкретизация законов механики. Эта установка настолько прочно вошла в сознание физиков, что даже Максвелл, создатель теории электромагнитного поля, вначале пытался объяснить его, используя механические модели. Даже в 1900 году общепризнанный авторитет в физике того времени Томпсон, он же лорд Кельвин, утверждал, что принципиально новых открытий в физике ожидать нельзя, все такие открытия уже сделаны, - это законы механики. Новая парадигмальная структура в физике начинает формироваться в связи с изучением электромагнитных явлений. Вначале, естественно, делаются попытки рассмотреть эти явления в той же системе парадигм, к которой физиков приучила механика. Вместо тяготеющих масс теперь рассматриваются электрические заряды, которые притягиваются или отталкиваются по закону, аналогичному закону тяготения. Однако вскоре выяснилось, что с электромагнитными явлениями связаны такие закономерности, с которыми классическая механика не имела дела. Поэтому пришлось пересмотреть саму субстанцию физических явлений. Изучение света показало, что корпускулярная модель, которую использовал сам Ньютон, недостаточна. Более адекватной оказалась волновая модель. Но для распространения волн нужна среда, и в качестве такой среды был постулирован эфир. Таким образом, атомы и эфир - это две субстанции, которые должны были позволить свести все физические явления к законам механики. Однако уже Максвелл в своих последних работах отказывается от механических моделей и выводит уравнения теории электромагнитного поля. Исследования этой теории показали, что она вовсе не нуждается в механике, что относится к своему собственному эмпирическому материалу так же, как классическая механики к своему. Это две независимые теории, описывающие качественно различные процессы.

Однако парадигма, господствовавшая еще в физике, требовала редукции одних законов к другим. Поэтому вместо механической картины мира возникают попытки построить электромагнитную картину мира, включающую объяснение механических явлений. Таким образом, создание теории электромагнитного поля стало завершением того процесса, который существенно изменил парадигмальную структуру физического мышления. Электромагнитные процессы разворачиваются в любой среде, в том числе в вакууме, и поэтому вакуум, в котором реализуются эти процессы, уже не является абсолютной пустотой.

Поскольку благодаря электромагнитным моделям было выявлено единство таких, казалось бы, разнородных процессов, как электричество, магнетизм, свет, то естественно было ожидать, что в основе всех этих процессов лежит одна и та же субстанция, то есть эфир. Между тем сопоставление опытов Физо и Майкельсона - Морли показало, что понятие эфира противоречиво. Он должен одновременно захватываться движением Земли и не захватываться. Но противоречивое понятие не может быть основой теоретических моделей. Открытие фотоэффекта показало, что свет, то есть электромагнитное колебание, одновременно обладает как волновой, так и корпускулярной природой. Таким образом, эфир оказался не нужным, поскольку он не в состоянии объяснить двойственную природу электромагнитных процессов.

Переход от механических моделей физических процессов к электромагнитным принципиально меняет одну из фундаментальных парадигм, которая берет начало от античного атомизма. Для всей физики от античности, до второй половины девятнадцатого века господствовала парадигма, согласно которой носителем свойств, субъектом физической реальности являются частицы, корпускулы и т.д. Теперь же оказалось, что таким носителем и соответственно субъектом является поле. Но поле в отличие от корпускул, непрерывно. Согласно математическому определению поле, в отличие от вещества, - это система, обладающая бесконечным числом степеней свободы.

3. Переход от классических к релятивистским представлениям в физике

Своё развитие концепция поля получила в теории относительности. В работах Пуанкаре и Эйнштейна были заложены основы нового понимания физической реальности. Согласно Пуанкаре, если мы сталкиваемся с ситуацией, в которой известные нам физические законы уже не могут объяснить эмпирические факты, существует две возможности решения проблемы: можно изменить, во-первых, сами законы, а во-вторых, - пространство и время. При этом мы получим тождественные по результатам решения проблемы. Однако легче произвести преобразования свойств пространства и времени. Лоренц показал, как это можно сделать математически, а Минковский построил для этой цели такое математическое представление пространства-времени, которое выявило их неразрывную связь.

В основе этих математических построений лежало обобщение идеи, которая берет начало от принципа относительности Галилея. Как уже говорилось, согласно этому принципу, находясь внутри системы, невозможно посредством механического эксперимента выяснить, движется эта система или покоится, при условии, что система инерциальна, то есть находится в состоянии покоя или равномерного и прямолинейного движения.

Этот принцип отождествляет движение и покой лишь с точки зрения механического движения. Но к началу XX века физика уже имела дело с качественно разнообразными процессами. Отсюда естественное обобщение принципа Галилея: находясь внутри инерциальной системы, никаким физическим экспериментом нельзя обнаружить, движется она или покоится. Следовательно, тождество покоя и движения обобщается по отношению к любому физическому процессу. Но для того чтобы построить специальную теорию относительности, нужен второй постулат, и в качестве такого постулата был использован результат эксперимента Майкельсона - Морли, согласно которому скорость света в вакууме не зависит от скорости источника света. Для вакуума эта величина постоянная и вообще является пределом скорости для всех физических взаимодействий. Применяя математический аппарат Лоренца и Минковского и введя ряд эпистемологических допущений, основанных на мысленном эксперименте, можно показать. Во-первых, не существует универсального способа выявления одновременности событий, поскольку для этого необходимо обмениваться сигналами, а скорость прохождения сигнала конечна. Следовательно, два наблюдателя, движущиеся относительно друг друга, получат разные результаты при попытке установить одновременность одного и того же события. Во-вторых, при раздельном измерении пространственного и временного интервала мы, в зависимости от системы отсчета, будем получать разные значения. Абсолютной величиной, не зависящей от наблюдателя, обладает лишь пространственно-временной интервал.

Несмотря на всю революционность этой концепции пространства и времени как основы понимания всех физических процессов, ее нередко относят к классической физике. Дело в том, что теория относительности сохранила то понимание детерминизма, которое было парадигмальным для классической физики, в то время как с созданием квантовой механики был пересмотрен лапласовский детерминизм. Ему на смену пришло представление о вероятностной детерминации и неопределенности как неотъемлемой характеристики всякого физического взаимодействия.

В специальной теории относительности тождество покоя и движения было представлено в обобщенной форме, поскольку речь в ней идет не только о механических взаимодействиях, но о любых физических экспериментах и, следовательно, о том, что любые физические законы инвариантны, в инерциальных системах. Но даже и такое обобщение является неполным. Ведь речь идет лишь об инерциальных системах.

Следующий шаг, обобщающий принцип тождества покоя и движения в физических процессах, должен был состоять в том, чтобы распространить его и на ускоренное движение. Это было сделано в общей теории относительности. В ней утверждалось, что никаким физическим экспериментом, находясь внутри системы, нельзя выяснить, покоится система или движется, независимо от того, каким является это движение. Иными словами, был введен принцип тождества гравитационной и инерциальной массы.

Такая постановка проблемы движения и физического взаимодействия вообще привела к изменению понимания пространства и времени. Гравитацию можно было представить как кривизну пространства, зависящую от распределения в нем тяготеющих масс. Вполне естественным казался вывод, доказанный Эйнштейном и Инфельдом, согласно которому общая теория относительности является третьим и последним этапом в развитии теории движения. Ведь принцип тождества покоя и движения получил в ней предельное обобщение.

Создание обшей теории относительности позволило по-новому поставить проблему создания космологических моделей. Хотя вплоть до XX века астрономы исходили из ньютоновской модели Вселенной, однако уже в XIX веке выяснилось, что эта модель содержит в себе противоречие наблюдаемым фактам. Яснее всего это выразилось в так называемом фотометрическом и гравитационном парадоксах. Как показал Ольберс, если пространство бесконечно и равномерно заполнено звездами, то их свет должен суммироваться и, следовательно, ночное небо должно светиться с яркостью Солнца, поскольку Солнце по своей светимости средняя звезда. Однако этого не наблюдается. Следовательно, что-то в предположениях, на которых построена эта модель, неверно. Позднее Зейлегер доказал так называемый гравитационный парадокс. Согласно этому парадоксу, если в пространстве бесконечно много тел, то силы тяготения суммируются и ускорение в любой точке пространства под действием этих сил будет бесконечно большим.

Единственный способ избавиться от этих парадоксов при сохранении мира в пространстве состоит в том, чтобы принять определенные соотношения между звездами и звездными системами. Если эти расстояния выстраиваются в ряд Даламбера, который сходится, то парадоксы исчезают, но при этом количество вещества в пространстве стремится к нулю. Поскольку ньютоновская модель была построена на основе классической механики, то с созданием релятивистской механики, то есть механики теории относительности, появилась возможность построить принципиально новую космологическую модель. Предположив определенную плотность вещества во Вселенной, несколько большую величины грамм на десять в минус двадцать девятой степени на кубический сантиметр, Эйнштейн получил космологическую модель Вселенной в виде четырехмерного множества событий в форме цилиндра с конечным радиусом и бесконечной временной осью. При этом он рассмотрел лишь то решение уравнений, которое описывало стационарную модель.

Как показал впоследствии Фридман, эти уравнения имеют и нестационарное решение. При этом пространство будет либо сжиматься, либо расширяться. При положительной кривизне, когда плотность массы выше критической, кривизна положительна и «Вселенная» сжимается, при плотности меньшей критической кривизна отрицательна и «Вселенная» расширяется. Когда в 1929 году Хаббл обнаружил красное смещение в спектрах удаленных Галактик, он истолковал его по принципу Доплера, согласно которому при удалении источника колебаний идущая от него частота колебаний уменьшается, что для света и означает сдвиг в красную сторону спектра. Это было воспринято как подтверждение вывода Фридмана о нестационарности Вселенной, а точнее о том, что Вселенная расширяется.

Теория относительности произвела революцию прежде всего в понимании мегамира и лишь позднее выяснилось, что на уровне микромира также действуют законы, сформулированные в ней.

хаос релятивистский физика анаксагор

4. Современная физика макро- и микромира

Наиболее фундаментальным результатом, который изменил одну из основных парадигм физики, был вывод о том, что все фундаментальные физические законы имеют статистический характер. Решающее значение при этом имело открытие принципа неопределенности Гейзенберга. Согласно этому принципу дельта X, умноженная на дельта P, больше, равно H.

При уменьшении одной из этих погрешностей вторая растет и, таким образом, состояние элементарной частицы всегда оказывается неопределенным. Но если исходное состояние не может быть точно определено, то тем более оказывается неопределенным последующее состояние частицы. Важно, что такая неопределенность присуща не только положению частицы в пространстве, но и ее энергетическому состоянию. Следовательно, с физической точки зрения неопределенность оказывается неотъемлемым свойством всякого физического взаимодействия во всех формах его проявления.

Развитие теории элементарных частиц и квантовой механики позволило поставить ряд фундаментальных физических и философских проблем. Во-первых, это вопрос о неисчерпаемости физической реальности вглубь. Подобно тому, как Эйнштейн и Инфельд доказали теорему, согласно которой общая теория относительности дает столь полное описание движения, что никакой дальнейший качественный прогресс в этой области уже невозможен, точно так же фон Нейман доказал теорему о скрытых параметрах. Согласно этой теореме, законы квантовой механики - это последняя ступень в описании физических взаимодействий в микромире. Более глубокого описания не может быть. Если скрытые параметры и существуют, то они не могут проявиться. Поэтому законы квантовой механики могут основываться не на других физических закономерностях, а лишь на законах больших чисел, то есть на математической структуре. В это пункте физика как бы вновь вернулась к пифагорийскому обоснованию физической реальности.

Между тем исследования в области элементарных частиц были направлены на то, чтобы найти более глубокий уровень организации элементарных частиц. Долгое время казалось, что теорема фон Неймана в определенном смысле подтверждается экспериментом. Такое подтверждение видели в том, что при попытке выявить структуру элементарной частицы, найти те частицы, из которых она состоит, каждый раз возникала парадоксальная ситуация, качественно отличная от взаимодействия на микроуровне. Макротела при достаточно сильном внешнем воздействии распадаются на те части, из которых они состоят. В отличие от этого, если мы прикладываем к элементарной частице даже такую энергию, которая превосходит ее собственную, то есть E = M*C2, где M - масса частицы, на которую осуществляется воздействие, она не разрушается, а порождает частицы того же уровня. Поэтому стали говорить, что неисчерпаемость физической реальности на уровне микромира состоит не в том, что есть более глубокий, более тонкий уровень организации, а в том, что многообразие элементарных частиц образует неисчерпаемое множество свойств и взаимосвязей.

И все же стремление найти более глубокий структурный уровень организации материи сохраняется. На этом пути были созданы несколько теорий, которые частично получили подтверждение в эксперименте. Такова, например, теория кварков, теория партонов, то есть частичных частиц, которые не существуют вне целого, то есть вне своей частицы. Хотя сегодня уже открыты сотни элементарных частиц, большинство из них обладают очень коротким периодом жизни, и только несколько частиц являются стабильными, например электрон, протон, фотон, нейтрино.

Всякое взаимодействие на уровне элементарных частиц осуществляется через виртуальные частицы. Они связывают между собой элементарные частицы. Например, посредством пи-мезонов протоны взаимодействуют с нейтронами, благодаря чему атомные ядра устойчивы. Виртуальные частицы остаются до конца непонятыми и весьма загадочными. С одной стороны, они реально существуют, так как без них не было бы взаимодействия, атомные ядра развалились бы, а электроны не могли бы вращаться по атомным орбитам. С другой стороны, их безусловное существование многие теоретики не признают, так как в этом случае нарушается закон сохранения энергии. Поэтому приходится вслед за Гераклитом утверждать, что они одновременно как существуют, так и не существуют.

Благодаря исследованию, области квантовой механики и элементарных частиц появилась возможность по-новому взглянуть на вакуум. Оказалось, что в вакууме постоянно возникают и исчезают парами частицы и античастицы. Однако время их существования настолько мало, что экспериментально обнаружить их невозможно. Обнаружение таких частиц противоречило бы принципу неопределенности Гейзенберга. Именно в силу краткости существования частиц вакуума тела, движущиеся в нем, практически не испытывают сопротивление. Однако специальными экспериментами, основанными на математических моделях, можно косвенно обнаружить появление и исчезновение виртуальных пар частиц и античастиц. Здесь также мы имеем ситуацию, когда частицы присутствуют в вакууме и в то же время их там нет.

Уже в 1930-е годы стало ясно что в основе всех физических явлений лежат четыре вида взаимодействий. Это гравитационное, имеющее решающее значение на макро- и мегауровнях организации физической реальности; электромагнитные, проявляющиеся на микро- и макроуровнях; сильные взаимодействия, определяющие внутриядерные силы; слабые взаимодействия, определяющие распад протонов. При этом сразу возник вопрос: можно ли эти силы свести к некоторому единству, то есть возникла проблема создания единой теория поля. Естественно, что вначале попытались идти тем путем, который всегда давал хорошие результаты, то есть осуществить редукцию одних законов к другим. Так, Эйнштейн много лет пытался создать единую теорию поля, стремясь вывести из общей теории относительности три другие взаимодействия. Неудача, которая постигла его на этом пути, определялась тем, что успешно вывести одно из другого можно лишь тогда, когда это отражает объективную связь. Между тем все четыре взаимодействия являются следствием более общего исходного взаимодействия. Успех появился лишь тогда, когда потребность объяснить Большой взрыв заставила подойти к этой проблеме эволюционно и начать при этом с самого простого - с вакуума. Именно так разрабатывается эта проблема в моделях Большого взрыва. Если первоначально предполагалось, что исходным состоянием эволюции нашей Вселенной было особое, сверхплотное сгущение вещества и энергии, и затем благодаря взрывному процессу пошел синтез элементарных частиц и тем самым возникло то исходное состояние, в котором уже действовали известные нам четыре физические взаимодействия, то в современной космологии в качестве исходного состоянии принимают вакуум.

Большой взрыв рассматривается как флуктуация вакуума, в процессе которой нарушилось относительное равновесие сил притяжения и отталкивания, что и привело к колоссальному выделению энергии.

Таким образом, наша Вселенная возникает из того, что является предельно простым в современной физической реальности, то есть из вакуума, или из «ничего». Гегель в своей «Логике» утверждал, что развитие идет от ничего через нечто к ничему. В.И. Ленину это утверждение показалось сомнительным, он писал по этому поводу, что к ничему бывает, но из ничего не бывает. Но с точки зрения модели Большого взрыва, как раз из «ничего» и возникает наша Вселенная. Ведь само понятие «небытие» в философии Гегеля относительно, поскольку оно тождественно понятию «бытие». Поэтому начинать с бытия или небытия не имеет в этой философии принципиального значения. Каждое из этих понятий непосредственно превращается в другое, давая тем самым понятие «становление». А становление порождает наличное бытие, то есть такую определенность, в которой уже задано качество. Примерно так же дело обстоит и в космологической модели Большого взрыва. Внутреннее противоречие, заложенное в вакууме, порождает процесс, а результат этого процесса - определенность законов физической реальности.

Заключение

Формирование научной картины мира в эпоху становления и развития классического естествознания в значительной степени зависело от быстро изменяющегося отношения между натурфилософским знанием и знанием, основанным на опытном исследовании. Все более усиливающийся приоритет научного знания и в связи с этим акцентированное внимание к методологической и гносеологической проблематике привел к замене натурфилософской картины мира концепциями природы, в центре которых оказывались фундаментальные для данной эпохи области естествознания.

В то же время процесс формирования подлинно научной картины мира был достаточно противоречив. Так, хотя натурфилософия и гуманизм оказали разрушительное влияние на средневековую схоластику, они быта еще не в состоянии полностью вытеснить миросозерцание элементов схоластического перипатетизма и мистики. Лишь с возникновением классической механики и астрономии основанных на аксиоматике и развитой математике, картина мира приобретает существенные черты научного миросозерцания. Выдающуюся роль в этом процессе сыграла новая гелиоцентрическая парадигма Коперника, галилеевский образ науки, ньютоновская методология в построении системы мира. Стало возможным формирование научной картины мира, в основе которой лежало эмпирически обоснованное знание.

На данный момент наукой установлено огромное многообразие материальных объектов, представляющих микро, макро и мега миры, но остается открытым вопрос, исчерпывают ли эти открытия все существующее вообще. Многообразие материи и её движение бесконечно, при чем не только количественно, но и качественно. Принцип качественной бесконечности природы, означает признание неограниченного многообразие структурных форм материи, различающихся самыми фундаментальными законами бытия.

Список использованной литературы

1.Введение в историю и философию науки. М.: Академический Проект, 2005 -407 с.

.Войтов, А.Г. История и философия науки: учебное пособие для аспирантов - М.: Дашков и К, 2007 - 691 с.

.Горелов А. А. Концепции современного естествознания. - М.: Центр, 2007. -226 с.

.Гусейханов М. К., Раджабов О. Р. Концепции современного естествознания. -М.: ИТК «Дашков и К°», 2008. - 378 с.

.Небел Б. Наука об окружающей среде. Как устроен мир. - М.: Мир, 2010. - 280 с.

Линия УМК А. В. Перышкина. Физика (7-9)

Линия УМК Г. Я. Мякишева, М.А. Петровой. Физика (10-11) (Б)

Линия УМК Н. С. Пурышевой. Физика (7-9)

Линия УМК Пурышевой. Физика (10-11) (БУ)

Как работает двигатель прогресса?

О совершенствовании методики преподавания физики в России: от XVIII до XXI века.

Физика. Кто придумал, почему оно взорвалось, как это рассчитать, что это такое, почему так происходит, зачем эта деталь, куда переходит энергия? Сотни вопросов. На огромное количество есть ответы, на огромное количество – нет, а еще большее число не задано вообще. Как менялось преподавание одной из самых важных дисциплин на протяжении трех последних столетий?
Читайте по теме:
Методическая помощь учителю физики
Важной особенностью физики является тесная взаимосвязь с развитием общества и его материальной культуры, поскольку она никак не может быть той самой «вещью в себе». Физика и зависит от уровня развития общества, и одновременно является двигателем его производительных сил. Вот почему именно науку о природе и ее законах можно считать тем «срезом», по которому видно научный потенциал страны и вектор ее развития.

Глава первая. Век восемнадцатый

Изначально отдельные вопросы физики (преподававшейся по Аристотелю) изучались в рамках курса философии в двух крупнейших славяно-греко-латинских академиях: Киево-Могилянской и Московской. Только в начале XVIII века физика выделилась в самостоятельный предмет, отделившись от натурфилософии, сформировав свои собственные цели и задачи, как и приличествует настоящей дисциплине. Обучение тем не менее продолжалось на классических языках, то есть латинском и греческом, что существенно снижало количество изучаемых предметов.

Тем не менее, забегая вперед, отметим, что работа по созданию отечественной методической литературы по физике началась в России куда раньше, чем на Западе. Ведь у нас физика как учебный предмет была введена в школу в конце XVIII века, в то время как в Европе – только в конце XIX.

Пока же – Петр Первый. Эта фраза содержит в себе все: ожидание европеизации образования, его распространения и популяризации. Бороды тут ни при чем, забудьте о бородах. Повсеместное открытие новых учебных заведений позволило физике выйти на новый уровень и во второй половине XVIII века стать отдельным предметом в университетах.


Линия УМК А. В. Перышкина. Физика (7-9 классы)
В доработанную версию УМК в конец каждой главы был добавлен обобщающий итоговый материал, включающий краткую теоретическую информацию и тестовые задания для самопроверки. Учебники также были дополнены заданиями разных типов, направленных на формирование метапредметных умений: сравнение и классификацию, формулирование аргументированного мнения, работу с разнообразными источниками информации, в том числе электронными ресурсами и интернетом, решение расчетных, графических и экспериментальных задач

В Московском университете чтение лекций по физике с 1757 года сопровождалось демонстрацией опытов. В середине столетия оснащение университетов приборами позволило перейти от «мелового этапа» к этапу более сложному – «приборной физике», но в большинстве случаев изучение физических явлений не просто сопровождалось, но сводилось к детальному изучению приборов. Студент однозначно имел представление о принципе действия стержней, пластин, термометров и вольтова столба.

Глава вторая. Век девятнадцатый

От чего зависит успешность преподавания любого предмета? От качества программ, методов, материальной базы и языка учебников, наличия физических приборов и реактивов, уровня самого педагога.

В период, о котором мы говорим, единой программы по физике не существовало ни в школе, ни в университете. Что делали школы? Школы работали на основании материалов, которые разрабатывались в учебном округе, университеты – опираясь на курс авторитетного автора либо следуя авторскому курсу, утвержденному Коллегией профессоров.

Все изменилось во второй половине века. Уже упомянутый Физический кабинет Московского университета рос, коллекция демонстрационных приборов увеличивалась, активно влияя на эффективность преподавания. А в программе по физике 1872 года рекомендовалось давать учащимся основательные знания, для этого же «ограничиться числом фактов по каждому отделу явлений и изучать их вполне, чем иметь огромное количество поверхностных сведений». Вполне логично, учитывая, что теория физики на тот момент была логична и лишена крайне неустойчивых дилемм.

Читайте по теме:
Подготовка к ЕГЭ по физике: примеры, решения, объяснения
Как же преподавали физику? Давайте поговорим о методах.

О педагогической деятельности Николая Алексеевича Любимова , выдающегося русского физика, профессора, одного из учредителей Московского математического общества, писали так: «Педагогическая деятельность Н. А. в Московском университете, несомненно, представляла значительный шаг вперед. В постановке преподавания физики приходилось начинать почти с азбуки, и доведение его до совершенства, которого оно достигло в руках Η. Α., требовало больших усилий и недюжинных способностей».Так-так, азбука – метафора или реальное положение дел? Кажется, что реальное и довольно похожее на современное положение дел во многих образовательных учреждениях.


Одним из самых популярных методов преподавания физики в XIX веке было механическое заучивание материала, в первом круге – по записям лекций, позже – по кратким учебникам. Неудивительно, что состояние знаний студентов вызывало тревогу. Тот же Николай Алексеевич довольно ясно выразился об уровне знаний гимназистов:

«Величайший недостаток учения у нас состоит в том, что оно доставляет только поверхностные сведения… Не одну сотню ответов пришлось нам слушать на экзаменах. Впечатление одно: отвечающий не понимает того, что сам доказывает».

Другой выдающийся и знакомый всем русский хирург, естествоиспытатель и педагог Николай Иванович Пирогов придерживался того же мнения, высказываясь в поддержку идеи важности не только личных качеств учителя, но методов его деятельности.

«Пора понять нам, что обязанность гимназического учителя не состоит только в одном сообщении научных сведений и что главное дело педагогики состоит именно в том, как эти сведения будут сообщены ученикам».

Понимание ошибочности такого подхода позволило перейти к принципиально новому по сравнению с веком восемнадцатым методу экспериментального преподавания. Не детальное изучение приборов и заучивание текста поставлено во главу угла, но самостоятельное получение новых знаний из анализа опытов. Список приборов Московского университета, составленный в 1854 году, насчитывал 405 приборов, большинство из них относились к разделу механики, около 100 – к разделу электричества и магнитных свойств, порядка 50 приборов – к теплоте. Стандартный набор любого кабинета и приборы, описание которых можно было бы найти в любом учебнике: архимедов винт, сифоны, ворот, рычаг, геронов фонтан, барометр, гигрометр.

Читайте по теме:
ЕГЭ по физике: решение задач о колебаниях

Устав 1864 года предписывал реальным (в приоритете предметы естественно-научного цикла) и классическим гимназиям иметь в распоряжении физические кабинеты, первым же – и химический класс в придачу. Активное развитие физики в 1860-х, ее неразрывная связь с промышленностью и развитием техники, общее повышение уровня студентов, как и количества желающих посвятить себя прикладной дисциплине, влияющей на будущее отечества, привели к «научному голоданию». Как это? Это острое ощущение нехватки специалистов, обладающих практикой научной работы. Как решить эту проблему? Верно, учить, как работать, и учить, как учить.


Первой обобщающей работой по методике преподавания физики стала книга Федора Шведова , выпущенная в 1894 году, «Методика физики». В ней были рассмотрены построение учебного курса, классификация методов и их психологическое обоснование, впервые было дано описание задач предмета.

«Задача науки методики состоит не только в развитии искусства, так сказать, виртуозности изложения, а главным образом в выяснении логических основ науки, которые могли бы послужить точкой отправления как для выбора материала, так и для порядка его расположения в каждом излагаемом курсе, цель которого предполагается намеченною».

Эта идея была прогрессивной для своего времени, более того, абсолютно не утратила своего значения и в современности.

Дореволюционный период характеризовался резким ростом числа методических изданий. Если собрать все новаторские идеи, содержащиеся в трудах Лерманова, Глинки, Баранова и Кашина, может получиться интереснейший список:

  • Внедрение «плодоносных», а не «стерильных» теоретических знаний.
  • Широкое использование демонстраций.
  • Двухступенчатая система.
  • Разработка и применение самодельных приборов.
  • Восприятие физики как дисциплины, формирующей мировоззрение.
  • Экспериментальный метод как одна из основ обучения.
  • Применение индукции и дедукции.
  • Творческое сочетание теории и эксперимента.

Именно расширение научных лабораторий, внедрение практик лабораторных работ в гимназическом и университетском образовании, развитие научных исследований привели к всплеску научных открытий на рубеже веков. Многие тенденции остались неизменными до наших дней, обеспечивая непрерывность и постоянное усовершенствование преподавания одной из самых важных для понимания мира дисциплин.

Глава третья. Век двадцатый


Линия УМК Н. С. Пурышевой. Физика (10-11 классы)
Основой курса, написанного по авторской программе, является индуктивный подход: путь к теоретическим построениям лежит через повседневный жизненный опыт, наблюдения за окружающей действительностью и простые эксперименты. Большое внимание уделяется практическим работам школьников и дифференцированному подходу к обучению. Учебники позволяют организовать и индивидуальную и групповую работу старшеклассников, благодаря чему развиваются навыки как самостоятельной деятельности, так и сотрудничества в команде.

Школьникам и студентам необходимо было все это объяснить. За полвека представление о мире поменялось, значит, должна была поменяться и педагогическая практика. Величайший прорыв в микромир, квантовая теория, специальная теория относительности, физика атомного ядра и физика высоких энергий.


Как же строилось преподавание физики в России после революции 1917? Строительство новой единой трудовой школы на социалистических принципах кардинально изменило содержание и методы обучения:

  • Значение физики было по достоинству оценено в учебном плане и в преподавании.
  • Были созданы НИИ и центры по педагогическим наукам, а также организованы кафедры методики в педагогических вузах.
  • Советская физика не отменяет наработок и прогрессивных тенденций дореволюционного периода, НО.
  • Ее особенностью (как же без этого?) становится материализм, содержание исследований идет неразрывно с потребностями и направлением движения страны. Борьба с формализмом – собственно, почему бы и нет.

Весь мир в середине XX столетия переживает научно-техническую революцию, роль советских ученых в которой неоценима. Об уровне советского технического образования ходят легенды. С конца 1950-х и до 1989 года, когда страна вступает в период нового кризиса, физика развивается интенсивно, а методика ее преподавания отвечает на целый ряд вызовов:

  • Новый курс должен соответствовать новейшим достижениям науки и техники. Учебники 1964 года уже содержали в себе сведения об ультразвуке, искусственных спутниках Земли, невесомости, полимерах, свойствах полупроводников, ускорителях заряженных частиц (!). Была даже введена новая глава – «Физика и технический прогресс».
  • Новые пособия и учебники для средней школы должны отвечать новым требованиям. Каким? Материал излагается доступно, интересно, с широким применением эксперимента и четким раскрытием законов физики.
  • Познавательная деятельность учащихся должна выйти на новый уровень. Именно тогда окончательно сформировались три функции урока: образовательная, воспитательная и развивающая.
  • Технические средства обучения – как же без них? Система школьного физического эксперимента должна совершенствоваться.

Именно советские методисты внесли существенный вклад в совершенствование структуры и методики преподавания технических дисциплин. Новые формы уроков физики, используемые и по сей день: проблемный урок, конференция-урок, урок-семинар, урок-экскурсия, практические занятия, экспериментальные задачи, – были разработаны в СССР.

«Методика физики должна разрешить три задачи: для чего учить, чему учить и как учить?» (учебник И. И. Соколова).

Обратите внимание на очередность, в ней – основа хорошего образования.

Глава четвертая. Век двадцать первый

Эта глава еще недописана, она открытый лист, который необходимо заполнить. Как? Создав предмет, который будет отвечать и техническому прогрессу, и задачам, которые в данный момент стоят перед отечественной наукой, и цели стимулирования научного и изобретательского потенциала ученика.


Дайте школьнику текст урока – он его выучит.

Дайте школьнику текст урока и приборы – и он поймет принцип их работы.

Дайте школьнику текст лекции, приборы и учебное пособие – и он научится систематизировать свои знания, поймет действие законов

Дайте школьнику учебники, лекции, приборы и хорошего преподавателя – и у него появится вдохновение к научной работе

Дайте школьнику все это и свободу, Интернет, и у него будет возможность мгновенно получить любую статью, создать 3D-модель, посмотреть видео эксперимента, быстро рассчитать и проверить свои выводы, постоянно узнавать новое – и вы получите человека, который научится сам ставить вопросы. Не это ли самое важное в обучении?

Новые учебно-методические комплексы «Российского учебника»* – это соединение всех четырех столетий: текста, заданий, обязательных лабораторных работ, проектной деятельности и электронного обучения.

Мы хотим, чтобы вы сами написали четвертую главу.

Ольга Давыдова
*С мая 2017 года объединенная издательская группа «ДРОФА-ВЕНТАНА» входит в корпорацию «Российский учебник». В корпорацию также вошли издательство «Астрель» и цифровая образовательная платформа «LECTA». Генеральным директором назначен Александр Брычкин, выпускник Финансовой академии при Правительстве РФ, кандидат экономических наук, руководитель инновационных проектов издательства «ДРОФА» в сфере цифрового образования.