Таблица по физике физические тела. Основные формулы молекулярной физики и термодинамики

1 слайд

Составитель: Гринякин Станислав Александрович Руководитель: Талалай Ольга Георгиевна, учитель физики Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа №6 с углубленным изучением отдельных предметов» г. Надыма, Тюменская область, Ямало-Ненецкий автономный округ,

2 слайд

Формула Название величин, входящих в формулу КИНЕМАТИКА Равномерное движение: υ=S/t S=υt x=x0S x=x+tυ S – путь t – время х – координата конечная х0 – начальная координата υ – скорость a – ускорение g – ускорение свободного падения Равноускоренное движение: a= υ-υ0/t υ=υ0±at S=υt±at2/2 S=υ2 – υ20/±2a х=х0+υ0t+at2/2 Движение по окружности: υ=2П R/T aац=υ2/R υ=Rω T=t/N ν =N\t ν - частота вращения R – радиус T – период aац t – время N – число оборотов υ ω – угловая скорость

3 слайд

ДИНАМИКА Законы Ньютона: F=ma (II зaкон Ньютона) F1=-F2 (III закон Ньютона) I з.Н. если ∑F = 0, υ = const II з.Н. ∑F = ma III з.Н. F1= - F2 Закон всемирного тяготения: m1 m2 r F=Gm1m2/r2 G – гравитационная постоянная m1 , m2 – массы тел r – расстояние Закон Гука: Fупр= -kx x – удлинение k – жесткость ПЕРВАЯ КОСМИЧЕСКАЯ СКОРОСТЬ υ = √gR R – радиус вращения, g – ускорение свободного падения Импульс: P=mυ Закон сохранения импульса m1υ1+m2υ2=m1U1+m2U2 P – импульс m – масса υ – скорость m1,m2 – массы υ1 – скорость 1-ого тела до взаимодействия υ2 – скорость 2-ого тела до взаимодействия U1 – скорость 1-ого тела после взаимодействия U2 – скорость 2-ого тела после взаимодействия

4 слайд

РАБОТА И ЭНЕРГИЯ A=FScosα F – сила S – перемещение Угол α – угол между F и S P=A/t P=Fυ P – мощность F – сила υ – скорость КПД=(А полезн./А затрач.)100% Eк = mυ2/2 – кинетическая энергия Eп = mgh – потенциальная энергия Eп = kx2/2 – потенциальная энергия Закон сохранения энергии: Eк1 + Eп1 = Eк2 + Eп2 mυ21/2+mgh1 = mυ22/2+mgh2 mυ21/2+kx21/2 = mυ22/2+kx22/2

5 слайд

Давление(P): p=F/S p=рgh Fa=ржgVпчт Р ж- плотность жидкость S – площадь поверхности F – сила Vпчт – объем погруженной части тела Колебания и волны: T=t/N T=2π√ ℓ/g ω=2πν =υ/ν T=2π √m/k λ = υT = υ/ν ℓ - длина нити T - период Ν – число колебаний m - масса k - жесткость пружины ν - частота МОЛЕКУЛЯРНАЯ ФИЗИКА ν = m/μ = N/Na n = N/V μ = m0Na m = m0N p = ⅓m0nυ2 p = ⅔nE p = nkT p = ⅓рυ2 E = (3/2)kT T = t⁰ + 273 pV = (m/μ)RT p1V1/T1 = p2V2/T2 μ - молярная масса вещества m – масса вещества Na – постоянная Авогадро N - число молекул T – температура в Кельвинах t – температура в Цельсиях V – объем вещества p – давление R – универсальная газовая постоянная n – концентрация вещества υ – среднеквадратичная скорость k – постоянная Больцмана ν – количество вещества E – кинетическая энергия m0 - масса одной молекулы

6 слайд

ТЕРМОДИНАМИКА Q = ∆U + A| ∆U = A + Q Q – кол-во теплоты сообщаемое системе ∆U – изменение внутренней энергии А – работа внешних сил А| - работа газа U=(i/2)(m/μ)RT=(i/2)pV U – внутренняя энергия A=p∆V=(m/μ)R∆T ТЕПЛОВЫЕ ДВИГАТЕЛИ η=Ап/Qн η=(Qн - Qx)/Qн η=(Tн - Tx)/Tн Ап – полезная работа Qн – количество теплоты, полученное от нагревателя Qx - количество теплоты, полученное от холодильника Tн – температура нагревателя Tx – температура холодильника ТЕПЛОВЫЕ ЯВЛЕНИЯ Qнагр = cm(t2 – t1) Qпл = λm Qпар = Lm Qсгор = qm с – удельная теплоемкость вещества λ – удельная теплота плавления L – удельная теплота парообразования q – удельная теплота сгорания ЭЛЕКТРОСТАТИКА F = (k|q1||q2|)/ E r2 E = F/qпр E=(k|q|)/r2 k – коэффициент пропорциональности q1, q2 – заряды тел r – расстояние между телами E - диэлектрическая проницаемость среды

7 слайд

ПОСТОЯННЫЙ ТОК I=U/R I= E /R+r R=рℓ/S A=IUt P=UI Q=I2Rt I - сила тока U – напряжение R – сопротивление A – работа тока P – мощность тока Q – количество теплоты t – время E – ЭДС ℓ - длина проводника р - удельное сопротивление S – площадь сечения ПОСЛЕДОВАТЕЛЬНОЕ И ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ ПРОВОДНИКОВ ǿ ǿ R0 = R1+R2+… U0 = U1+U2+… I0=I1=I2=… 1. U0=U1=U2 ǿ ǿ 2. 1/R0=1/R1+1/R2+… 3. I0=I1+I2+… СИЛА ЛОРЕНЦА, АМПЕРА Fл=qBℓsinα Fа=υBSIsinα В – магнитная индукция q – электрический заряд ℓ - длина проводника υ – скорость частицы I - сила тока

8 слайд

Сила Определение. Направление. Формула Рисунок 1.Сила тяжести -это сила, с которой Земля притягивает к себе тело. Направлена вниз к центру Земли. Fтяж = mg где: m – масса тела g – ускорение свободного падения mg mg 2.Сила упругости -это сила, возникающая в результате деформации. Направлена противоположно деформации. Fупр=-kx где: k–коэффициент жесткости x - удлинение Fупр Fупр 3.Сила трения -это сила, возникающая в результате движения одного тела по поверхности другого. Направлена в сторону, противоположную движению. Fтр=μN где: μ– коэффициент трения N – сила нормального давления V Fтр 4.Вес тела -это сила, с которой тело действует на горизонтальную опору или вертикальный подвес. Направлен вниз, т.к. возникает в следствии притяжения Земли. P=mg(если тело покоится или движется равномерно и прямолинейно) P=m(g+a) a P=m(g-a) a P P

Составитель: Гринякин Станислав Александрович Руководитель: Талалай Ольга Георгиевна, учитель физики Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа 6 с углубленным изучением отдельных предметов» г. Надыма, Тюменская область, Ямало-Ненецкий автономный округ,


ФормулаНазвание величин, входящих в формулу КИНЕМАТИКА Равномерное движение: 1. υ = S/t 2.S= υ t 3.x=x 0 S 4.x=x+t υ S – путь t – время х – координата конечная х 0 – начальная координата υ – скорость a – ускорение g – ускорение свободного падения Равноускоренное движение: 1. a= υ - υ 0 /t 2. υ = υ 0 ±at 3. S= υ t±at 2 / 2 4. S= υ 2 – υ 2 0 /±2a 5. х=х 0 + υ 0 t+at 2 /2 Движение по окружности: 1. υ =2 П R/T 2.a ац = υ 2 /R 3. υ =R ω 4.T=t/N 5. ν =N\t ν - частота вращения R – радиус T – период a ац t – время N – число оборотов υ ω – угловая скорость


ДИНАМИКА Законы Ньютона: F=ma (II зaкон Ньютона) F 1 =-F 2 (III закон Ньютона) I з.Н. еслиF = 0, υ = const II з.Н. F = ma III з.Н. F 1 = - F 2 Закон всемирного тяготения: m 1 m 2 r F=Gm 1 m 2 /r 2 G – гравитационная постоянная m 1, m 2 – массы тел r – расстояние Закон Гука: F упр = -kx x – удлинение k – жесткость ПЕРВАЯ КОСМИЧЕСКАЯ СКОРОСТЬ υ =gR R – радиус вращения, g – ускорение свободного падения Импульс: P=m υ Закон сохранения импульса m 1 υ 1 +m 2 υ 2 =m 1 U 1 +m 2 U 2 P – импульс m – масса υ – скорость m 1,m 2 – массы υ 1 – скорость 1-ого тела до взаимодействия υ 2 – скорость 2-ого тела до взаимодействия U 1 – скорость 1-ого тела после взаимодействия U 2 – скорость 2-ого тела после взаимодействия


РАБОТА И ЭНЕРГИЯ A=FScos α F – сила S – перемещение Угол α – угол между F и S P=A/t P=F υ P – мощность F – сила υ – скорость КПД=(А полезн. /А затрач.)100% E к = mυ 2 /2 – кинетическая энергия E п = mgh – потенциальная энергия E п = kx 2 /2 – потенциальная энергия Закон сохранения энергии: E к 1 + E п 1 = E к 2 + E п 2 m υ 2 1 /2+mgh 1 = m υ 2 2 /2+mgh 2 m υ 2 1 /2+kx 2 1 /2 = m υ 2 2 /2+kx 2 2 /2


Давление(P): p=F/S p= р gh F a = р ж gV пчт Р ж - плотность жидкость S – площадь поверхности F – сила V пчт – объем погруженной части тела Колебания и волны: T=t/N T=2 π /g ω =2 πν = υ / ν T=2 π m/k λ = υ T = υ / ν - длина нити T - период Ν – число колебаний m - масса k - жесткость пружины ν - частота МОЛЕКУЛЯРНАЯ ФИЗИКА ν = m/ μ = N/Na n = N/V μ = m 0 N a m = m 0 N p = m 0 n υ 2 p = nE p = nkT p = р υ 2 E = (3/2)kT T = t pV = (m/ μ)RT p 1 V 1 /T 1 = p 2 V 2 /T 2 μ - молярная масса вещества m – масса вещества N a – постоянная Авогадро N - число молекул T – температура в Кельвинах t – температура в Цельсиях V – объем вещества p – давление R – универсальная газовая постоянная n – концентрация вещества υ – среднеквадратичная скорость k – постоянная Больцмана ν – количество вещества E – кинетическая энергия m 0 - масса одной молекулы


ТЕРМОДИНАМИКА Q = U + A | U = A + Q Q – кол-во теплоты сообщаемое системе U – изменение внутренней энергии А – работа внешних сил А | - работа газа U=(i/2)(m/ μ)RT=(i/2)pVU – внутренняя энергия A=pV=(m/ μ)RT ТЕПЛОВЫЕ ДВИГАТЕЛИ η=А п /Q н η=(Q н - Q x)/Q н η=(T н - T x)/T н А п – полезная работа Q н – количество теплоты, полученное от нагревателя Q x - количество теплоты, полученное от холодильника T н – температура нагревателя T x – температура холодильника ТЕПЛОВЫЕ ЯВЛЕНИЯ Q нагр = cm(t2 – t1) Q пл = λm Q пар = Lm Q сгор = qm с – удельная теплоемкость вещества λ – удельная теплота плавления L – удельная теплота парообразования q – удельная теплота сгорания ЭЛЕКТРОСТАТИКА F = (k|q 1 ||q 2 |)/ E r 2 E = F/q пр E=(k|q|)/r 2 k – коэффициент пропорциональности q1, q2 – заряды тел r – расстояние между телами E - диэлектрическая проницаемость среды


ПОСТОЯННЫЙ ТОК I=U/R I= E /R+r R= р/S A=IUt P=UI Q=I 2 Rt I - сила тока U – напряжение R – сопротивление A – работа тока P – мощность тока Q – количество теплоты t – время E – ЭДС - длина проводника р - удельное сопротивление S – площадь сечения ПОСЛЕДОВАТЕЛЬНОЕ И ПАРАЛЛЕЛЬНОЕ СОЕДИНЕНИЕ ПРОВОДНИКОВ ǿ 1.R 0 = R 1 +R 2 +… 2.U 0 = U 1 +U 2 +… 3.I 0 =I 1 =I 2 =… 1. U 0 =U 1 =U 2 ǿ ǿ 2. 1/R 0 =1/R 1 +1/R 2 +… 3. I 0 =I 1 +I 2 +… СИЛА ЛОРЕНЦА, АМПЕРА F л =qBsin α F а = υ BSIsin α В – магнитная индукция q – электрический заряд - длина проводника υ – скорость частицы I - сила тока R1R2 R1


СилаОпределение. Направление.ФормулаРисунок 1.Сила тяжести -это сила, с которой Земля притягивает к себе тело. Направлена вниз к центру Земли. F тяж = mg где: m – масса тела g – ускорение свободного падения mg mg 2.Сила упругости -это сила, возникающая в результате деформации. Направлена противоположно деформации. F упр =-kx где: k–коэффициент жесткости x - удлинение F упр F упр 3.Сила трения -это сила, возникающая в результате движения одного тела по поверхности другого. Направлена в сторону, противоположную движению. F тр = μ N где: μ – коэффициент трения N – сила нормального давления V F тр 4.Вес тела-это сила, с которой тело действует на горизонтальную опору или вертикальный подвес. Направлен вниз, т.к. возникает в следствии притяжения Земли. P=mg(если тело покоится или движется равномерно и прямолинейно) P=m(g+a) a P=m(g-a) a P


P – давление V – объем T – температура p=nkT n=N/V p=nkT=NkT/V=N a kT V \V V=N а V N а k=R p= V N a kT/V= V RT/V => pV= V RT=> V =m/ μ => pV=mRT/ μ - уравнение Менделеева - Клаперона pV= V RT=> V =m/ μ => pV=mRT/ μ - уравнение Менделеева - Клаперона"> pV= V RT=> V =m/ μ => pV=mRT/ μ - уравнение Менделеева - Клаперона"> pV= V RT=> V =m/ μ => pV=mRT/ μ - уравнение Менделеева - Клаперона" title="p – давление V – объем T – температура p=nkT n=N/V p=nkT=NkT/V=N a kT V \V V=N а V N а k=R p= V N a kT/V= V RT/V => pV= V RT=> V =m/ μ => pV=mRT/ μ - уравнение Менделеева - Клаперона"> title="p – давление V – объем T – температура p=nkT n=N/V p=nkT=NkT/V=N a kT V \V V=N а V N а k=R p= V N a kT/V= V RT/V => pV= V RT=> V =m/ μ => pV=mRT/ μ - уравнение Менделеева - Клаперона">


Изопроцесс – процессы, протекающие при неизменном значении одного из параметров называют изопроцессами. 1. ИЗОТЕРМИЧЕСКИЙ Процесс изменения состояния термодинамической системы макроскопических тел при постоянной температуре называют изотермическим процессом. T 2 >T 1 T-const - характеризует множество состояний газа при данной температуре (любая точка изотермы характеризует состояние газа, либо для неё известны p 1 V 1 при определенной температуре). А любая прямая или кривая составляет множество точек, значит множество состояний. T 1 T-const - характеризует множество состояний газа при данной температуре (любая точка изотермы характеризует состояние газа, либо для неё известны p 1 V 1 при определенной температуре). А любая прямая или кривая составляет множество точек, значит множество состояний.">


P 1 p-const – изобара характеризует множество состояний газа при определенном давлении." title="2.изобарный Процесс изменения состояния термодинамической системы при постоянном давлении называют изобарным процессом p 2 >p 1 p-const – изобара характеризует множество состояний газа при определенном давлении." class="link_thumb"> 11 2.изобарный Процесс изменения состояния термодинамической системы при постоянном давлении называют изобарным процессом p 2 >p 1 p-const – изобара характеризует множество состояний газа при определенном давлении. p 1 p-const – изобара характеризует множество состояний газа при определенном давлении."> p 1 p-const – изобара характеризует множество состояний газа при определенном давлении."> p 1 p-const – изобара характеризует множество состояний газа при определенном давлении." title="2.изобарный Процесс изменения состояния термодинамической системы при постоянном давлении называют изобарным процессом p 2 >p 1 p-const – изобара характеризует множество состояний газа при определенном давлении."> title="2.изобарный Процесс изменения состояния термодинамической системы при постоянном давлении называют изобарным процессом p 2 >p 1 p-const – изобара характеризует множество состояний газа при определенном давлении.">



«Компьютерные модели» - Нажмите кнопку "Начальн. А нужен ли компьютер на уроке? Задание N4. Выяснить характер зависимости дальности полета l от величины начальной скорости v0. Подтвердить словесный вывод формулой. Нетрадиционные виды учебной деятельности учащихся. 221 (203). Задания: Выбрать определенное значение начальной скорости v0.

«ЕГЭ по физике 2010» - Документы, определяющие содержание экзаменационной работы. На экзамене в аудиторию не допускаются специалисты по физике. Распределение заданий экзаменационной работы по видам проверяемой деятельности. Часть 3 содержит 6 заданий, для которых необходимо привести развернутый ответ. А25. Распределение заданий по уровню сложности.

«Уроки здоровья» - Массу мы легко найдем, умножим плотность на объем. Слабое звено. Факторы, влияющие на здоровье школьников: ПОЧЕМУ? Медики констатируют существенное ухудшение здоровья детей в нашей стране. Пименение здоровьесберегающих технологий на уроках физики. Здоровье сберегающие технологии на уроках физики. Острый глаз.

«Демонстрация опытов» - Опыт 1: Цель: А потеряв опору, монета упала вниз. Опыт 6: Движение тела по "мертвой петле. Заключение: Через некоторое время переставьте бутылку в кастрюлю с холодной водой. Опыт 4: Монета в бутылке. Конус двойной, катящийся вверх. ОПЫТ 2: Реактивное движение. Вот так можно убедиться в зависимости давления воздуха от окружающей температуры.

«Лабораторные работы по физике» - Виртуальный лабораторный практикум по физике. Исследование явления фотоэффекта. Таблицы измерений. Введение. Презентация. Построение графика. Виртуальная лабораторная установка. Изохорный процесс. Исследование явления интерференции света. Авторы: Р.В. Дронова, А.И. Приходченко. Таблица измерений.

«Лабораторная работа» - Все возможности тестового режима для проверки знаний. Автоматическая проверка знаний при подготовке или после эксперимента. Создание тренингов и зачетов в автоматическом и ручном режиме. Как методическое пособие для учителя по выполнению широкого спектра экспериментов с цифровым датчиками как лабораторный практикум для выполнения работ учащимися как рабочую тетрадь – рабочие бланки учащихся как редактируемую открытую коллекцию ресурсов, для подготовки к урокам и планирования занятий, позволяющую осуществлять экспорт и импорт учебных материалов как удобную оболочку, позволяющую организовать контроль знаний учащихся (тренинги, зачеты, экзамены).

Книга представляет собой справочное пособие по всему школьному курсу физики, выполненное в виде таблиц. Каждому разделу общей физики соответствуют свои таблицы, включающие определения физических величин, формулировки основных законов физики, формулы, необходимые для решения задач по физике и единицы измерения физических величин в системе СИ. Определения и формулировки соответствуют научной терминологии. Таблично представленный материал обладает хорошей наглядностью, быстрее запоминается и воспроизводится, а также позволяет легко ориентироваться при нахождении необходимой формулы, определения, единицы измерения.

Биологическое действие ионизирующих излучений (дозиметрия).
Дозиметрия - область ядерной физики, в которой изучаются физические величины, характеризующие действие ионизирующих излучений на различные объекты
Действие ионизирующих излучений характеризуется энергией, выделяемой в облучаемом веществе. Эта характеристика обобщает все виды излучений
Приборы, фиксирующие ионизирующее излучение: ионизационные камеры, счетчики Гейгера - Мюллера, камеры Вильсона, ядерные эмульсии и др.

Ионизирующее излучение - потоки частиц или квантов, взаимодействие которых со средой приводит к ионизации атомов или молекул этой среды
Различают фотонное ионизирующее излучение (ультрафиолетовое, рентгеновское и др.) и потоки частиц (а-частицы, *в-частицы, ионы, осколки делящихся ядер и др.)

Доза ионизирующего излучения - физическая величина, используемая для оценки воздействия ионизирующего излучения на любые вещества и живые организмы
Дозу излучения организм может получить от любого радионуклида или их смеси независимо от того находятся ли они вне организма или внутри него
Различают поглощенную, эквивалентную и экспозиционную дозы
Радионуклиды - нестабильные радиоактивные ядра

СОДЕРЖАНИЕ
I. МЕХАНИКА
1. Общие понятия
2. Кинематика поступательного движения
3. Кинематика вращательного и криволинейного движения
4. Динамика поступательного движения
5. Динамика вращательного движения
6. Основные законы механики
7. Механика жидкостей и газов
8. Элементы релятивистской механики
II. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА
9. Общие понятия
10. Свойства газов
11. Свойства жидкостей
12. Свойства твердых тел
13. Теплота, энергия и законы термодинамики
III. ЭЛЕКТРОДИНАМИКА
14. Электрическое поле
15. Электрическое поле в проводниках. Постоянный ток
16. Магнитное поле
17. Электромагнитная индукция (ЭМИ)
IV. КОЛЕБАНИЯ И ВОЛНЫ
18. Колебания. Общие понятия
19. Волны. Общие понятия и основные свойства
20. Механические колебания и волны
21. Электромагнитные колебания и волны
22. Переменный ток
V. ОПТИКА
23. Геометрическая оптика
24. Волновая оптика
25. Фотометрия
VI. АТОМНАЯ ФИЗИКА
26. Элементы квантовой физики
27. Элементы ядерной физики
28. Биологическое действие ионизирующих излучений (дозиметрия)
Обобщенная таблица величин.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Физика в таблицах, Универсальное справочное пособие, Пец В.Г., 2012 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.