Гравитационное сжатие. Синтез черных дыр

ГРАВИТАЦИОННЫЙ КОЛЛАПС, гидродинамическое сжатие космического объекта под действием собственных сил тяготения, приводящее к значительному уменьшению его размеров. Для развития гравитационного коллапса необходимо, чтобы силы давления (отталкивания) отсутствовали вообще или, по крайней мере, были недостаточны для противодействия силам гравитации. Гравитационный коллапс возникает на двух крайних стадиях эволюции звёзд. Во-первых, рождение звезды начинается с гравитационного коллапса газопылевого облака. Во-вторых, некоторые звёзды заканчивают свою эволюцию посредством гравитационного коллапса, их центральная часть (ядро) переходит при этом в конечное состояние нейтронной звезды или чёрной дыры. Одновременно разреженная оболочка может быть выброшена сильной ударной волной, что приводит к вспышке сверхновой звезды. Гравитационный коллапс происходит также и в более крупных масштабах - на определённых этапах эволюции ядер галактик. Астрономические наблюдения с помощью орбитальных космических телескопов в оптическом, ИК- и рентгеновском диапазонах убедительно свидетельствуют о присутствии в центрах некоторых галактик массивных чёрных дыр массой от нескольких миллионов до нескольких миллиардов масс Солнца. В центре нашей Галактики находится «точечный» невидимый объект - чёрная дыра с массой 3 миллионов масс Солнца, определённой по орбитам вращающихся вокруг неё соседних звёзд. Такие чёрные дыры первоначально возникают вследствие гравитационного коллапса и затем постепенно увеличивают свою массу, поглощая окружающее вещество.

Гравитационный коллапс связан с потерей устойчивости объекта по отношению к сжатию под действием сил гравитации. После потери устойчивости с течением времени объект всё сильнее отклоняется от исходного состояния гидростатического равновесия, причём силы гравитации начинают преобладать над силами давления, что вызывает дальнейшее ускорение сжатия. В основе гравитационного коллапса при рождении звёзд и при образовании нейтронных звёзд и чёрных дыр лежат совершенно различные физические процессы. Однако гидродинамическая картина развития гравитационного коллапса в основных чертах одинакова в обоих случаях.

Рождение звёзд связано с гравитационной неустойчивостью межзвёздной среды. При образовании нейтронных звёзд и чёрных дыр толчком к началу гравитационного коллапса служат потеря звездой устойчивости вследствие диссоциации атомных ядер на составляющие их нуклоны и/или нейтронизация вещества звезды (массовый захват атомными ядрами электронов), сопровождаемые интенсивными потерями энергии путём испускания электронных нейтрино.

Начавшийся гравитационный коллапс развивается во всё более ускоренном темпе в основном по двум причинам. Во-первых, затраты энергии на расщепление частиц вещества (диссоциация молекул и ионизация атомов при сжатии протозвёздных облаков, диссоциация атомных ядер при образовании нейтронных звёзд) приводят к снижению скорости роста давления, препятствующего сжатию вещества. Во-вторых, интенсивные потери энергии на излучение во время гравитационного коллапса ещё больше замедляют рост давления.

Детальное описание гравитационного коллапса можно получить лишь с помощью быстродействующих ЭВМ с учётом конкретных механизмов потерь энергии (ИК-излучение или нейтрино) и других физических свойств коллапсирующего вещества. Чем больше плотность вещества внутри коллапсирующего объёма, тем быстрее развивается гравитационный коллапс. Поэтому в первую очередь коллапсирует область вблизи центра звезды (центральное ядро). После остановки гравитационного коллапса ядра вещество оболочки наталкивается на него со сверхзвуковой скоростью, образуя сильную ударную волну (УВ). В центральной области объекта возникает избыток давления, под действием которого УВ перемещается в наружном направлении. УВ не только останавливает падение оболочки, но может также придать наружным слоям скорость, направленную от центра. Этот обнаруженный в детальных расчётах гравитационного коллапса эффект называется гидродинамическим отражением (отскоком). Его существование важно для диагностики гравитационного коллапса в наблюдениях, в частности для теории вспышек сверхновых звёзд.

После выпадения на ядро основной массы оболочки и затухания, вызванных гидродинамическим отражением пульсаций ядра гравитационный коллапс фактически заканчивается. Однако значительная доля выделившейся в процессе гравитационного коллапса энергии не успевает излучиться и оказывается запасённой в виде теплоты в образовавшемся плотном гидростатически равновесном объекте (в протозвезде или в горячей нейтронной звезде). По мере излучения энергии протозвезда продолжает медленно сжиматься. В соответствии с теоремой вириала температура в центре протозвезды повышается и, в конце концов, достигает величины, достаточной для протекания термоядерных реакций, - протозвезда превращается в обычную звезду.

На конечных стадиях эволюции массивных звёзд могут создаваться условия, благоприятные для образования неустойчивых к гравитационному коллапсу звёздных ядер с массой, превышающей предельную массу нейтронной звезды (2-3 массы Солнца). При таких обстоятельствах гравитационный коллапс уже не может остановиться на промежуточном состоянии равновесной нейтронной звезды и продолжается неограниченно с образованием чёрной дыры. Основную роль здесь играют эффекты общей теории относительности, поэтому такой гравитационный коллапс называется релятивистским.

На гравитационный коллапс могут существенно влиять вращение коллапсирующего объекта и его магнитное поле. При сохранении момента количества движения и магнитного потока скорость вращения и магнитное поле возрастают в процессе сжатия, что может изменить картину гравитационного коллапса не только количественно, но и качественно. Например, в отсутствие сферической симметрии становятся возможными потери энергии путём излучения гравитационных волн. Достаточно сильное начальное вращение может привести к остановке гравитационного коллапса на промежуточной стадии, когда дальнейшее сжатие окажется возможным лишь при наличии каких-либо механизмов потери момента количества движения или при фрагментации объекта на сгустки меньших размеров. Количественная теория гравитационного коллапса с учётом вращения и/или магнитного поля только начинает своё развитие и опирается на достижения современной вычислительной математики. Результаты, полученные для гравитационного коллапса без учёта вращения и магнитного поля, имеют тем не менее важное прикладное значение и являются в ряде случаев, по-видимому, хорошим приближением к действительности.

Исследования гравитационного коллапса приобрели особый интерес в связи с достижениями инфракрасной астрономии, которая позволяет наблюдать за рождением звёзд, а также с постройкой подземных нейтринных обсерваторий, способных зарегистрировать вспышку нейтринного излучения в случае образования нейтронных звёзд и чёрных дыр в нашей Галактике.

Лит.: Зельдович Я. Б., Новиков И. Д. Теория тяготения и эволюция звезд. М., 1971 ; Шкловский И. С. Звезды: их рождение, жизнь и смерть. 3-е изд. М., 1984; Физика космоса: Маленькая энциклопедия. 2-е изд. М., 1986: Физическая энциклопедия. М., 1988. Т. 1.

Теоретически в черную дыру может превратиться любое космическое тело. Например, такой планете, как Земля, для этого нужно сжаться до радиуса в несколько миллиметров, что на практике, конечно, маловероятно. В новом выпуске с премией «Просветитель» T&P публикуют отрывок из книги физика Эмиля Ахмедова «О рождении и смерти черных дыр» , в котором объясняется, как небесные тела превращаются в черные дыры и можно ли их разглядеть на звездном небе.

Как образуются черные дыры?

*Если какая-то сила сожмет небесное тело до соответствующего его массе радиуса Шварцшильда, то оно настолько искривит пространство–время, что даже свет не сможет его покинуть. Это и означает, что тело станет черной дырой.

Например, для звезды с массой Солнца радиус Шварцшильда приблизительно равен трем километрам. Сравните эту величину с настоящим размером Солнца - 700 000 километров. В то же время для планеты с массой Земли радиус Шварцшильда равен нескольким миллиметрам.

[…]Только гравитационная сила способна сжать небесное тело до таких маленьких размеров, как его шварцшильдовский радиус*, так как только гравитационное взаимодействие ведет исключительно к притяжению, и фактически неограниченно возрастает при увеличении массы. Электромагнитное взаимодействие между элементарными частицами на много порядков сильнее гравитационного. Однако любой электрический заряд, как правило, оказывается компенсированным зарядом противоположного знака. Гравитационный заряд - массу ничто не может заэкранировать.

Такая планета, как Земля, не сжимается под собственной тяжестью до соответствующих размеров Шварцшильда потому, что ее массы недостаточно для преодоления электромагнитного расталкивания ядер, атомов и молекул, из которых она состоит. А такая звезда, как Солнце, являясь намного более массивным объектом, не сжимается из-за сильного газодинамического давления за счет высокой температуры в его недрах.

Заметим, что для очень массивных звезд, с массой больше ста Солнц, сжатие не происходит в основном из-за сильного светового давления. Для звезд массивнее двухсот Солнц ни газодинамического и ни светового давления оказывается не достаточно, чтобы предотвратить катастрофическое сжатие (коллапс) такой звезды в черную дыру. Однако ниже речь пойдет об эволюции более легких звезд.

Свет и высокая температура звезд являются продуктами термоядерных реакций. Такая реакция идет потому, что в недрах звезд достаточно водорода и вещество сильно сжато под давлением всей массы звезды. Сильное сжатие позволяет преодолеть электромагнитное отталкивание одинаковых зарядов ядер водорода, ведь термоядерная реакция - это слияние ядер водорода в ядро гелия, сопровождающееся большим выделением энергии.

Рано или поздно количество термоядерного топлива (водорода) сильно сократится, световое давление ослабнет, температура упадет. Если масса звезды достаточно мала, как, например, у Солнца, то она пройдет через фазу красного гиганта и превратится в белый карлик.

Если же ее масса велика, то звезда начнет сжиматься под собственной тяжестью. Произойдет коллапс, который мы можем увидеть как взрыв сверхновой. Это очень сложный процесс, состоящий из многих фаз, и пока не все его детали ясны ученым, но многое уже понятно. Известно, например, что дальнейшая судьба звезды зависит от ее массы в момент перед коллапсом. Результатом такого сжатия может быть либо нейтронная звезда, либо черная дыра, или же комбинация из нескольких подобных объектов и белых карликов.

«Черные дыры являются результатом коллапса самых тяжелых звезд»

Нейтронные звезды и белые карлики не коллапсируют до состояния черной дыры, так как их массы недостаточно, чтобы преодолеть давление нейтронного или электронного газа соответственно. Эти давления обусловлены квантовыми эффектами, вступающими в силу после очень сильного сжатия. Обсуждение последних не имеет непосредственного отношения к физике черных дыр и выходит за рамки данной книги.

Однако если, например, нейтронная звезда находится в двойной звездной системе, то она может притягивать материю со звезды компаньона. В таком случае ее масса будет расти и, если она превысит некоторое критическое значение, опять произойдет коллапс, уже с образованием черной дыры. Критическая масса определяется из условия, что газ нейтронов создает недостаточное давление, чтобы удержать ее от дальнейшего сжатия.

*Это приблизительная оценка. Точное значение предела пока не известно. - Прим. автора.

Итак, черные дыры являются результатом коллапса самых тяжелых звезд. В современном представлении масса сердцевины звезды после выгорания термоядерного топлива должна составлять не менее двух с половиной солнечных*. Никакое известное нам состояние вещества не способно создать такое давление, которое удержало бы столь большую массу от сжатия до состояния черной дыры, если выгорело все термоядерное топливо. Факты, экспериментально подтверждающие упомянутое ограничение на массу звезды для образования черной дыры, мы обсудим чуть позже, когда будет рассказано, как астрономы обнаруживают черные дыры. […]

Рис. 7. Неверное представление о коллапсе с точки зрения стороннего наблюдателя как о замедляющемся вечном падении вместо формирования горизонта черной дыры

В связи с нашим обсуждением поучительно будет на примере вспомнить о взаимосвязи различных идей и представлений в науке. Этот рассказ, возможно, позволит читателю ощутить, насколько потенциально глубок обсуждаемый вопрос.

Известно, что Галилей пришел к тому, что сейчас называется законом Ньютона об инерциальных системах отсчета, отвечая на критику системы Коперника. Критика заключалась в том, что Земля не может вращаться вокруг Солнца по причине того, что иначе мы бы не удержались на ее поверхности.

В ответ Галилей утверждал, что Земля вращается вокруг Солнца по инерции. А инерциальное движение мы не можем отличить от покоя, так же как не ощущаем инерциальное движение, например, корабля. При этом он не верил в гравитационные силы между планетами и звездами, так как не верил в действие на расстоянии, а про существование полей он и вовсе не мог знать. Да и не принял бы столь абстрактного на тот момент объяснения.

Галилей считал, что инерциальное движение может происходить только по идеальной кривой, то есть Земля может двигаться только по окружности или же по окружности, центр которой, в свою очередь, вращается по окружности вокруг Солнца. То есть может существовать наложение разных инерциальных движений. Последний тип движения можно усложнить, добавив еще больше окружностей в композиции. Такое вращение называется движением по эпициклам. Оно было придумано еще для согласования птолемеевой системы с наблюдаемыми положениями планет.

Кстати, в момент своего создания система Коперника описывала наблюдаемые явления гораздо хуже системы Птолемея. Так как Коперник тоже верил только в движение по идеальным окружностям, у него получалось, что центры орбит некоторых планет находились за пределами Солнца. (Последнее являлось одной из причин задержки публикации Коперником своих работ. Ведь он верил в свою систему исходя из эстетических соображений, а наличие странных смещений центров орбит за пределы Солнца в эти соображения не вписывались.)

Поучительно то, что в принципе система Птолемея могла описывать наблюдаемые данные с любой наперед заданной точностью - нужно было только добавить необходимое число эпициклов. Однако, несмотря на все логические противоречия в исходных представлениях ее создателей, только система Коперника могла привести к концептуальному перевороту в наших взглядах на природу - к закону всемирного тяготения, который описывает как движение планет, так и падение яблока на голову Ньютона, а в дальнейшем и к понятию поля.

Поэтому Галилей отрицал кеплеровское движение планет по эллипсам. Они с Кеплером обменивались письмами, которые были написаны в довольно-таки раздражительном тоне*. И это несмотря на их полную поддержку одной и той же планетарной системы.

Итак, Галилей считал, что Земля движется вокруг Солнца по инерции. С точки зрения механики Ньютона это явная ошибка, так как на Землю действует гравитационная сила. Однако с точки зрения общей теории относительности Галилей должен быть прав: в силу этой теории, в гравитационном поле тела движутся по инерции по крайней мере тогда, когда их собственной гравитацией можно пренебречь. Такое движение происходит по так называемой геодезической кривой. В плоском пространстве это просто прямая мировая линия, а в случае планеты Солнечной системы это такая геодезическая мировая линия, которая отвечает эллиптической траектории, а не обязательно круговой. К сожалению, Галилей этого не мог знать.

Однако из общей теории относительности известно, что движение происходит по геодезической, только если можно пренебречь искривлением пространства самим движущимся телом (планетой) и считать, что оно искривляется исключительно гравитирующим центром (Солнцем). Возникает естественный вопрос: так прав ли был Галилей по поводу инерциальности движения Земли вокруг Солнца? И хотя это уже и не столь важный вопрос, так как теперь мы знаем причину, по которой люди не слетают с Земли, возможно, он имеет отношение к геометрическому описанию гравитации.

Как можно «увидеть» черную дыру?

[…] Перейдем теперь к обсуждению того, как черные дыры наблюдаются на звездном небе. Если черная дыра поглотила все вещество, которое ее окружало, то ее можно увидеть только через искажение лучей света от дальних звезд. То есть если бы недалеко от нас оказалась черная дыра в таком чистом виде, то мы увидели бы примерно то, что изображено на обложке. Но даже встретив подобное явление, нельзя быть уверенным, что это черная дыра, а не просто массивное, несветящееся тело. Требуется определенная работа, чтобы отличить одно от другого.

Однако в реальности черные дыры окружены облаками, содержащими элементарные частицы, пыль, газы, метеориты, планеты и даже звезды. Поэтому астрономы наблюдают нечто вроде картинки, изображенной на рис. 9. Но как они делают вывод, что это именно черная дыра, а не какая-нибудь звезда?

Рис. 9. Реальность гораздо прозаичней, и нам приходится наблюдать черные дыры в окружении различных небесных тел, газов и облаков пыли

Для начала выбирают определенного размера область на звездном небе, как правило, в двойной звездной системе или в активном ядре галактики. По спектрам излучения, исходящего из нее, определяется масса и поведение вещества в ней. Далее фиксируют, что от рассматриваемого объекта исходит излучение, как от падающих в гравитационном поле частиц, а не только от термоядерных реакций, идущих в недрах звезд. Излучение, являющееся, в частности, результатом взаимного трения падающей на небесное тело материи, содержит значительно более энергичное гамма-излучение, чем результат термоядерной реакции.

«Черные дыры окружены облаками, содержащими элементарные частицы, пыль, газы, метеориты, планеты и даже звезды»

Если наблюдаемая область достаточно мала, не является пульсаром и в ней сосредоточена большая масса, то делается вывод, что это черная дыра. Во-первых, теоретически предсказано, что после выгорания термоядерного топлива не существует никакого состояния вещества, которое могло бы создавать давление, способное предотвратить коллапс столь большой массы в столь маленькой области.

Во-вторых, как только что было подчеркнуто, рассматриваемые объекты не должны быть пульсарами. Пульсар - это нейтронная звезда, которая, в отличие от черной дыры, имеет поверхность и ведет себя как большой магнит, что является одной из тех самых более тонких характеристик электромагнитного поля, чем заряд. Нейтронные звезды, являясь результатом очень сильного сжатия исходных вращающихся звезд, совершают еще более быстрые вращения, ибо угловой момент должен сохраняться. Это приводит к тому, что такие звезды создают магнитные поля, меняющиеся во времени. Последние играют основную роль при образовании характерного пульсирующего излучения.

Все найденные на данный момент пульсары имеют массу меньше двух с половиной масс Солнца. Источники характерного энергичного гамма-излучения, масса которых превышает этот предел, не являются пульсарами. Как видно, этот предел массы совпадает с теоретическими предсказаниями, сделанными исходя из известных нам состояний вещества.

Все это, хотя и не является прямым наблюдением, представляет собой достаточно убедительную аргументацию в пользу того, что астрономы видят именно черные дыры, а не что-либо другое. Хотя что можно считать прямым наблюдением, а что нет - является большим вопросом. Ведь вы, читатель, видите не саму книгу, а лишь рассеянный ею свет. И только совокупность тактильных и визуальных ощущений убеждает вас в реальности ее существования. Точно так же и ученые делают вывод о реальности существования того или иного объекта на основании всей совокупности наблюдаемых ими данных.

Открытие мощных источников радиоизлучения за пределами нашей галактики поставило перед современной астрономией множество интереснейших вопросов. Наиболее важный из них можно сформулировать так: «Откуда эти источники радиоизлучения черпают колоссальную энергию». Расчеты показывают, что за время своей жизни источник радиоизлучения расходует количество энергии порядка 1060 эрг - это эквивалентно запасу ядерной энергии примерно сотни миллионов солнц.

Ф. Хойл и У. Фоулер выдвинули замечательную гипотезу, согласно которой источником этой энергии служит гравитационный коллапс (стремительное сжатие) сверхзвезды. Такой объект, обладающий гигантской массой - примерно в сто миллионов раз больше массы Солнца, должен был, по предположению, располагаться в центре галактики.

Вскоре после этого благодаря соединенным усилиям оптической и радиоастрономии удалось выяснить, что два очень ярких, похожих на звезды объекта являются источниками радиоизлучений. Один из них, источник, занесенный в третий кембриджский каталог источников радиоизлучений под шифром ЗС 273, является самым ярким из всех известных во Вселенной объектов. Впоследствии удалось найти еще несколько аналогичных объектов. Сейчас известно уже девять таких источников радиоизлучения, похожих на звезды.

Был созван международный симпозиум по проблеме гравитационного коллапса. Надо было обсудить много новых вопросов, которые встали перед учеными; являются ли эти необычные объекты результатом гравитационного сжатия, протекающего со стремительностью взрыва? Как гравитационная энергия преобразуется в радиоволны? И последний по счету, но не по важности, с точки зрения теоретиков, вопрос; приводит ли гравитационный коллапс к неограниченному сжатию и появлению необычных свойств пространства-времени?

Последнему из этих вопросов и посвящена данная статья. Сама возможность того, что объекты, обладающие столь колоссальной массой, могут существовать в природе, заставила теоретиков переосмыслить их взгляды, основанные на общей теории относительности.

К БЕСКОНЕЧНОЙ ПЛОТНОСТИ

Вообразите сферическое облако пыли, каждая частица в котором притягивает остальные в соответствии с ньютоновским . Облако в целом начнет сжиматься. Этот процесс будет продолжаться до тех пор, пока в действие не вступят другие силы. Предположим на миг, что других сил нет. Тогда, как показывает простой расчет, облако сожмется в точку за конечное время. Если начальная плотность облака равна одному грамму на кубический сантиметр, то понадобится примерно полчаса на то, чтобы облако сжалось до бесконечно малых размеров.

Естественно возникает вопрос: почему же все те объекты, которые мы видим вокруг, не сжимаются под действием собственных гравитационных сил? Ответ на этот вопрос, очевиден: мешает действие других сил. Гравитация - очень слабая сила по сравнению с другими силами. Так, например, силы электрического взаимодействия между двумя электронами более чем в 1040 раз превышают силы их гравитационного взаимодействия. Поэтому в обычных телах гравитационный коллапс не возникает.

Совсем иная ситуация складывается, однако, в случае объектов, обладающих колоссальной массой, таких, которые рассматривались Фоулером и Хойлом. Чем больше масса, тем мощнее будут гравитационные силы. Действительно, для таких объектов гравитационные силы настолько велики, что ни одна из известных сил, по-видимому, не может предотвратить гравитационный коллапс.

Согласно ньютоновской теории, если гравитационный коллапс неограничен, то, следовательно, все вещество должно концентрироваться в точку и приходить в состояние бесконечно большой плотности. Вправе ли мы полагаться в данном случае на ньютоновскую теорию?

ЭКСКУРС В ТЕОРИЮ ОТНОСИТЕЛЬНОСТИ

Ньютоновская теория тяготения, несмотря на то, что она превосходно описывает гравитационные явления на Земле и в Солнечной системе, не вполне свободна от логических затруднений. Так, например, по Ньютону, гравитационное взаимодействие мгновенно: оно распространяется с бесконечной скоростью, и его результаты дают о себе знать мгновенно. Этот вывод противоречит специальной теории относительности, согласно которой ни одно взаимодействие не распространяется быстрее, чем свет. Около пятидесяти лет назад Эйнштейн предложил теорию гравитации, которая согласуется со специальной теорией относительности и во многих отношениях сходится с ньютоновской теорией. Речь идет об общей теории относительности.

Общая теория относительности использует то замечательное свойство гравитации, что ее нельзя «выключить». Гравитация существует всегда и всегда влияет на все материальные частицы. В этом отношении гравитация отличается от всех других сил, известных в физике. Электрические силы действуют только на заряженные частицы. Электрон (отрицательно заряженная частица), протон (положительно заряженная частица) и нейтрон (частица, лишенная заряда) будут по-разному вести себя в электрическом поле. В гравитационном же поле они будут двигаться совершенно одинаково. Это понял более трехсот лет назад, когда он говорил, что все тела, независимо от их массы, падают с равной быстротой.

Эйнштейн, объясняя это свойство гравитации, считал, что гравитация тесно связана с природой пространства и времени. Первый закон Ньютона гласит, что тело находится в состоянии равномерного прямолинейного движения, если на него не действует внешняя сила. Предположим, что мы сделали выстрел из пушки, установленной под углом 45° к вертикали. Если бы не было силы земного притяжения, снаряд продолжал бы двигаться по прямой, направленной под углом 45° к вертикали. Однако действие гравитации заставляет снаряд двигаться по параболической траектории. Поскольку гравитация есть нечто такое, от чего избавиться невозможно, то не имеет никакого смысла говорить о законах движения вне гравитации. Приведенный пример показывает, что при наличии гравитации - и при отсутствии любых других сил - частицы движутся вдоль кривых, а не прямых линий. Однако мы можем назвать эти кривые линии «прямыми линиями», если мы изменим законы геометрии. Вот к этому и направлена общая теория относительности. Присутствие гравитации дает основание сказать, что геометрия пространства-времени не является эвклидовой. Этот вывод и выражен количественно в уравнениях Эйнштейна.

РЕШЕНИЕ ШВАРЦШИЛЬДА

Уравнения Эйнштейна описывают, как искривление пространства-времени (их неэвклидовый характер) связано с распределением вещества. Хотя идеи, положенные в их основу, просты и изящны и сами уравнения можно записать в компактной форме, точное решение любой проблемы общей теории относительности - дело исключительно сложное, в основном из-за неэвклидовой природы пространства-времени. В результате удалось получить точные решения лишь очень немногих задач теории. Одно из них было получено в 1916 году Карлом Шварцшильдом.

Согласно этому решению, гравитационное поле на большом удалении от тела более или менее точно описывается ньютоновой теорией. Другими словами, она достаточно близко согласуется с законом обратной пропорциональности квадрату расстояния. Однако по мере приближения к притягивающей массе расхождение становится все более существенным. Как и можно было ожидать, гравитационное притяжение становится все сильнее. Но - и это не учитывает ньютонова теория - сильному гравитационному полю сопутствует сильное искривление геометрий пространства-времени.

Рассмотрим наиболее яркий случай, когда притягивающая масса сосредоточена в точку. При этом искривление пространства-времени приводит к очень любопытной ситуации. Оказывается, вокруг массы можно построить сферу с конечным радиусом, известным под названием радиуса Шварцшильда (гравитационного радиуса), которая будет служить своего рода барьером для сигналов. Ни один физический сигнал не сможет выйти изнутри наружу, за пределы этого барьера, однако сигналы извне смогут проникать внутрь этой сферы!

Может ли такая ситуация возникнуть практически? Да, может, при условии, что тело настолько мало, что оно располагается внутри сферы, описанной гравитационным радиусом. Тела, которые окружают нас, не удовлетворяют этому условию. Например, гравитационный радиус Солнца равен примерно 3 километрам, тогда как действительный его радиус равен примерно 700 тысячам километров.

Однако в случае гравитационного коллапса тело может сжаться до размеров столь малых, что в конечном счете оно окажется внутри гравитационной сферы. То, что произойдет в этом случае, могло бы послужить хорошей основой для научно-фантастического романа.

Продолжение следует.

P. S. О чем еще говорят британские ученые: о том, что тема гравитационного коллапса, расширения или наоборот сжатия нашей Вселенной порой привлекает не только ученых астрофизиков, но и философов, общественных деятелей, таких как, к примеру, Вячеслав Моше Кантор — президент Европейского еврейского конгресса.

ГРАВИТАЦИОННЫЙ КОЛЛАПС

Процесс гидродинамич. сжатия тела под действием собств. сил тяготения. Этот процесс в природе возможен только у достаточно массивных тел, в частности у звёзд. Необходимое условие Г. к.- понижение упругости в-ва внутри звезды, к-рое приводит к более быстрому нарастанию при сжатии сил тяготения по сравнению с силами внутр. давления. Это связано с расходом энергии на расщепление ядер и рождение ч-ц, в т. ч. нейтрино (см. НЕЙТРОНИЗАЦИЯ ВЕЩЕСТВА), и потерями энергии с нейтрино, уходящими из звезды. В течение эволюции звезды условия, ведущие к Г. к., осуществляются дважды: 1) при образовании звезды из межзвёздной пыли и газа, 2) при исчерпании термояд. горючего и достижении в центре звезды высоких значений плотности (r=107 - 1010 г/см3) и темп-ры (Т = 109- 1010 К). В первом случае Г. к. останавливается после начала в звезде термояд. реакций водородного цикла, ведущих к интенсивному выделению энергии. Второй случай возможен только у достаточно массивных звёзд с М > МЧ »1,2 Mсолн (MЧ - т. н. предел Чандрасекара, Mсолн - масса Солнца). Как показывает гидродинамич. теория, Г. к. развивается катастрофич. образом - скорости сжатия близки к скоростям свободного падения. Г. к. или заканчивается остановкой в состоянии горячей нейтронной звезды (r = 1014 г/см3, Т = 1011 К), если масса М?2-3 Mсолн, или переходит безостановочно в релятивистский Г. к. (при М>2-3 Mсолн), приводящий к образованию чёрной дыры. Очень важную роль при Г. к. играет мощное нейтринное излучение, порождаемое гл. обр. обычными бета-проессами (см. БЕТА-РАСПАД, НЕЙТРИННАЯ АСТРОФИЗИКА). Фактически нейтринное излучение определяет всю динамику Г. к., в частности скорости сжатия, время коллапса, темп-ру и плотность в-ва в случае остановки коллапса. Св-ва чёрной дыры описываются общей теорией относительности, поскольку около коллапсирующей звезды изменяются св-ва пространства-времени. За исключением ранних стадий развития Вселенной, Г. к.- единств. путь рождения чёрных дыр. Г. к. звёзд может сопровождаться сбросом внеш. оболочки, что связывается со вспышками сверхновых звёзд. Теория предсказывает сброс оболочки у коллапсирующих звёзд сравнительно небольших масс (М = MЧ). Хар-р сброса зависит от структуры оболочки, наличия в ней вращения и магн. поля. При сбросе оболочки, сопровождающем Г. к. центр. части звезды, образуются в большом кол-ве разл. хим. элементы (происходит нуклеосинтез).

  • - острая сосудистая недостаточность, характеризующаяся угнетением ц. н. с., резким снижением кровяного давления, уменьшением массы циркулирующей крови и нарушением обмена веществ...

    Ветеринарный энциклопедический словарь

  • - катастрофически быстрое сжатие звезды на последних стадиях эволюции под действием собственных сил тяготения, превосходящих ослабевающие силы давления нагретого газа звезды...

    Начала современного Естествознания

  • - катастрофически быстрое сжатие массивных тел под действием гравитационных сил. Гравитационным коллапсом может заканчиваться эволюция звезд с массой свыше двух солнечных масс. После исчерпания в таких звездах...

    Астрономический словарь

  • - I Колла́пс острая сосудистая недостаточность, характеризующаяся в первую очередь падением сосудистого тонуса, а также объема циркулирующей крови...

    Медицинская энциклопедия

  • - Патологическое состояние, характеризующееся угнетением ЦНС с резким снижением артериального и венозного давления, уменьшением массы циркулирующей крови...

    Толковый словарь психиатрических терминов

  • - в медицине остро развивающаяся сосудистая недостаточность в организме человека, характеризующаяся падением сосудистого тонуса и уменьшением массы циркулирующей крови...

    Словарь терминов черезвычайных ситуаций

  • - острая сосудистая недостаточность, развивающаяся в результате падения сосудистого тонуса и уменьшения объёма циркулирующей крови...

    Энциклопедия техники

  • - угрожающее жизни состояние, характеризующееся падением кровяного давления и ухудшением кровоснабжения жизненно важных органов...
  • Естествознание. Энциклопедический словарь

  • - остро развивающаяся сосудистая недостаточность, характеризующаяся падением сосудистого тонуса и уменьшением массы циркулирующей крови...

    Большой медицинский словарь

  • - угрожающее жизни состояние, характеризующееся падением кровяного давления и ухудшением кровообращения жизненно важных органов. В практике страхования К. - рисковое обстоятельство...

    Словарь бизнес терминов

  • - внезапный упадок сердечной деятельности, может перейти в паралич сердца, т. е. окончиться смертью...

    Энциклопедический словарь Брокгауза и Евфрона

  • - см. Коллапс гравитационный...
  • - острая сосудистая недостаточность, сопровождающаяся падением кровяного давления в артериях и венах...

    Большая Советская энциклопедия

  • - катастрофически быстрое сжатие звезды под действием сил тяготения. Согласно существующим астрономическим представлениям, К. г. играет определяющую роль на поздних стадиях эволюции массивных звезд...

    Большая Советская энциклопедия

  • - см. Гравитационный коллапс...

    Большой энциклопедический словарь

"ГРАВИТАЦИОННЫЙ КОЛЛАПС" в книгах

автора

Что такое гравитационный коллапс звезды?

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Что такое гравитационный коллапс звезды? Гравитационный коллапс звезды – катастрофически быстрое сжатие массивной звезды под действием гравитационных сил. Гравитационным коллапсом может заканчиваться эволюция звезд с массой свыше 1,5 солнечной массы. После исчерпания

Гравитационный коллапс

Из книги Крайон. Откровения: что мы знаем о Вселенной автора Тихоплав Виталий Юрьевич

Гравитационный коллапс Представим себе, что большая звезда имеет массу, превышающую в 5–10 раз массу нашего Солнца. Предположим, что ее способность взрываться полностью иссякла, и в данный момент она вращается вокруг своей оси со скоростью, равной скорости света.

Гравитационный сепаратор

Из книги 100 великих рекордов стихий автора

Гравитационный сепаратор Контракционная гипотеза до поры до времени устраивала большинство учёных, исследующих земные недра. Один-единственный процесс - контракция (сжатие) - объяснял, как был сформирован многообразный лик Земли и её недра, как образовались полезные

Что такое гравитационный коллапс звезды?

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора Кондрашов Анатолий Павлович

Что такое гравитационный коллапс звезды? Гравитационный коллапс звезды – катастрофически быстрое сжатие массивной звезды под действием гравитационных сил. Гравитационным коллапсом может заканчиваться эволюция звезд с массой свыше 1,5 солнечной массы. После исчерпания

Гравитационный сепаратор

Из книги 100 великих рекордов стихий [с иллюстрациями] автора Непомнящий Николай Николаевич БСЭ

Гравитационный парадокс

Из книги Большая Советская Энциклопедия (ГР) автора БСЭ

Гравитационный потенциал

Из книги Большая Советская Энциклопедия (ГР) автора БСЭ

Коллапс гравитационный

Из книги Большая Советская Энциклопедия (КО) автора БСЭ

автора Комаров Виктор

Гравитационный коллапс и «черные дыры»

Из книги Атеизм и научная картина мира автора Комаров Виктор

Гравитационный коллапс и «черные дыры» Вернемся к вопросу о геометрических свойствах Вселенной. Как мы уже знаем, они тесно связаны с характером распределения материи.Представим себе, что Вселенная однородна и изотропна. Что это значит? Разобьем мысленно Вселенную на

Гравитационным коллапсом называется быстрый процесс сжатия вещества под действием собственного притяжения (см. Гравитация). Иногда под гравитационным коллапсом понимают неограниченное сжатие вещества в черную дыру, описываемое общей теорией относительности (релятивистский коллапс).
Части любого тела испытывают взаимное гравитационное притяжение. Однако в большинстве тел его величина недостаточна для возникновения коллапса. Для данной массы тела внутреннее поле гравитационного притяжения тем больше, чем больше его плотность, т. е. чем меньше его размеры. Для того чтобы гравитационное поле стало заметным, необходимо сжать его до колоссальных плотностей.Так, например, для того чтобы произошел гравитационный коллапс Земли, ее плотность должна возрасти до 1027 г/см3, т. е. в триллионы раз превысить ядерную плотность. Однако с ростом массы внутреннее поле гравитационного притяжения также растет и достаточное для коллапса значение плотности уменьшается.
В таких массивных объектах, как звезды, роль сил гравитационного сжатия становится определяющей. Эти же силы вызывают сжатие облаков газа при образовании звезд и галактик. Такое сжатие носит характер своеобразного падения частиц газа к центру образующейся звезды или галактики. В этом смысле говорят о гравитационном коллапсе прото-звезд и протогалактик.
Существование звезд связано с взаимным притяжением их атомов, но в обычных звездах это притяжение уравновешивается внутренним давлением вещества, что и обеспечивает их устойчивость. При высоких температурах и плотностях, характерных для недр звезд, атомы вещества ионизованы и давление вещества обусловлено движением свободных электронов и ионов. На основных, наиболее продолжительных стадиях эволюции звезд такое движение является тепловым. Оно поддерживается выделением энергии при реакциях термоядерного синтеза (см. Звезды). Однако запас термоядерного топлива в звездах ограничен и конечная судьба звезд определяется возможностью равновесия сил гравитационного сжатия и давления остывающего вещества звезды, исчерпавшей весь запас своей тепловой энергии. Такие условия равновесия осуществляются в белом карлике или в вырожденных ядрах звезд с массой меньше 5-10 масс Солнца, где гравитационному сжатию противодействует давление электронов. Но у белого карлика или вырожденного ядра звезды с большей массой плотность электронов становится настолько большой, что они как бы вдавливаются в ядра и, взаимодействуя с ядерным веществом, превращаются в нейтрино. Этот захват электронов ядрами приводит к уменьшению давления электронов, противодействующего гравитационному сжатию, и происходит гравитационный коллапс.
Гравитационный коллапс в белом карлике или вырожденном ядре звезды сопровождается дальнейшим захватом электронов ядрами и интенсивным нейтринным излучением, уносящим практически всю энергию гравитационного сжатия. Давление электронов становится все меньше, поэтому сжатие представляет собой свободное падение вещества к центру звезды. В конечном счете коллапсирующее вещество состоит из одних нейтронов. Возникающее при этом давление нейтронного вещества может уравновесить силы гравитационного сжатия, и гравитационный коллапс закончится образованием нейтронной звезды. Нейтринное излучение при коллапсе в нейтронную звезду может обеспечить эффективную передачу энергии внешним слоям коллапсирующей звезды, достаточной для их сброса с большой кинетической энергией; при этом наблюдается взрыв сверхновой звезды.
Однако гравитационный коллапс массивных звезд с массами, превышающими 5-10 масс Солнца, не заканчивается на стадии нейтронной звезды. С повышением массы нейтронной звезды плотность ее вещества растет и отталкивание нейтронов уже не может обеспечить эффективное противодействие гравитационному сжатию. Коллапс переходит в релятивистский гравитационный коллапс, и образуется черная дыра. Наличие максимальной массы устойчивого белого карлика и нейтронной звезды означает, что массивные звезды (с массой, в 10 раз превышающей массу Солнца) неизбежно закончат свое существование в процессе релятивистского гравитационного коллапса.
Гравитационный коллапс в черную дыру представляет собой явление, в котором эффекты общей теории относительности становятся определяющими. Сам коллапс происходит как свободное падение к центру образующейся черной дыры, но в соответствии с законами общей теории относительности удаленный наблюдатель будет видеть это падение как при все более замедленной киносъемке: для него процесс коллапса будет продолжаться бесконечно долго. При коллапсе в черную дыру меняются геометрические свойства пространства и времени. Искривление световых лучей оказывается столь сильным, что никакой сигнал не может покинуть поверхность коллапси-рующего тела. Вещество, ушедшее под радиус черной дыры, полностью обособляется от остального мира, продолжая, однако, влиять на окружение своим гравитационным полем.