Землетрясения искусственного характера. Причины возникновения землетрясений и последствия

КЕМЕРОВСКИЙ ОБЪЕДИНЕННЫЙ УЧЕБНО-МЕТОДИЧЕСКИЙ ЦЕНТР ПО ГО И ЧС

МАТЕРИАЛ

для проведения занятий по программе дополнительной подготовки населения сейсмоопасных территорий Кемеровской области .

Кемерово. 2005г.

Предлагаемый материал рекомендуется в качестве пособия для проведения занятий по темам программы дополнительной подготовки учащихся образовательных учреждений сейсмоопасных территорий Кемеровской области к действиям при угрозе и возникновении чрезвычайных ситуаций, связанных с землетрясениями.

Материал подготовлен Кемеровским объединённым УМЦ по ГО и ЧС в соответствии с требованиями распоряжения администрации Кемеровской области от 01.01.2001 года.

ТЕМА №1 «ЗЕМЛЕТРЯСЕНИЯ. ИХ ПРОИСХОЖДЕНИЕ И ХАРАКТЕРИСТИКА»

Вероятность того, что вам когда-нибудь придется испытать землетрясение, и в самом деле довольно велика. С большинством людей это случается несколько раз в течение их жизни, и для многих встреча с землетрясением оказывается достаточно серьезной. В среднем по Земле один человек из каждых 8000 погибает при землетрясении, и вдесятеро больше за свою жизнь так или иначе страдают от землетрясения.

Землетрясение – подземные толчки и колебания земной поверхности, возникающие в результате внезапных смещений и разрывов в земной коре или верхней части мантии Земли и передающееся на большие расстояния в виде упругих колебаний.

По причинам возникновения землетрясения делятся на природные и антропогенные . Землетрясения природного характера возникают в результате тектонических процессов в коре Земли, при извержении вулканов, сильных обвалах, оползнях, обрушении карстовых пустот, падении метеоритов, столкновении Земли с космическими объектами.

Землетрясения антропогенного характера возникают в результате деятельности человека и являются следствием взрывов большой мощности, обрушения подземных инженерных сооружений, продавливания верхнего слоя земной поверхности при сооружении искусственных водохранилищ с большим объемом содержания воды, возведения городов с высокой плотностью застройки многоэтажными зданиями.

Землетрясения бывают вулканические , провальные , или обвальные , глубокофокусные , связанные с ударами о Землю космических тел, наведенные землетрясения , тектонические.

Вулканические землетрясения являются следствием локального извержения лавы и взрывов газов. Они встречаются сравнительно редко, слабы по интенсивности и имеют ограниченную сферу влияния.

Провальные, или обвальные землетрясения вызываются обширными обвалами карстовых пустот внутри Земли, заброшенных рудников, выгоревших торфяников. При этом сейсмические волны имеют незначительную силу и распространяются на небольшие расстояния.

Глубокофокусные землетрясения происходят на очень больших глубинных под Землей (около 700 км). Причины их изучены мало. Они очень мощные, но из-за удаления очага от поверхности Земли на сотни километров не представляют собой большой опасности.

Землетрясения, связанные с ударами о Землю космических тел , являются результатом ударов о Землю или взрывов в околоземном пространстве метеоритов, астероидов , комет.

Наведенные землетрясения возникают в результате деятельности человека, например, при сооружении искусственных водохранилищ с большим запасом воды, строительстве многоэтажных зданий на ограниченной площади, добычи полезных ископаемых , создании подземных хранилищ, взрывах большой мощности.

Тектонические землетрясения.

Наиболее разрушительными и часто повторяющимися из перечисленных выше землетрясений, являются тектонические . Они – результат внезапного разрыва сплошного вещества Земли и смещения отдельных участков земной коры. Согласно теории земная кора состоит из 7 основных (больших) и 12 малых плит, расположенных относительно друг друга под разными углами и соединенных между собой участками меньшей прочности. Плиты находятся в постоянном движении, перемещаются под воздействием конвекционных течений, поднимающихся из высокотемпературных глубин. Таким образом, границы между плитами являются геологически активными зонами, называются сейсмическими швами . Одни плиты двигаются навстречу друг другу и иногда даже перекрываются, другие расходятся в стороны, третьи скользят вдоль границ противоположных направлениях. Каждый тип этих движений порождает определенный тип разломов, и все они вызывают тектонические землетрясения. Пока дрейф плит проходит беспрепятственно, землетрясения бывают слабыми. Но когда плиты надвигаются друг на друга и их движение тормозится, тогда горная порода, образующая громадные блоки, начинает деформироваться. В ней, как и в пружине, накапливается упругая энергия, тем большая, чем больший объем охвачен деформациями, пока не будет превзойдена прочность горной породы. Как только это происходит и порода начинает разрушаться, блоки получают возможность подвигаться скачками, а тектоническая энергия, накопленная в породе, освобождается в виде сейсмических волн – происходит сильное землетрясение.

Время от времени в мире случаются и землетрясения во внутренних частях плит – так называемое внутриплитовые землетрясения .

Область возникновения подземного удара в толще земной коры или верхней мантии, являющегося причиной землетрясения, называют очагом землетрясения . Он может находится на разной глубине: от нескольких до десятков, а порой и сотен километров. Наиболее опасными являются землетрясения с глубиной расположения очага 10 – 100 км.

Центр очага землетрясения называется гипоцентром , а его проекция на земной поверхности – эпицентром . Эпицентр и прилегающая к нему область называются плейстосейсмовой зоной . Она характеризуется наибольшим воздействием землетрясения и самыми большими разрушениями.

Сейсмические волны

Большая часть выделившейся при землетрясении упругой энергии расходуется на разламывание и дробление пород, на вертикальное и горизонтальное смещение примыкающих блоков земной коры и на образование тепла. Небольшая часть энергии излучается во всех направлениях в окружающее пространство в виде сейсмических волн, которые распространяются в теле Земли. Когда волны достигают земной поверхности, они порождают те колебания почвы, которые мы воспринимаем как землетрясение.

Существуют два основных типа сейсмических волн - объемные волны , распространяющиеся в объеме (или теле) Земли и подобные звуковым волнам, и поверхностные волны , идущие вдоль земной поверхности, подобно морским волнам.

Объемные волны образуются непосредственно при вспарывании пород. Они излучаются в окружающей среде во всех направлениях, ослабевая по мере удаления от источника. Когда сейсмические волны сталкиваются с резким изменением свойств вещества в Земле или достигают ее поверхности, они отражаются и преломляются, образуя объемные волны нескольких типов. Однако два основных типа объемных волн - это волны Р (от латинского primae - первые) и S (secondae - вторые).

Волны Р, бегущие быстрее волн S, приходят в точку наблюдения первыми и вызывают там первый толчок, сигнализирующий о том, что произошло землетрясения. Волны S обычно запаздывают на несколько секунд, вызывая следующий, обычно более резкий удар.

В волнах Р частицы среды движутся вперед и назад вдоль направления распространения волны, поэтому для этой волны произошло бы название «тяни-толкай». Когда частицы движутся вперед-назад, они по очереди то сжимают, то растягивают вещество, совсем как в подводной звуковой волне.

Волны S совсем иные, так как в них отдельные части вещества колеблются перпендикулярно направлению распространения волн; по этой причине волны S часто называют поперечными (поскольку волны S создают в веществе не сжатия, а сдвиговые напряжения, их называют также сдвиговыми волнами).

Движение, которое мы ощущаем в любой точке земной поверхности, является результатом наложения волн разных типов. Измерение этого движения – нелегкая задача, но именно такие измерения служат нам для определения магнитуды и других характеристик землетрясений.

Сейсмографы.

Приборы, которые записывают движение грунта при землетрясениях, называются сейсмографами . Записи сейсмографов, называемые сейсмограммами , используются для определения местоположения и магнитуды землетрясений.

Сейсмограмма показывает, как изменяется во времени смещение почвы. Пока нет землетрясения, на сейсмограмме чертится прямая линия, которую нарушают лишь небольшие подрагивания – отзвуки местных помех («шумы»). Та движущаяся составная часть сейсмографа, в которой непосредственно образуется сейсмограмма, называется сейсмометром . Обычно это маятник или груз, подвешенный на пружине. В сейсмометре установлен также механизм затухания, важный для точного воспроизведения движений. Движение сейсмографа преобразуется в сейсмограмму одним из следующих способов: перо оставляет чернильную линию на бумаге, надетый на вращающийся барабан; световой луч оставляет свой след на движущейся фотопленке; электромагнитная система генерирует ток, который с помощью электронного устройства записывается на магнитной ленте.

Движение грунта в любой точке происходит в трех измерениях. Это значит, что точка движется в пространстве, а не просто в плоскости или по прямой. Чтобы полностью записать такое движение, каждый сейсмограф должен состоять из трех сейсмометров, движущихся в трех взаимно перпендикулярных направлениях (двух горизонтальных и одном вертикальном) и позволяющих получать соответствующие сейсмограммы. По трем движениям во взаимно перпендикулярных направлениях сейсмологи могут построить истинные движения грунта в пространстве.

Определение координат очага землетрясения.

Волны P, S распространяются с разной скоростью и приходят с разных сторон, поэтому они регистрируются станцией в разное время. В различных скальных породах скорости волн Р равны 3-8 км/с км/ч), а волн S – 2-5 км/скм/ч). Точное время прихода каждой волны определяется по отметкам времени, имеющимся на сейсмограмме. По времени прихода волн Р и S, зная скорости распространения этих волн, можно рассчитать расстояние от места установки приборов до гипоцентра землетрясения. После того, как для нескольких станций определены расстояния до гипоцентра, можно определить координаты гипоцентра и эпицентра. И только после этого можно приступать к определению магнитуды землетрясения по Рихтеру.

Магнитуда Рихтера.

Магнитуда – это мера полной энергии сейсмических волн. Разработанная Ч. Рихтером количественная шкала для оценки энергии очага (или интенсивности в очаге) землетрясения по своей идее сродни той, которая используется астрономами для градуировки звезд по шкале звездных величин, основанной на сравнительной яркости звезд при наблюдении через телескоп. Рихтер определил магнитуду как число, пропорциональное десятичному логарифму амплитуды (выраженной в микрометрах) наиболее сильной волны, записанной стандартным сейсмографом на расстоянии 100 км от эпицентра землетрясения.

Поскольку шкала магнитуд логарифмическая, увеличение магнитуды на единицу означает десятикратное возрастание амплитуды колебаний волне (или смещения грунта). Амплитуды сейсмических волн у землетрясения с магнитудой 6,0 в 10 раз больше, чем у землетрясения с магнитудой 5,0, в 100 раз больше, чем у землетрясения с магнитудой 4,0 и в 1000 раз больше, чем у землетрясения с магнитудой 3,0. Нулевая магнитуда не означает, что землетрясения нет; поскольку ноль – это логарифм единицы, такое землетрясение записывается стандартным сейсмографом на расстоянии 100 км с амплитудой в 1 мкм. Землетрясение с магнитудой 0 и в самом деле очень слабое, совершенно неощутимое для людей, однако оно вполне может быть записано сейсмографом. Можно обнаружить и измерить даже еще более слабые землетрясения с магнитудами -1, -2, -3.

Самое слабое из ощутимых землетрясений имеет магнитуду 1,5, а наименьшее землетрясение, способное причинить ущерб (хотя бы и минимальный), - около 4,5.

В самой шкале верхний предел магнитуды не предусмотрен, так как это расчетная величина. По этой причине шкалу Рихтера часто называют «открытой» шкалой. В действительности же сама Земля создает практический верхний предел, подобно тому, как чувствительность аппарата создает нижний предел. Сильнейшее из когда-либо зарегистрированных землетрясений имели магнитуду 8,9.

Акселерографы.

Сейсмографы предназначены для записи малых перемещений грунта, вызываемых удаленными землетрясениями. Сейсмологи используют их для определения положения гипоцентров, оценки магнитуд и изучения механизма землетрясений. Инженеров, однако, интересует, как ведут себя конструкции, подвергающиеся воздействию сильных колебаний грунта при близких землетрясениях, т. е. тому виду сотрясений который приносит ущерб. Чтобы записать эти колебания грунта, требуется другой тип приборов, способный измерить не смещение почвы, а ее ускорение. Такие приборы называются акселерографами , а система из груза и подвеса внутри акселерографа – это акселерометр . Полученная запись, называемая акселерограммой , внешне похожа на сейсмограмму, но ее математические характеристики совсем иные. Акселерографы в отличие от сейсмографов не имеют системы непрерывной регистрации; вместо этого они включаются от самого землетрясения и имеют питание от батарей (поскольку при сильных землетрясениях электричество часто отключается). Акселерографы предназначены для измерения сильных местных землетрясений и не реагируют на удаленные землетрясения. Сейсмографы, напротив, достаточно чувствительны, чтобы обнаружить землетрясение, происшедшее в любом месте земного шара, однако их «зашкаливает», когда землетрясение происходит неподалеку.

Интенсивность.

Еще сотни лет назад люди пытались оценить величину землетрясения по размерам причиненного им ущерба. Если одно землетрясение разрушило больше зданий, чем другое, его можно считать более сильным. Хотя такой подход кажется естественным, он может привести к заблуждениям. Ведь объем разрушений очень сильно зависит от расстояния до гипоцентра и от местных факторов, например от качества построек и от свойств грунта. Сегодня мы называем степень ущерба в определенном месте интенсивностью землетрясения и измеряем ее в баллах с помощью специальной цифровой шкалы. Для каждого землетрясения существует лишь одна магнитуда по Рихтеру, однако это землетрясение может вызвать сотрясения различной интенсивности: от высокой в наиболее сильно пострадавших районах и до самой низкой, не связанной ни с каким ущербом, - вдали от эпицентра.

Интенсивность не является непосредственно измеряемой величиной; ее определение полностью субъективно. Чтобы получить значение интенсивности, надо обследовать пострадавшие районы, осмотреть повреждения зданий, резервуаров, дорог, каналов, горных склонов и всего того, что могло испытать воздействие землетрясения.

Интенсивность обозначается римскими цифрами, чтобы избежать путаницы с магнитудой и шкала ее содержит баллы от I до XII. Первоначальный вариант этой шкалы возник в 1902 г. Его предложил в Италии Джузеппе Меркалли. В нашей стране и ряде европейских стран для оценки интенсивности землетрясений используется 12-баллльная международная шкала MSK-64.

Условно землетрясения подразделяются на слабые (I-IV балла), сильные (V-VII баллов) и сильнейшие (разрушительные – восемь баллов и более).

Шкала Меркалли для оценки интенсивности землетрясений

(MSK -64)

I. Землетрясение людьми не ощущается (за исключением единичных наблюдателей, находящихся в особо чувствительных условиях), толчки регистрируются специальными приборами.

II. Землетрясение очень слабое. Колебания ощущаются лишь немногими людьми, находящимися в покое, особенно на верхних этажах зданий.

III. Землетрясение слабое. Колебания заметно ощущаются в помещениях, особенно на верхних этажах зданий: раскачиваются подвешенные предметы, открытые двери. Стоящие автомобили могут слегка покачиваться на рессорах. Чувствуется вибрация, как от прошедшей поблизости грузовой автомашины. Можно оценить длительность землетрясения.

IV. Умеренное землетрясение. Оно ощущается многими, кто находится в помещении, и лишь немногими – на открытом воздухе. В ночное время некоторые спящие просыпаются. Раскачиваются подвешенные предметы, дребезжат окна, хлопают двери, звенит посуда, трещат деревянные стены и каркасы. Стоящие у дома автомашины заметно покачиваются на рессорах.

V. Довольно сильное землетрясение. Ощущается почти всеми, просыпаются спящие. Двери раскачиваются на петлях, закрываются, открываются, стучат ставни. Жидкость в сосудах колеблется, иногда расплескивается. Бьется часть посуды, трескаются стекла в окнах, местами появляются трещины в штукатурке, опрокидывается неустойчивая мебель. Маятниковые часы останавливаются, начинают идти, замедляют ход. Иногда наблюдается раскачивание столбов, деревьев и других высоких предметов.

VI. Сильное землетрясение. Ощущается всеми. Многие в испуге выбегают из домов. Походка становится неустойчивой. Бьются окна, тарелки, стеклянная посуда. Книги, отдельные предметы падают с полок. Падают картины. Приходит в движение и опрокидывается мебель. Появляются трещины в штукатурке и кладке. Заметно сотрясаются деревья и кусты, слышен шелест листьев.

VII. Очень сильное землетрясение. Трудно держаться на ногах. Все жители выбегают из домов. Дрожат повешенные предметы. Ломается мебель. Многие здания получают значительные повреждения. Печные трубы обламываются на уровне крыш. Обваливаются штукатурка, плохо уложенные кирпичи, камни, черепица, карнизы, а также неукрепленные парапеты и архитектурные украшения. Появляются трещины в сухих грунтах. Происходят небольшие оползни и провалы на песчаных и гравийных склонах. Звонят большие колокола. Мутнеет вода в водоемах и реках от ила. Повреждаются бетонные оросительные каналы.

VIII. Разрушительное землетрясение. Типовые здания получают значительные повреждения, иногда частично разрушаются. Ветхие постройки разрушаются. Происходит отрыв панелей от каркасов. Поворачиваются и падают печные и фабричные трубы, памятники, башни, колонны, водонапорные башни. Ломаются подгнившие сваи. Обламываются ветви на деревьях, возникают трещины во влажном грунте и на крутых склонах. Изменяется температура воды в источниках и колодцах.

IX. Опустошительное землетрясение. Общая паника. Дома разрушаются. Серьезно повреждаются плотины и борта водохранилищ. Рвутся подземные трубопроводы. Появляются значительные трещины на земной поверхности.

X. Уничтожающее землетрясение. Большая часть построек разрушается до основания. Обрушиваются некоторые хорошо построенные деревянные здания и мосты серьезно повреждаются плотины, дамбы, насыпи. На земной поверхности появляются многочисленные трещины (в отдельных случаях – до 1 м шириной). Возникают большие оползни, вода выплескивается из каналов, рек, озер т. д. Приходит в движение песчаные и глинистый грунт на пляжах и низменных участках. Слегка изгибаются рельсы на железных дорогах. Ломаются ветки и стволы деревьев. Животные мечутся и кричат.

XI. Катастрофа. Только немногие каменные здания сохраняют устойчивость. Разрушаются плотины насыпи, мосты. Видны широкие трещины на поверхности земли. Подземные трубопроводы полностью выходят из строя. Сильно вспучиваются рельсы на железных дорогах. Сплывы и оползни на рыхлых грунтах.

XII. Сильная катастрофа. Полное разрушение зданий и сооружений. На глазах до неузнаваемости изменяется ландшафт, смещаются крупные скальные массивы, на поверхности земли появляются волны, образуются водопады , возникают новые озера, изменяются русла рек. Растительный и животный мир погибают от обвалов и осыпей в горных районах. Обломки грунта, предметов летают в воздухе.

Примерное соотношение между магнитудой по Рихтеру и максимальной интенсивностью по шкале ММ

Магнитуда по Рихтеру

Максимальная интенсивность по шкале ММ

Типичные эффекты

Как правило, не ощущается населением.

Ощущается некоторыми внутри зданий; повреждения отсутствуют.

Ощущается большинством людей; отсутствуют повреждения построек.

Небольшие повреждения зданий: трещины в стенах и печных трубах.

Умеренные повреждения: сквозные трещины в слабых стенах, падение неукрепленных печных труб

Большие повреждения: обрушения зданий плохой постройки, трещины в прочных зданиях.

Всеобщее и почти полное разрушение

Разработали преподаватели

Обсуждена на методическом совещании КОУМЦ ГОЧС.

ТЕМА №2 «ОПАСНОСТИ ЗЕМЛЕТРЯСЕНИЯ ДЛЯ НАСЕЛЕНИЯ»

Последствия землетрясений.

Последствия тектонических землетрясений многообразны и чрезвычайно опасны. Под их влиянием оказываются большие территории, в результате чего уничтожаются материальные ценности, нарушается экологическая обстановка, изменяются климат и ландшафт местности, возникают пожары, повреждается система коммунального хозяйства , уничтожаются сельскохозяйственные, природные угодья.

Поражения обломками разрушенных зданий, длительные нахождение в завалах, отсутствие своевременной помощи, паника приводят к травмам и гибели большого числа людей.

Землетрясения способны вызвать пожары вследствие разрушения печей, повреждения электрических сетей, технологического оборудования, на котором используется легковоспламеняющиеся вещества, хранилищ газа и топлива.

Выброс радиоактивных, аварийно химически опасных и других веществ происходит из-за повреждений или разрушений хранилищ, коммуникаций, технологического и исследовательского оборудования на объектах атомной энергетики , химической промышленности , коммунального хозяйства и других отраслей, научных учреждениях.

Следствием воздействия сейсмических волн на транспортные средства и элементы транспортных коммуникаций является транспортные аварии и катастрофы.

Повреждение или нарушение систем тепловодоснабжения, средств связи приводит к кризису в обеспечении жизнедеятельности населения.

Утрата государственного, общественного и личного достояния происходит вследствие разрушения или повреждения зданий, сооружений, коммуникаций, технических средств и комплексов, сельскохозяйственных и природных угодий, действия вторичных факторов землетрясения.

Для уменьшения отрицательных последствий землетрясений целесообразно проводить сейсмические наблюдения, использовать сейсмостойкие и технологии, постоянно повышать уровень подготовки населения к действиям в условиях землетрясений.

Правовые основы обеспечения сейсмобезопасности населения

Население России живет в условиях нарастания угроз и постоянного воздействия ЧС природного и техногенного характера. И с каждым годом они приобретают все более масштабный и устойчивый характер. На территории России большим разнообразием геологических, климатических и ландшафтных особенностей, встречается более 30 опасных природных явлений, среди которых наиболее разрушительными являются: наводнения, землетрясения, оползни, сели, смерчи, лавины и т. д.

Основным документом, определяющим общие для Российской Федерации организационно-правовые нормы в области защиты граждан РФ и окружающей природной среды, является Федеральный закон «О защите населения и территорий от ЧС природного и техногенного характера» от 21.12.94 г. .

Более 50 процентов территории России подвержены влиянию землетрясений, вызывающих катастрофический или серьезный ущерб.

На сейсмоопасных территориях – Камчатке, Сахалине , в Бурятии , Прибайкалье и особенно на Северном Кавказе сильные землетрясения, как правило, вызывали не только миллиардные ущербы, ранения и гибель людей, но и социальные потрясения.

Катастрофические землетрясения ведут к нищете, болезням, безработице , ставят под угрозу социальные программы, реализуемые в стране.

На сейсмоопасных территориях проходят многие важные коммуникации страны (транспорт, газовые и нефтяные магистрали), находятся гидростанции, атомные электростанции и другие объекты, разрушение которых ведет к экологической деградации территорий и гибели людей.

За все годы истории СССР и Российской Федерации в стране не были реализованы общегосударственные программы по сейсмической безопасности, в результате чего десятки миллионов человек на сейсмоопасных территориях живут в домах, характеризующихся дефицитом сейсмостойкости в 2-3 балла. В стране нет системы страхования от последствий землетрясений.

В основе работ по оценке сейсмической опасности и сейсмического риска используются современные карты общего сейсмического районирования территории Российской Федерации. Эти карты позволяют более достоверно оценивать степень сейсмической опасности и планировать "сейсмическую перспективу", а также определять приемлемый уровень сейсмического риска.

В 1997 г коллективом сотрудников Института физики Земли РАН (ответственный исполнитель и редактор) разработан комплект карт общего сейсмического районирования России (ОСР-97), предназначенный для строительства объектов различных категорий ответственности и сроков службы. Карты построены с учетом фундаментальной закономерности: чем больше масштаб явления, тем реже оно возникает. Исходя из этого составлено три карты (А, В,С), отражающих расчетную интенсивность сейсмических сотрясений (в баллах шкалы MSK-64), ожидаемых на данной площади с заданной вероятностью Р (10%, 5%, 1%) в течение определенного интервала времени t, равного 50 годам.

В настоящее время на основе ОСР разрабатывается методика оценки опасности на основе расчета величины сейсмической сотрясаемости, позволяющая для каждого участка территории определять вероятность повторяемости сотрясений равных или превышающих определенный уровень интенсивности. Построенная на этой основе карта сейсмической сотрясаемости даст возможность в баллах с определенным периодом повторяемости сотрясений дать вероятную оценку сейсмической опасности для любой территории.

Около 25 процентов территории Российской Федерации с населением более 20 млн. человек может подвергаться землетрясениям 7 баллов и выше. В районах Северного Кавказа, Сахалина, Камчатки, Курильских островов и Прибайкалья прогнозируются землетрясения интенсивностью 9 баллов и более. Площадь сейсмоопасных районов от 6 до 10 баллов составляет в Российской Федерации 6,4 млн. кв. км. В сейсмически опасных районах России расположено 330 населенных пунктов.

В районе гг. Сочи, Грозный, Петропавловск-Камчатский , в Прибайкалье и на других густонаселенных территориях Российской Федерации согласно сейсмологическим прогнозам может произойти землетрясение интенсивностью 9 баллов и выше, то есть сопоставимое по масштабам с землетрясением в г. Спитак (Армения, 7 декабря 1988 г.), когда погибло 35 тыс. человек, а материальный ущерб превысил 10 млрд. долларов США.

Существенное увеличение площадей территорий повышенной сейсмической опасности по сравнению с прежними представлениями, делает необходимым проведение масштабных работ по уточнению региональной сейсмичности, детальному объектному и сейсмическому микрорайонированию с целью использования полученных данных для проведения мероприятий по повышению сейсмической безопасности и защиты объектов различного назначения на территории Российской Федерации.

Детальное сейсмическое районирование имеет своей задачей выявление или уточнение сейсмогенерирующих зон, сейсмические события в которых представляют опасность для конкретных объектов (городов, населенных пунктов, крупных промышленных и энергетических объектов и т. д.).

Сейсмическое микрорайонирование позволяет учесть влияние разнообразных местных грунтово-геологических условий на прогнозируемые сейсмические воздействия. Карты сейсмического микрорайонирования служат основой для оценки сейсмической опасности строительной площадки и должны содержать всю необходимую информацию для проектирования эффективной сейсмозащиты зданий и сооружений.

Поскольку значительная часть территории Российской Федерации характеризуется высоким или повышенным уровнем сейсмического риска, а развитие опасных геологических процессов природного и природно-техногенного характера усугубляет возможные разрушительные последствия землетрясений, необходимость сохранения жизни и здоровья людей, предотвращения или снижения уровня материальных потерь и ущерба окружающей среде определяет комплексную задачу : обеспечить сейсмическую безопасность населения и устойчивость материально-технических объектов в пределах показателей приемлемого риска, значения которого должны быть дифференцированы по регионам Российской Федерации.

Высокий уровень сейсмического риска определяется в значительной степени высокой сейсмической уязвимостью, то есть недостаточной сейсмостойкостью части построенных гражданских, промышленных, гидротехнических и других сооружений, а также неготовностью к землетрясениям большинства населенных пунктов.

В будущем можно ожидать не только землетрясений в пределах интенсивности, прогнозируемой картами общего сейсмического районирования, но и землетрясений более высокой интенсивности, превышающей расчетные сейсмические воздействия на сооружения.

Таким образом, проблема обеспечения сейсмической безопасности является комплексной, требующей межведомственных решений и согласований, оценки и прогноза не только прямого, но и косвенного ущерба, реализации большого числа многоуровневых задач в масштабах страны.

Постановлением Правительства РФ от 25.09.01 г. № 000 утверждена федеральная целевая программа «Сейсмобезопасность территории России» (гг.) (с изм., внесенным распоряжением Правительством РФ от 01.01.2001 г.).

Целями Программы являются

· максимальное повышение сейсмической безопасности,

· снижение социального, экономического, экологического риска в сейсмически опасных районах Российской Федерации,

· снижение ущербов от разрушительных землетрясений путем усиления и реконструкции существующих сооружений,

· а также подготовки городов и других населенных пунктов, транспортных и энергетических сооружений, трубопроводов к сильным землетрясениям.

Основными задачами Программы являются:

1) осуществление мероприятий по сейсмоусилению наиболее важных сооружений и разработка необходимых градостроительных мероприятий с целью максимального снижения сейсмического риска, начиная с наиболее сейсмически опасных районов;

2) проведение обследования и паспортизации зданий и сооружений в сейсмоопасных районах;

3) создание и развитие научно-методической базы, механизмов реализации нормативных документов по оценке сейсмической опасности территорий;

4) формирование нормативной базы для обеспечения сейсмической надежности строящихся и эксплуатируемых жилых, общественных, промышленных зданий, энергетических и транспортных сооружений;

5) разработка научно-методической базы для снижения сейсмической уязвимости существующих сооружений и населенных пунктов;

6) разработка инновационных технологий сейсмоизоляции и других новых систем сейсмозащиты зданий и сооружений, их оснований и фундаментов;

ЗЕМЛЕТРЯСЕНИЕ - подземные толчки и колебания земной поверхности.

Согласно современным научным взглядам, землетрясения отражают процесс геологического преобразования планеты.

Причиной землетрясений являются тектонические процессы, извержение вулканов, обрушение подземных карстовых пустот или заброшенных рудников, инженерная деятельность людей и падение метеоритов или столкновение планеты Земля с другими космическими телами.

Землетрясения подразделяются на тектонические , вулканические , обвальные , наведенные , связанные с ударами космических тел о Землю и моретрясения .

Тектонические землетрясения. При тектонических землетрясениях сейсмические волны возникают в результате разрушения или сдвига по разлому горных пород в недрах земной коры или верхней мантии. Причиной тектонических землетрясений являются тектонические процессы, происходящие на нашей планете.

Тектонические процессы характеризуются перемещениями относительно друг друга состыкованных плит верхней оболочки Земли (земной коры толщиной 80...70 км) по разогретому (температура более 650 °С) подстилающему слою. Зона стыков этих плит соответствует области сейсмических явлений.

Основными плитами, на которые разделена земная кора вместе с расположенными на ней континентами и океанами, являются Африканская , Индийская , Американская , Антарктическая , Евразийская и Тихоокеанская .


Места возникновения тектонических землетрясений приурочены к определенным географическим зонам - поясам сейсмичности, которые хорошо согласуются с расположением современной складчатости. В настоящее время известно всего три таких пояса - Тихоокеанский , Средиземноморский (Трансазиатский) и Второстепенный .

Тихоокеанский пояс охватывает кольцом берега Тихого океана.


Здесь происходит до 80% всех землетрясений (включая и большинство катастрофических).

Средиземноморский (Трансазиатский) пояс простирается через юг Евразии от Пиринейского полуострова на западе до Малайского архипелага на востоке. В зоне этого пояса происходит до 15% всех землетрясении.


Второстепенный пояс объединяет Арктический пояс, пояс западной части Индийского океана и Восточно-Африканский пояс. В зоне этого пояса происходит до 5% всех землетрясений.

Вулканические землетрясения. При вулканических землетрясениях сейсмические волны возникают в результате извержения вулканов.


Обвальные землетрясения. Причиной обвальных землетрясений является обрушение карстовых пустот или заброшенных рудников. При этом сейсмические волны имеют небольшую силу и распространяются на незначительное расстояние. Такие землетрясения носят, как правило, локальный характер.


Наведенные землетрясения. Причиной наведенных землетрясений являются последствия инженерной деятельности людей.

Инженерная деятельность людей связана с заполнением водохранилищ, откачкой из недр при эксплуатации нефтяных и газовых месторождений, закачкой жидкости в скважины и проведением подземных и наземных ядерных и обычных большой мощности взрывов.


Удар космических тел о Землю. Причиной землетрясений, связанных с ударом космических тел о Землю, являются удары и взрывы метеоритов, астероидов и комет. Взрыв космических тел порождает также воздушные ударные волны, распространяющиеся на большие расстояния.


Моретрясения. Причиной моретрясений являются подводные или прибрежные тектонические и вулканические землетрясения, сопровождающиеся сдвигом вверх и вниз протяженных участков морского дна. При моретрясениях возникают и распространяются на большие расстояния сейсмические и огромные гравитационные волны (цунами). Скорость распространения цунами от 50 до 1000 км/ч. Высота гравитационных волн составляет в эпицентре от 0,1 до 5,0 м, у побережья - от 10 до 50 м и более. Цунами производят опустошительные разрушения на суше.


Событие: 11 марта 2011 года на северо-востоке Японии произошло землетрясение магнитудой 9,0 , которое получило официальное название "Великое землетрясение Восточной Японии". Землетрясение подобной силы, по оценкам ученых, происходит в этой стране не чаще одного раза в 600 лет.

Стихийное бедствие произошло в 8:48 по московскому времени, эпицентр находился в 373 километрах северо-восточнее Токио, очаг залегал на глубине 24 километров (РИА Новости: https://ria.ru/spravka/20130311/926334197.html ).

VIDEO: Землетрясение в Японии 2011

Вулканические землетрясения

Вулканические землетрясения - разновидность землетрясений, при которых землетрясение возникает в результате высокого напряжения в недрах вулкана. Причина таких землетрясений - лава, вулканический газ. Землетрясения этого типа слабы, но продолжаются долго, многократно - недели и месяцы. Тем не менее, опасности для людей этого вида землетрясение не представляет.

Техногенные землетрясения

В последнее время появились сведения, что землетрясения могут вызываться деятельностью человека. Так, например, в районах затопления при строительстве крупных водохранилищ, усиливается тектоническая активность - увеличивается частота землетрясений и их магнитуда. Это связано с тем, что масса воды, накопленная в водохранилищах, своим весом увеличивает давление в горных породах, а просачивающаяся вода понижает предел прочности горных пород. Аналогичные явления происходят при добыче нефти и газа (произошла серия землетрясений с магнитудой до 5 на Ромашкинском месторождении нефти в Татарстане) и выемке больших количеств породы из шахт, карьеров, при строительстве крупных городов из привозных материалов.

Обвальные землетрясения
Землетрясения также могут быть вызваны обвалами и большими оползнями. Такие землетрясения называются обвальными, они имеют локальный характер и небольшую силу.

Землетрясения искусственного характера
Землетрясение может быть вызвано и искусственно: например, взрывом большого количества взрывчатых веществ или же при подземном ядерном взрыве (тектоническое оружие). Такие землетрясения зависят от количества взорванного вещества. К примеру, при испытании КНДР ядерной бомбы в 2006 году произошло землетрясение умеренной силы, которое было зафиксировано во многих странах.

31. Какие силы вызывают землетрясения?

Землетрясе́ния - подземные толчки и колебания поверхности Земли, вызванные естественными причинами (главным образом тектоническими процессами), или (иногда) искусственными процессами (взрывы, заполнение водохранилищ, обрушение подземных полостей горных выработок). Небольшие толчки могут вызываться также подъёмом лавы при вулканических извержениях.
Ежегодно на всей Земле происходит около миллиона землетрясений, но большинство из них так незначительны, что они остаются незамеченными. Действительно сильные землетрясения, способные вызвать обширные разрушения, случаются на планете примерно раз в две недели. Большая их часть приходится на дно океанов, и поэтому не сопровождается катастрофическими последствиями (если землетрясение под океаном обходится без цунами).
Землетрясения наиболее известны по тем опустошениям, которые они способны произвести. Разрушения зданий и сооружений вызываются колебаниями почвы или гигантскими приливными волнами (цунами), возникающими при сейсмических смещениях на морском дне.
Международная сеть наблюдений за землетрясениями регистрирует даже самые удалённые и незначительные из них.

32. Основная причина возникновения землетрясений на Земле?

Скольжению пород вдоль разлома вначале препятствует трение. Вследствие этого, энергия, вызывающая движение, накапливается в форме упругих напряжений пород. Когда напряжение достигает критической точки, превышающей силу трения, происходит резкий разрыв пород с их взаимным смещением; накопленная энергия, освобождаясь, вызывает волновые колебания поверхности земли - землетрясения. Землетрясения могут возникать также при смятии пород в складки, когда величина упругого напряжения превосходит предел прочности пород, и они раскалываются, образуя разлом.
Сейсмические волны, порождаемые землетрясениями, распространяются во все стороны от очага подобно звуковым волнам. Точка, в которой начинается подвижка пород, называетсяфокусом , очагом или гипоцентром , а точка на земной поверхности над очагом - эпицентром землетрясения. Ударные волны распространяются во все стороны от очага, по мере удаления от него их интенсивность уменьшается.
Скорости сейсмических волн могут достигать 8 км/с.

33. Что называется наводнением?

Наводнение - затопление местности в результате подъёма уровня воды в реках, озерах, морях из-за дождей, бурного таяния снегов, ветрового нагона воды на побережье и других причин, которое наносит урон здоровью людей и даже приводит к их гибели, а также причиняет материальный ущерб.

34. Что вызывает наводнения?

Наводнения нередко вызываются повышением уровня воды в реке вследствие загромождения русла льдом при ледоходе (затора) или вследствие закупоривания русла под неподвижным ледяным покровом скоплениями внутриводного льда и образования ледяной пробки (зажора). Нередко наводнения возникают под действием ветров, нагоняющих воду с моря и вызывающих повышение уровня за счёт задержки в устье приносимой рекой воды. Наводнения такого типа наблюдались в Ленинграде (1824, 1924), Нидерландах (1953 ). На морских побережьях и островах наводнения могут возникнуть в результате затопления прибрежной полосы волной, образующейся при землетрясениях или извержениях вулканов в океане (см. Цунами). Подобные наводнения нередки на берегах Японии и на других островах Тихого океана. Наводнения могут быть обусловлены прорывами плотин, оградительных дамб.

35. Что называется половодьем?

Полово́дье - одна из фаз водного режима реки, ежегодно повторяющаяся в один и тот же сезон года, - относительно длительное и значительное увеличение водности реки, вызывающее подъём её уровня; обычно сопровождается выходом вод из меженного русла и затоплением поймы.
Половодье вызывается усиленным продолжительным притоком воды, который может быть обусловлен:
весенним таянием снега на равнинах;
летним таянием снега и ледников в горах;
обильными дождями (например, летними муссонами).
Половодья, вызванные весенним снеготаянием, характерны для многих равнинных рек, которые делятся на 2 группы:
реки с преобладанием весеннего стока (например, Волга, Урал)
реки с преобладанием летнего стока (например, Анадырь, Юкон, Макензи).

36. Что называется паводком?

37. Эпидемия - это...

38. Эпифитотия - это...

39. На какие группы заболеваний подразделяются все инфекционные болезни?

40. На какие группы по мощности делятся селевые потоки?

41. В чем заключаются активные методы защиты от схода снежных лавин?

42. Единый сигнал ГО:

43. Какие отношения регулирует закон Республики Казахстан «О чрезвычайных ситуациях природного и техногенного характера»?

44. Кто осуществляет общее руководство ГО РК?

45. Исполнительным органом по непосредственному руководству ГО РК является

46. Кто несет ответственность за проведения СиДНР?

47. Какой орган осуществляет контроль за состоянием особо-опасных объектов?

48. Объектовые и территориальные ФГО?

49. Средства коллективной защиты населения?

50. Классификация защитных сооружений?

51. Что называется чрезвычайной ситуацией?

52. Классификация ЧС?

53. Экстремальные ситуации?

54. Понятие комфортности?

55. Влияние параметров микроклимата на человека?

56. Вредные вещества и их влияние на организм человека?

57. Вибрация ее влияние на организм?

58. Электромагнитные поля?

59. Ионизирующие излучения?

60. Понятие опасного фактора?

61. Качественный и количественный анализ опасности?

62. Методы защиты населения?

63. Эвакуация населения?

64. Защитные сооружения, их квалификация?

65. Средства индивидуальной защиты?

66. Понятие устойчивости функционирования объектов хозяйствования?

67. Правовые и нормативно-технические документы?

68. Управление безопасности жизнедеятельности?

69. Экспертиза и контроль безопасности?

70. Международное сотрудничество?

71. Что находится в центре внимания курса БЖД?

72. Каким закономерностям подчиняются природные опасности?

73. Основная причина возникновения землятрясении?

74. Чем отличаются вирусы от бактерий?

75. Методы защиты от электромагнитных излучений?

76. Методы защиты от радиации?

77. Что такое огнестойкость?

78. Особенности социальных опасностей?

79. Стадии развития ЧС.

80. Что такое пороговая концентрация ВВ в воздухе?

81. От чего зависит степень вертикальной устойчивости атмосферы?

82. Какие методы снижения шума используются?

83. Единица измерения поглощенной дозы облучения?

84. Какими документами определен порядок создания ФГО?

85. Каков принцип создания ГО?

86. Основные способы защиты населения?

87. Простейшие средства защиты органов дыхания?

88. Вибрация, ее влияние на организм?

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-27

Техногенные землетрясения

Вулканические землетрясения

Курумы.

Курумы – крупные обломки глыбы прочных скальных пород, образующихся в результате выветривания на пологих склонах и у их подножия. Характерной особенностью курумов является медленное перемещение их вниз по склону.


Вулканические землетрясения -
разновидность землетрясений, при которых землетрясение возникает в результате высокого напряжения в недрах вулкана. Причина таких землетрясений - лава, вулканический газ. Землетрясения этого типа слабы, но продолжаются долго, многократно - недели и месяцы. Тем не менее, опасности для людей этого вида землетрясение не представляет.

В последнее время появились сведения, что землетрясения могут вызываться деятельностью человека. Так, например, в районах затопления при строительстве крупных водохранилищ, усиливается тектоническая активность - увеличивается частота землетрясений и их магнитуда. Это связано с тем, что масса воды, накопленная в водохранилищах, своим весом увеличивает давление в горных породах, а просачивающаяся вода понижает предел прочности горных пород. Аналогичные явления происходят при выемке больших количеств породы из шахт, карьеров, при строительстве крупных городов из привозных материалов.
Обвальные землетрясения

Землетрясения также могут быть вызваны обвалами и большими оползнями. Такие землетрясения называются обвальными, они имеют локальный характер и имеют небольшую силу.

Землетрясение может быть вызвано и искусственно: например, взрывом большого количества взрывчатых веществ или же при ядерном взрыве. Такие землетрясения зависят от количества взорванного вещества. К примеру, при испытании КНДР ядерной бомбы в 2006 году произошло землетрясение умеренной силы, которое было зафиксировано во многих странах.

Количество санитарных (временных) и безвозвратных потерь зависит от:

ü сейсмической и геологической активности региона;

ü конструктивных особенностей застройки;

ü плотности населения и его половозрастного состава;

ü особенностей расселения жителей населенного пункта;

ü времени суток при возникновении землетрясения;

ü местонахождения граждан (в зданиях или вне их) в момент ударов.

В качестве примера можно сравнить результаты землетрясений в Никарагуа (Манагуа, 1972 г., 420 тыс. жителей) и в США (Сан-Фернандо, 1971 г., 7 млн жителей). Сила толчков составила соответственно 5,6 и 6,6 балла по шкале Рихтера, а продолжительность обоих землетрясений - порядка 10с. Но если в Манагуа погибло 6000 и было ранено 20 тыс. человек, то в Сан-Фернандо погибло 60, а было ранено 2450 человек. В Сан-Фернандо землетрясение произошло рано утром (когда на дорогах мало автомобилей), а здания города отвечали требованиям сейсмостойкости. В Манагуа землетрясение произошло на рассвете, постройки не отвечали требованиям сейсмостойкости, а территорию города пересекли 5 трещин, что вызвало разрушение 50 тыс. жилых домов (в Сан-Фернандо пострадало 915 жилых зданий).



При землетрясениях соотношение погибших и раненых в среднем составляет 1:3, а тяжело- и легкораненых примерно 1:10, причем до 70% раненых получают травмы мягких тканей; до 21% - переломы, до 37% - черепно-мозговые травмы, а также травмы позвоночника (до 12%), таза (до 8%), грудной клетки (до 12%). У многих пострадавших наблюдаются множественные травмы, синдром длительного сдавливания, ожоги, реактивные психозы и психоневрозы.

Чаще жертвами землетрясений становятся женщины и дети. Например:

1) Ашхабад (1948 г.), среди погибших - 47% женщин, 35% детей;

2) Ашкент (1966 г.), среди санитарных потерь женщин было на 25% больше, чем мужчин, а среди безвозвратных потерь преобладали дети в возрасте от года до 10 лет;

3) Токио (1923 г.), до 65% погибших женщин и детей имели ожоги.

Для оценки силы и характера землетрясения используют определенные параметры.

В 1935г. Профессор Калифорнийского технологического института Ч. Рихтер предложил оценивать энергию землетрясений магнитудой .

Шкала Рихтера – это сейсмическая шкала магнитуд, основанная на оценке энергии сейсмических волн, возникающих при землетрясениях.

Интенсивность - мера сотрясения грунта. Определяется степенью разрушения, степенью изменения земной поверхности и ощущениями людей. Измеряется по 12-балльной международной шкале МЗК-64.

Книга о землетрясениях и связанных с ними явлениях природы. Рассказывается о том, почему происходят землетрясения. Приводятся малоизвестные сведения о сейсмических катастрофах прошлого и настоящего. О достижениях сейсмологии и о той роли, которую землетрясения играли и играют в истории человечества.

* * *

Приведённый ознакомительный фрагмент книги Катастрофы в природе: землетрясения (Б. С. Каррыев) предоставлен нашим книжным партнёром - компанией ЛитРес .

Какие бывают землетрясения?

Со времен академика Голицына сейсмические явления принято подразделять на микросейсмические и макросейсмические. Первые это те, которые обнаруживаются только приборами. К ним относятся колебания чаще всего не связанные с землетрясениями – сейсмический шум и микросейсмы, а также неощутимые человеком микроземлетрясения. Вторые, это сильные землетрясения способные вызывать разрушения и деформировать земную поверхность.

Слабые сейсмические явления сопутствуют нам повседневно. Проехавший мимо автомобиль узнается по дребезжанию стекол в окне, а на приближении поезда указывает вибрация пассажирской платформы. Во времена штыковых баталий и осадных машин враг делающий подкоп под крепостные стены узнавался по вызванной работами вибрации. Так случилось в 1608 году при осаде врагами Троице-Сергегиевской лавры под Москвой. Тогда бдительность Власа Корсакова спасла осажденную крепость, и подкоп был вовремя обнаружен.

Если вспомнить, хитрый индеец или опытный следопыт в романах Фениммора Купера прикладывая ухо к земле, определяли приближение врага по колебаниям почвы. А эффект вибрации воды в луже из кинофильма «Парк Юрского периода» использован для передачи зрителю ощущения приближения страшного динозавра. Да и знаменитая привычка страуса опускать к земле голову обусловлена не особенностями его психологии, а результатом мудрой эволюции – по вибрации почвы птица определяет приближение врага.

В сейсмологии есть место для различных курьезов. В 2001 году ровно в 11 часов утра целый миллион британских школьников в течение одной минуты начали подпрыгивать. Они пытались вызвать сигнал способный быть записанным сейсмическими станциями. Однако приборы Британского геологического управления в Эдинбурге не смогли зарегистрировать «детосейсмовоздействие». В отличие от этого эксперимента, в 1968 году колебания вызванные стартом ракеты «Сатурн-5» по программе высадки человека на Луну записали многие сейсмические станции в США.

30 июня 1908 года в бассейне реки Подкаменная Тунгуска произошло явление, известное под названием «Тунгусский метеорит». На огромной территории Восточной Сибири люди видели пролет огненного тела, который завершился взрывом, равным по мощности подрыву сорока мегатонной бомбы. Он был такой силы, что в течение почти пяти часов самописцы Иркутской обсерватории фиксировали возмущения магнитного поля Земли.

Падение метеорита причинило огромные разрушения в Тунгусской тайге, следы которых не исчезли и сегодня. На площади 500 квадратных километров был повален вековой лес, а ударная волна была такова, что сейсмические колебания записали сейсмографы в Иркутске, Ташкенте, Тбилиси и Йене.

В 2006 году в горах на севере Норвегии упал метеорит весом около одной тонны. Его падение сопровождалось мощным взрывом. В 2 часа 13 минут 25 секунд по местному времени, когда метеорит столкнулся с Землей, сейсмостанции зарегистрировали землетрясение в месте его падения.

Землетрясения различаются по своей силе, месторасположению и природе происхождения. Наиболее опасные из них имеют тектоническую природу.

Тектонические землетрясения

Эти землетрясения связаны с процессами горообразования и движениями литосферных плит. Как отмечалось выше, верхняя часть земной коры состоит из огромных блоков – литосферных плит способных под воздействием различных причин перемещаться в верхней мантии. Одни плиты двигаются навстречу друг другу, другие расходятся в стороны, а третьи скользят относительно друг друга в противоположных направлениях.

Поскольку горные породы обладают определенной эластичностью, то в местах тектонических разломов – границ плит там, где действуют силы сжатия или растяжения, непрерывно накапливаются напряжения до тех пор, пока они не превысят предела прочности горных пород. Тогда пласты горных пород разрушаются, и резко смещаются относительно друг друга. Подобные смещения называются тектоническими подвижками, а место где они возникают – очагами землетрясений.


Общая протяженность системы разрывов после Кумдагского землетрясения 1983 года в Западном Туркменистане достигала 27 километров.


Тектонические подвижки бывают различной пространственной ориентации. Они приводят к резкому опусканию, поднятию или смещению относительно друг друга огромных массивов горных пород. На дневной поверхности могут возникнуть протяженные тектонические трещины. По их бортам смещаются относительно друг друга участки земной поверхности, перенося находящиеся на их поля и инженерные сооружения. Тектонические подвижки происходят не только в видимых местах разломов – границ плит, но и в их центральной части, под складками и горами.

Формы проявления тектонических подвижек разнообразны. Одни образуют на дневной поверхности разрывы протяженностью в десятки километров, другие сопровождаются многочисленными обвалами и оползнями, а третьи практически не «выходят» на земную поверхность и без приборов точно определить место эпицентра землетрясения невозможно.

В Армении, Апеннинах на севере Италии, в Алжире, Калифорнии в США, в Туркменистане и многих других местах происходят землетрясения, которые не вспарывают земную поверхность, а связаны со скрытыми под поверхностным ландшафтом разломами. Иногда слабо верится, что сглаженная смятыми в складки породами и слегка волнистая местность может таить угрозу. Однако в подобных местах происходили и происходят сильные землетрясения. В терминологии американских сейсмологов Р. Стейна и Р. Йется они получили название скрытых тектонических землетрясений.

Одна из самых быстрорастущих складок в мире находится вблизи Вентуры в Калифорнии и характеризуется высокой сейсмической активностью. Землетрясения под складками произошли в Коалинге и Кетлемен-Хилзе в 1983 и 1985 годах с магнитудами 6,5 и 6,1 по шкале Рихтера. Ими в Коалинге было разрушено 75% неукрепленных зданий. В 1987 году землетрясение с М = 6 в Уиттиер-Нерроуз ударило по густозаселенным пригородам Лос-Анджелеса. Оно принесло ущерб в 350 миллионов долларов США и погубило восемь человек.

В схожих геологических условиях в предгорьях Копетдага возникло Ашхабадское катастрофическое землетрясение 1948 года унесшее жизни около сорока тысяч человек. В 1980 году в Эль-Асаме (Алжир) скрытое землетрясение с М = 7,3 привело к гибели трех с половиной тысяч человек.

Существование скрытых землетрясений таит в себе угрозу для освоения залежных земель. Как правило, на пустынных территориях признаваемых неопасными, размещают могильники и захоронения токсичных отходов (например, район Коалинга в США). Если допущен просчет в оценке их сейсмической опасности, то землетрясение способно нарушить целостность хранилищ и вызвать экологическую катастрофу.

Часть тектонических землетрясений происходит под морским дном также как и на суше. Некоторые из них сопровождаются смертоносными цунами. Сейсмические волны от землетрясений с эпицентрами в морях и океанах также могут вызвать разрушения на суше. Так было в Мехико в 1985 году, и часто происходит в Японском архипелаге, Сахалине и островах Курильской гряды.

Вулканические землетрясения

Одно из самых интересных и загадочных геологических образований на планете это вулканы. Их название пришло из римской мифологии, где Вулкан считается богом разрушительного и очистительного пламени. Его греческим родственником является бог Гефест, но в отличие от него Вулкан кузнечными делами не занимался, а его природный прототип далеко не безобиден.

Эти названия появились во времена, когда человек, будучи не в силах понять природу стихии, олицетворял её в образах мистических существ. Так было удобно не только объяснять мир, но и информировать потомков об опасности. Можно посмеяться над наивностью древних. Но столь ли важно, каким способом передается предупреждение – в форме мифа или в виде норм сейсмостойкого строительства остающихся для большинства современных людей тайной за семью печатями, так же как устройство смартфона несмотря на его ежедневное использование.

Человечеством должны были быть принесены огромные жертвы стихии, раз память о природных катастрофах древности не исчезла, и отразилась во всех религиозных вероучениях от Библии до Корана. Так, в Суре «Пещера» (58,59) рассказано о произошедшей задолго до возникновения ислама трагедии: «А Господь твой – прощающий, обладатель милосердия, – если бы Он схватил их за то, что они приобрели, то успокоил бы. Он для них наказание. Но у них есть определенный срок, и никогда они не найдут помимо Него убежища. И эти селения погубили Мы, когда они стали несправедливыми, и сделали их гибели определенный срок».

Благодаря начатым в 1748 году археологическим раскопкам стало ясно, что здесь речь идет об иных, чем описано в Библии, городах «разврата и богохульства». В начале первого тысячелетия нашей эры они располагались на побережье Неаполитанского залива и в 79 году были уничтожены извержением вулкана Везувия. Они именовались Геркуланум, Помпея и Стабия.

Предвестником пробуждения Везувия стало разрушившее часть Помпей и Геркуланума землетрясение. Оно произошло 5 февраля 63 года. Спустя шестнадцать лет произошло само извержение Везувия. Потоки огненного ливня с пеплом из пиниеобразного облака погребли под собой Геркуланум, Помпею и Стабию. Только в Помпеях погибло около двух тысяч человек.

До 1902 года, землетрясения и ураганы не раз производили опустошения на острове Мартиника принадлежащего группе Малых Антильских островов известных как Вест-Индия. В 1838 году сильное землетрясение известило об активизации образующего северную часть Мартиники вулкана Пеле, но сильного извержения тогда не произошло. Спустя 64 года все произошло иначе.

21 мая 1902 года над вулканом Пеле повисло густое серебристое облако, и завеса из черного дыма покрыла гавань и город. Это был праздник Вознесения и жители тридцатитысячного Сен-Пьера стали собираться в церковь. Ровно в 7 часов 30 минут раздался оглушительный рокот и плотное серовато-красное облако, опутанное сетью молний, покатилось с вулкана прямо на город. Горячие газы, пыль и грязь несли с собой смерть и разрушение. Последнее что услышал чиновник из Фор-де-Франсе разговаривавший по телефону с Сен-Пьером в этот момент, было бормотание задыхающегося человека, а затем непонятный шум и будто удар в ухо. Потом все стихло.

Спустя много лет можно констатировать, что признаков приближения извержения было на удивление много. В начале мая года жители начали слышать гул и ощущать слабые колебания почвы. Подземные удары с каждым днём становились все сильнее. От момента их возникновения до катастрофы прошло не менее двадцати дней. В последние дни сейсмические толчки перешли в непрерывные сотрясения почвы. Нарастал гул, происходили выбросы дыма и пара из жерла вулкана. Тем не менее, жители Сен-Пьера все эти признаки приближающегося извержения не приняли во внимание, и трагедия стала неизбежной.

В северной части Карибского моря расположен остров Ямайка – райское место для отдыха. Однако именно здесь в 1692 и 1907 годах произошли вулканические землетрясения с губительными для острова последствиями. В 1692 году до основания была разрушена его столица Порт-Ройял. Пришлось в соседнем Кингстоне основать новую столицу, которая также была разрушена вулканическим землетрясением спустя пятнадцать лет.

В 1883 году сильное землетрясение сопровождало извержение вулкана Кракатау в Индонезии. Взрывом была уничтожена половина вулкана, погибло все население острова и разрушены города на островах Суматра, Ява и Борнео. Последовавшее за землетрясением цунами смыло все живое с низменных островов Зондского пролива.

18 июля 1883 года курортный город на острове Иски около Неаполя был превращен в груду развалин вулканическим землетрясением. Город удобно расположился рядом с теплыми минеральными источниками, на склоне недействующего вулкана Ипомео. За неделю до катастрофы температура в источниках резко повысилась, возникли новые фумаролы – отдушины выбрасывающие струи вулканических газов. Жители стали ощущать подземные толчки и спустя некоторое время последовал сильный подземный удар. Извержения не произошло, но землетрясение напомнило о том, что вулкан способен в любой момент проснуться.

В 1914 году землетрясение предвестило начало извержения вулкана Саку-Яма в Японии.

В 1952 году взрыв рифа Мёдамн расколол воды океана, поднял со дна дым, огонь и лаву. Огненным шквалом было распылено японское наблюдательное судно «Дайго Кайёмару» с экипажем в тридцать один человек.

В конце 2001 года на Камчатке активизировался вулкан Карымский в России. Произошли многочисленные землетрясения, сильнейшие из которых имели магнитуду около 7 по шкале Рихтера. Это один из самых активных вулканов в мире. Вулканические землетрясения постоянно регистрируются в окрестностях вулканов Ключевской Сопки и Шивелуч.

Подготовка извержения ведется в течение многих десятков – сотен лет и сопровождается рядом явлений. Обычно сейсмическая активность в районе вулкана усиливается, происходит увеличение числа и силы землетрясений. Это связано с тем, что бурлящие в недрах вулканических гор раскаленные газы и лава давят на верхние слои породы примерно так, как пары кипящей воды на крышку чайника.

Возникают серии мелких землетрясений, т.н. вулканический трёмор (вулканическое дрожание). Он связан с подъёмом из глубин горячей магмы, которая вызывает растрескивание более холодных горных пород в верхней части вулкана. Происходит всплеск сейсмической и акустической активности, что является важным признаком пробуждения вулкана.


В зонах где одна тектоническая плита подвигается под другую возникают вулканы, а гипоцентры землетрясений образуют наклонную плоскость т.н. зоны Вадати-Беньёффа.


Поскольку области современного вулканизма, как это характерно для Японских островов, Курил, Камчатки или Италии, совпадают с местами возникновения тектонических землетрясений на фоне общей сейсмической активности региона трудно определить вулканическую природу отдельного толчка. Но различать по природе возникновения землетрясения крайне важно, поскольку если подземный удар связан с деятельностью вулкана он может помочь спрогнозировать извержение.

Сам сейсмический эффект вулканических землетрясений почти ничем не отличаются от тектонических, хотя их энергия, а следовательно «дальнобойность» меньше. Главным признаками вулканического землетрясения считается совпадение его очага с расположением вулкана и сравнительно небольшая мощность.

В свою очередь тектонические землетрясения могут спровоцировать вулканическую деятельность. Сильнейшие из них существенно меняют поле тектонических напряжений, тем самым облегчая доставку вулканического материала из земных недр. Так было в Чили в 1960 году, и достаточно часто происходит в районе Японских островов.

Вулканы разделяют на действующие, уснувшие и потухшие. К последним относятся те из них, которые сохранили свою форму, но сведений об их извержениях нет. Тем не менее, под ними также возникают слабые толчки, свидетельствуя, что в любой момент они снова могут проснуться.

В начале 2001 года активизировался самый большой вулкан Европы Этна, что в переводе с греческого языка означает «Я горю». Высота вулкана составляет 3200 метров над уровнем моря. Его первое из известных извержений произошло в 1500 году до нашей эры, а за последние триста лет произошло четыре крупных извержения Этны сопровождаемых землетрясениями.

В октябре 2002 года из-за опасности извержения Этны итальянские власти ввели в ряде районов Сицилии чрезвычайное положение. Произошло несколько сотен землетрясений, наиболее мощные из которых имели магнитуду около 4,3 по шкале Рихтера. В Санта-Венерина от них пострадало много домов, и почти тысяча жителей острова покинула свои дома. В ноябре 2006 года вулканический пепел из жерла вулкана поднялся на высоту пяти километров и парализовал аэропорт в городе Катания.

С вулканами связаны так называемые «тихие» землетрясения. Одно из них произошло на южном фланге вулкана Килауеа в 2000 году. После землетрясения с М = 5,7 по шкале Рихтера в течение 36 часов продолжались толчки вызванные опусканием на девять сантиметров южной стороны вулкана в море.

Обвальные землетрясения

На юго-западе Германии и в других местах богатых известковыми породами люди иногда ощущают слабые колебания почвы. Их возникновение связано с карстами – пустотами в земных недрах, образующихся из-за вымывания подземными водами известковых пород. Под давлением верхних пластов породы пустоты обрушиваются, и возникают землетрясения.

Иногда за первым происходит новый толчок или несколько ударов с промежутками в несколько часов или дней. Это объясняется тем, что первое сотрясение провоцирует обвал горной породы в других ослабленных местах. Это и есть обвальное или карстовое землетрясение.

Обвальные землетрясения вызываются обрушением со склонов гор породы, провалами и просадками грунтов. Чем больше масса обвалившейся породы и высота обвала, тем больше кинетическая энергия удара и, следовательно, магнитуда землетрясения.

Обвалы, сходы каменных или снежных лавин, обрушение кровли пустот под землей могут возникать под воздействием как естественных, так и техногенных факторов. Часто это следствие недостаточного отвода воды приводящее к размыванию оснований различных построек, или проведение земляных работ с использованием вибраций, взрывов из-за которых образуются пустоты, изменяется плотность окружающих пород и другое.

При добыче подземным способом легко растворимых в воде калийных солей на рудниках зачастую образуются карсты. При обрушении свода этих подземных полостей на поверхности образовываются провалы в виде так называемых карстовых воронок, сопровождаемых землетрясениями. С начала промышленной добычи калийных солей зарегистрированы сотни аварий на месторождениях в США, Канаде, Франции, Германии, России и многих других стран.

Во Франции в 1873 году в Варанжевиле из-за слишком больших объемов выработки не выдержали колонны шахты, на поверхности появились концентрические провалы диаметром 160 и 350 метров.

В 1974 году со склона хребта Викунаек в Перуанских Андах в долину реки Мантаро с высоты почти двух тысяч метров обрушилось около 1,5 миллиарда кубометров горных пород. Обвал похоронил под собою 400 человек. С невероятной он силой ударил по дну и противоположному склону долины. Колебания от этого обвального землетрясения с магнитудой более пяти были зарегистрированы на удалении в три тысячи километров.

В России 25 июля 1986 года при прорыве подземных вод на третьем руднике комбината в Березниках (Пермская область) образовалась карстовая воронка диаметром более 50 метров и глубиной более ста метров. Одновременно произошел выброс и взрыв природного газа.

В Германии 13 марта 1989 года произошло обрушение подземных пустот под городом Фёлькерсхаузен (Тюрингия). Перемещение подземных пластов на глубине 750-900 метров вызвало землетрясение магнитудой 5,6 по шкале Рихтера. Были разрушены 300 из 360 домов, включая старинный замок и церковь.

При добыче угля, которая продолжалась в Англии больше века, также происходили землетрясения, и не одно, а тысячи. Исходя из опыта шахтеров-угольщиков, землетрясения магнитудой больше 3,0 при подземной добыче ископаемых крайне маловероятны.

В России 5 января 1995 года при обрушении подземного рудника в г. Соликамске (Пермская область) произошло землетрясение магнитудой больше четырёх. Горные породы обрушились на площади почти 35 гектар. Земля осела на 4,7 метра. Там же 18 ноября 2014 года образовался провал на удалении трех километров от СКРУ-2 компании «Уралкалий». За сутки величина провала увеличилась с 20х30 метров до 30х40 метров. В тот же день на руднике произошла авария – приток солевого раствора в шахту. На месте провала были установлены сейсмические датчики, и сделаны с дирижабля фотоснимки.

В России 9 октября 1997 года в Березниках на территории Верхнекамского месторождения калийных и магниевых солей произошло обвальное землетрясение с эпицентром в районе второго и третьего рудоуправлений. За период с октября 1993 по ноябрь 2005 здесь зафиксировано несколько сотен слабых землетрясений.

На территории России обвальные землетрясения неоднократно происходили в Архангельске, Вельске, Шенкурске и других местах. На Украине в 1915 году жители Харькова ощутили сотрясения почвы от обвального землетрясения в Волчанском районе.

В 2003 году в Кош-Агачском районе Республики Алтай землетрясение вызвало обрушение древних озерно-ледниковых масс объемом 20 миллионов кубических метров. Из-за этого уровень грунтовых вод в пределах пойм рек Чуя и Джазатор поднялся на 1,2 метра. В разрезах трещин геологи наблюдали обилие льда, по которому происходили смещения. Подземные толчки спровоцировали таяние льда и выбросы теплой воды на поверхность.

Наведённые землетрясения

Эти землетрясения иногда называют техногенными или антропогенными. Природа их возникновения связана с деятельностью человека или неким масштабным природным воздействием на земные недра. Проводя подземные взрывы, закачивая в недра или извлекая оттуда большое количество воды, нефти или газа, создавая крупные водохранилища, которые своим весом давят на земные недра, человек оказался способным вызывать подземные удары.

Земные недра на определенный период времени находятся в состоянии устойчивого равновесия. Как только в силу различных причин (внешние воздействия, разработка месторождений полезных ископаемых, выработка шахт и др.) оно нарушается, в них происходит перераспределение напряжений, и уравновешенная система превращается в неустойчивую. Возвращение к устойчивому состоянию сопровождается землетрясениями

Техногенное воздействие на природную среду способно изменять структуру напряжений в ней и выступить спусковым крючком для подготовленного природой землетрясения. В 1976 году Б. Болт, а затем В. Адушкин, А. Гамбурцев и А. Николаев в своих работах показали, что подземные ядерные взрывы инициируют землетрясения. Так, во время ядерных испытаний на расположенном в штате Невада полигоне были зарегистрированы тысячи инициированных ядерными взрывами землетрясений. Однако впервые с реакцией недр на их деятельность люди столкнулись в шахтах и при прокладке в горных массивах тоннелей.

В 1901 году небольшое землетрясение привело к потере прочности склонов горы Тартл. Вибрации горных склонов из-за производимых для добычи каменного угля взрывов и от движения составов по проложенной у подножья горы железной дороге, постоянно воздействовали на горный массив. От добычи каменного угля в нем образовались большие пустоты. Здесь ежесуточно извлекалось до 1100 тонн. Всего было извлечено почти 397 тысяч кубометров породы, а образовавшиеся под землей пустоты составили около 181 тысячи кубометров. Землетрясение, антропогенная деятельность и образовавшиеся пустоты в недрах горы, в конце концов, ослабили устойчивость горных склонов.

29 апреля 1903 года на горе Тартл с высоты 900 метров сорвалось вниз почти 30 миллионов кубометров горных пород. Скально-земляной вал высотой 30 метров и шириной фронта в 2,5 километров перемещался со скоростью 160 км/час. Он похоронил под собой долину реки Кроузнест вместе с шахтерским городком Френк. Погибло 70 жителей, только 16 работавших в шахтах шахтеров смогли спастись, прорубив себе путь в слоях угля.

В Испании произошедшее 11 мая 2011 года землетрясение около города Лорки отнесено к спровоцированному осушением фермерами водоносных пластов. С 1960 года фермеры добывали здесь воду для поливки полей из всё более глубоких колодцев. За 50 лет уровень грунтовых вод в котловине, на границе которой произошел тектонический сдвиг в 20 сантиметров, упал на 250 метров.

Мощные природные силы могут спровоцировать землетрясения. К примеру, перемещение громадных масс воды при лунно-солнечных приливах или резкое нагружение ослабленных участков земной поверхности значительными массами дождевой влаги или снега. Резкая разгрузка или нагрузка территорий, которые сами по себе отличаются высокой тектонической активностью, может влиять на сейсмическую активность.

Хотя энергетика землетрясений колоссальна провоцирующие их силы могут быть относительно небольшими. Так, при гигантских величинах веса вышележащих пород для возникновения разрыва и был преодолен предел прочности горного материала достаточно десять – сто бар дополнительной нагрузки. Это происходит в процессе заполнения глубоких водохранилищ, и приводит к землетрясениям. Подобное наблюдалось в момент заполнения водохранилищ Нурекского, Токтогульского и Червакского.

Накопление огромной массы воды в водохранилищах приводит к изменению гидростатического давления в породах и снижению сил трения на контактах земных блоков. Это повышает вероятность возникновения землетрясений. Установлено, что давление возрастает с увеличением высоты плотины. Так, для плотин высотой более десяти метров наведенную сейсмичность вызывало около 0,63% из них. При строительстве плотин высотой более 90 метров уже 10%, а для плотин высотой более 140 метров уже 21%.


Процент плотин провоцирующих наведённые землетрясения в зависимости от их высоты.


Интересные особенности изменения сейсмической активности на западе Туркменистана автор отметил при перекрытии стока воды из Каспийского моря в залив Кара-Богаз-Гол в марте 1980 года. Затем при открытии стока воды 24 июня 1992 года.

В 1983 году залив перестал существовать как открытый водоем, а в 1993 году в него было пропущено 25 кубических километров морской воды. На примыкающей к заливу территории, где велись работы по добыче нефти и газа, друг за другом возникли два небольших землетрясения. Сначала произошло в 1983 году Кумдагское, а затем в 1984 году Бурунское землетрясение. Их очаги находились на необычно малой глубине поэтому их сейсмических эффект был значителен. Пострадал поселок нефтяников Кум-Даг и близлежащие села.

В Индии 11 декабря 1967 года в районе плотины Койна произошло землетрясение с М = 6,4 по шкале Рихтера. Оно было вызвано заполнением водохранилища. Погибли 177 человек, а расположенному рядом городку Койна-Нагар причинен значительный ущерб.

В Лесото в конце октября 1995 года удерживаемый плотиной Катсе резервуар стал заполняться водой. Несколько дней спустя люди ощутили слабые сейсмические толчки. 2 февраля 1996 года произошло землетрясение с М = 3,1 по шкале Рихтера.

Возникновение наведённых землетрясений с магнитудой до шести происходило при строительстве Ассуанской плотины в Египте, плотины Койна в Индии, Кариба в Родезии, Лейк Мид в США.

В России возможной причиной землетрясения магнитудой 4,7 балла, произошедшего в Усть-Илимске Иркутской области 17 января 2014 года, скорей всего было заполнение водохранилища Богучанской ГЭС в Красноярском крае. Очаг землетрясения находился в районе северной части водохранилища.

Комплекс проблем может возникнуть вокруг нефтегазового комплекса при бурении на шельфе Каспийского моря. Здесь интенсивная разработка месторождений углеводородного сырья осложняется неблагополучными сейсмическими условиями. К примеру, если раньше на месторождении Тенгиз не было зафиксировано толчков, то в 2004 году здесь произошло 43 слабых землетрясения. В Южной части Каспия располагаются зоны грязевого вулканизма. Попытки бурения здесь приводят к выбросам и провалам.

Появились сообщения о проседании дна Северного моря в пределах месторождения Экофиск после извлечения из его недр 172 миллионов тонн нефти и 112 млрд. кубометров газа. Оно сопровождается деформациями стволов скважин и самих морских нефтяных платформ.

Одно из первых вызванных добычей нефти техногенных землетрясений произошло в 1939 году на месторождении Уилмингтон в Калифорнии. За ним здесь стартовал цуг подземных толчков. Они вызвали разрушение зданий, повреждение дорог, мостов, нефтяных скважин и трубопроводов. В 1954 году было доказано, что закачка воды в пласт позволяет бороться с проседанием почвы. Она также увеличивала коэффициент отдачи нефтяного пласта.


Грязевой вулкан в Западном Туркменистане (Legal Notices of Google Earth, 2009).


В 1958 году стартовал первый этап работы по заводнению. На южном крыле нефтеносной структуры в продуктивный пласт закачивалось до 60 тысяч кубометров воды в сутки. Через десять лет закачивалось до 122 тысячи кубометров в сутки, и проседание практически прекратилось. Тем не менее, данный способ не всегда эффективен. Вода, закаченная в глубинные пласты, может повлиять на температурный режим массива и спровоцировать землетрясения.

При неблагоприятном сочетании техногенных факторов и тектонических условий увеличивается риск техногенных землетрясений способных создать аварийные ситуации. Таким как разрывы продуктопроводов, выход из строя эксплуатационных скважин, разрушение жилых и производственных строений или коммуникаций. Экологический ущерб от подобных аварий может оказаться несопоставим с выгодой добычи углеводородов. Тому пример аварии на продуктопроводе в России под станцией Аша в Башкирии, когда сгорели два пассажирских состава. Или крупная экологическая катастрофа под Усинском, где авария на нефтепроводе привела к нефтяному загрязнению обширной территории и другие.

Примером изменения рельефа при закрытой разработке месторождений служит Западный Донбасс в Украине. Здесь общая площадь участков с глубиной оседания почвы в 5-7 метров составляет более двадцати квадратных километров. На солепромысле Новый Карфаген деформациями охвачена практически вся его территория с амплитудами оседаний от трех до восьми метров. На Назаровском буроугольном месторождении от обрушения кровли штреков на поверхности возникают воронки глубиной до семи метров.

На рудных месторождениях также образуются провалы. Так в районе Нижнего Тагила в России подземные разработки железной руды ведутся более 260 лет на глубинах от 300 до 750 метров. Они привели к провалу в отработанное пространство горы Высокая. Местами глубина проседания здесь составляет до 80 метров.

В Швейцарии землетрясение в Базеле в декабре 2006 года с магнитудой 3.5 по шкале Рихтера, судя по всему, было вызвано работами по реализации проекта по использованию геотермальных источников.

В 2009 году в немецком городе Ландау работы по использованию геотермального тепла спровоцировали землетрясение магнитудой 2,7. Подземные толчки вызвали раскачивание зданий, но не нанесли ущерба. Они сопровождались громким звуком, напоминающим звуковой удар. Землетрясение было вызвано закачкой воды под большим давлением на глубину в несколько километров. По проекту для выработки электроэнергии использовался обратный пар, получаемый в результате испарения закаченной воды.

Изменения природного рельефа происходят при скважинной добыче углеводородного сырья. Еще на стадии разведки месторождений бурение скважин нарушает гидрогеологические условия, и вызывает активизацию карста. Самым впечатляющим примером этого является город Лонг-Бич в Калифорнии (США).

Добыча нефти и газа здесь привела к проседанию территории площадью в 52 квадратных километра. Оседание происходило с все возрастающей скоростью. К 1952 году его скорость достигла 30-70 см/год. Воронка оседания имела форму эллипса с осями длиной 65 и 10 километров. К началу 60-х годов прошлого века максимальное опускание составило 8,8 метров, а горизонтальные смещения 3,7 метров.

Негативные экологические последствия разработки месторождений полезных ископаемых проявляются не сразу, а спустя некоторое время. Так, оседание поверхности на 2-3 метра вызывает в будущем снижение урожайности сельскохозяйственных культур на 10%, на 5-6 метров на 50%, а при оседании более чем на 8 метров угодья разрушаются полностью.

Проседание грунта и землетрясения происходят в старых нефтедобывающих районах России. Особенно это сильно проявляется на Старогрозненском месторождении. Здесь слабые землетрясения, как результат интенсивного отбора нефти из недр, возникали в 1971 году. Тогда произошло землетрясение интенсивностью до VII баллов в эпицентре. Он находился в шестнадцати километрах от г. Грозный. Пострадали жилые и административные здания не только поселка нефтяников расположенного на месторождении, но и города.

На старых месторождениях Азербайджана Балаханы, Сабунчи и Романы в пригороде г. Баку также происходит оседание поверхности, сопровождаемое горизонтальными подвижками. Они приводят к смятию и поломки обсадных труб эксплуатационных нефтяных скважин.

Землетрясения могут возникать из-за добычи нефти и газа в районах с активной тектоникой. К примеру, спустя двадцать лет после начала разработки нефтяного месторождения на западе Туркменистана в 1983 году произошло Кумдагское землетрясение.

Спустя тридцать лет после начала разработки Первомайского нефтяного месторождения на Сахалине в 1985 году произошло Нефтегорское землетрясение.

Газлийские землетрясения в Узбекистане возникли в 1976 году с магнитудами 7 и 7,3 по шкале Рихтера и еще одно, с магнитудой 7 спустя всего семь лет – в 1984 году.

В Северном море, землетрясение с М = 5 по шкале Рихтера в мае 2001 года считается было спровоцировано добычей нефти и газа.

В 2014 году подземные толчки на севере Нидерландов интенсивностью более III балла привели к обсуждению вопроса о возможности продолжения газовых разработок в регионе Гронинген. Здесь залежи газа были открыты в 1959 году и с тех пор дали стране огромное преимущество перед соседними странами ЕС. Тем не менее, из-за протестов жителей Гронингена в 2015 году лимит добычи на месторождении уменьшен на 7% – до 39,4 млрд. кубометров. Потери выручки от продажи газа оценены в 700 млн. евро в 2015 году и в 130 млн. евро в 2016 году.

Особый интерес к наведённым землетрясением возникает в связи с расширяющейся добычей сланцевого газа содержащегося в непрочных осадочных породах. В 1947 году в США был впервые проведен эксперимент с применением гидравлического разрыва пласта методом фрекинга (Hydraulic Fracturing). Сам метод заключается в закачке воды в подземные пласты породы. Вода с добавлением песка под большим давлением вытесняет скопившийся за миллионы лет газ в сланцевых породах. С 1949 года началась его коммерческое использование. В Германии в районе Клоппенбурга почти сорок лет ведется добыча природного газа методом гидравлического разрыва.


Карта эпицентров землетрясений произошедших за последние 500 лет в Копетдагском регионе и Западном Узбекистане. В правом верхнем углу изолированное тёмное пятно образовано афтершоками Газлийских сильных землетрясений. Структура сейсмичности здесь иная, чем на других участках карты.


Собственно сам по себе гидроразрыв представляет собой небольшое микроземлетрясение, которое можно зафиксировать только с помощью специальной аппаратуры. Тем не менее, иногда толчки бывают настолько сильными, что их можно почувствовать на поверхности даже без приборов.

Считается, что закачка воды на месторождении Приз Холл при добыче сланцевого газа близ Блэкпула в Англии стала причиной землетрясений с М = 2,3 и 1,5 в апреле и мае 2011 года. Пробная добыча, начатая британской газовой компанией Cuadrilla, но была остановлена после этих землетрясений. Комиссия экспертов, назначенных департаментом энергетики и климатической безопасности страны, пришла к выводу, что подземные толчки будут продолжаться, но их энергия слишком мала для причинения серьезного ущерба. Поэтому комиссия разрешила продолжение работ с мониторингом состояния недр.

В США почти 20% землетрясений происходивших в штате Оклахома имеют отношение добычи газа методом гидроразрыва. Специалисты Корнелльского университета пришли к выводу, что пятая часть происходящих юго-восточнее города Оклахома-Сити землетрясений связана с четырьмя скважинами по добыче газа. По их данным промысловая деятельность способна вызывать подземные толчки в радиусе до 35 километров от места их расположения скважин.

Зачастую обычные землетрясения относят к спровоцированным фрекингом. Так, в Германии 13 февраля 2012 года произошло землетрясение недалеко от города Нойенкирхен-Тевель магнитудой три в районе газового месторождения. Последний гидроразрыв здесь был произведён за два года до него, а в 2004 году здесь уже случалось землетрясение с магнитудой 4,5. Поэтому новое землетрясение скорей всего с газодобычей не связано.

В Голландии и Нижней Саксонии регистрировались подземные толчки связанные с добычей природного газа, но они произошли до использования технологии фрекинга. То же самое можно сказать о тех сейсмоактивных районах, где подобные технологии еще не применялись.

Возникновение землетрясений в местах добычи сланцевого газа происходят редко и, скорей всего, обусловлены особенностями строения недр в местах разработок.

Мегалоземлетрясения

Это почти планетарного масштаба тектонические события. Их магнитуда может составлять от 8,5 до 9 по шкале Рихтера, но для более точного описания необходимо использовать специальные энергетические шкалы. Мегалоземлетрясения возникают не часто – всего несколько штук за столетие и именно они отвечают за основной расход сейсмической энергии на планете. Сила их такова, что они способны вызвать собственные колебания Земли и повлиять на скорость её вращения.

Несмотря на масштаб энергии таких землетрясений в XIX веке около половины произошедших на планете подземных ударов магнитудой более 8,5 не были учтены. Сейсмических станций на тот период времени ещё не было, а учёт землетрясений был не совершенен, как из-за качества информационных коммуникаций, так и недостатка знаний необходимых для точной их классификации. Одним из подобных примеров является землетрясение на Камчатке 1841 года. Другой пример, это подземные толчки на Малых Антильских островах в 1843 году.

Мегалоземлетрясениям прошлого обязана своим ликом наша планета. Так, после землетрясения и крупнейшего на Земле оползня-обвала образовалось озеро Сеймерре в Иране. В Азербайджане озеро Гёйгёль (Голубое озеро) возникло после сильного землетрясения, произошедшего близ Гянджи 30 сентября 1139 года. Тогда вершина горы Кяпаз обрушилась в ущелье реки Ахсу.

«В месяце Арег, на 18-й день месяца, в течение ночи с пятницы на субботу, в день праздника святого Георга, ярость господнего гнева обрушилась на мир; неистовство земли и сильное разрушение двинулись ужасными толчками и достигли этой страны Албании. Этим землетрясением много было разрушено во многих местах в областях Парисос и Хачен, как на полях, так и в горах. В результате его столица Ганджак также была швырнута в ад, поглотив своих жителей. И во всех концах своей поверхности земля держала их в своих объятиях, а в горных районах многие крепости и деревни были разрушены вместе с монастырями и церквами, которые обрушились на головы их жителей, и бесчисленное множество людей было убито разрушенными зданиями и башнями» (Очевидец, уроженец и житель Гянджи Мхитар Гош).

При землетрясении 1958 года дно заливов Криллон и Джильберт на Аляске по тектоническому разлому резко сдвинулось почти на семь и приподнялось более чем на шесть метров. Со склонов гор в воду обрушилось более 36 миллионов кубометров горных пород.

Мегалоземлетрясениям предшествует активизация сейсмической активности на больших территориях. Их афтершоковые последовательности продолжаются многие годы. Сами по себе они бывают очень опасными, поскольку возникают на большой площади и далеко от места главного удара. В прошлом веке мегалоземлетрясениями были Чилийское 1960 года и Аляскинское 1964 года с очагами под морским дном.

При Чилийском землетрясении 1960 года многочисленные обвалы и оползни привели в движение массу горной породы объемом в сотни миллионов кубометров. Только в районе озера Риниту пять миллионов кубометров горной породы переместилось почти на километр по долине реки Сан-Педро. В зоне набольших сотрясений продолжительность сейсмических колебаний составила около 200 секунд. Землетрясение превратило Андийские Кордильеры в громадный «вибрационный стол» на котором горные массы приобретали необычную подвижность и обрушивались вниз.

Землетрясение 1964 года на Аляске спровоцировало грандиозный оползень Шерман. Сместилось 30 миллионов кубометров горной породы, и только слабая заселенность этих мест свела к минимуму человеческие потери.

Сильнейшие землетрясения в истории США произошли в 1811 и 1812 годах. Они были такой силы, что изменили русло реки Миссисипи. Толчки ощущались от южной Канады до Мексиканского залива, от Атлантического побережья США до Скалистых гор.

Мегалоземлетрясение с магнитудой более восьми по шкале Рихтера произошло 12 июня 1897 года в северо-восточной Бенгалии. Оно изменило рельеф земной поверхности в эпицентральной зоне.


Места возникновения сильнейших землетрясений XX века.


Сильные землетрясения начала XXI возникли в 2004 и 2005 годах в Юго-восточной Азии. Первое из них сопровождалось разрушительным цунами и гибелью более двухсот тысяч человек. Второе причинило значительный ущерб острову Ниас, расположенному неподалеку от западного побережья Суматры и унесло жизни нескольких тысяч человек. Третье землетрясение произошло в Пакистане, и вызвало гибель 73 тысяч человек. Четвертое возникло в Японии, и вызвало разрушение АЭС «Факусима». Таким образом, почти несколькими сотнями тысяч смертей открыта летопись сейсмических катастроф нового века.

Благодаря мегалоземлетрясениям доказано существование собственных колебаний Земли. Так, любое упругое тело после удара подобно колоколу совершает колебания. В 1911 году английский математик профессор Огастес Эдвард Хаф Ляв (Лав) вычислил период собственных колебания стального шара размером с Землю. Оказалось, что он будет равен одному часу. Первые собственные колебания Земли с периодом 57 минут обнаружены Беньоффом в 1952 году после землетрясения на Камчатке. После чилийского землетрясения в 1960 году были зарегистрированы колебания Земли с периодом 54 минуты.

Собственные колебания это лучший тест для оценки верности принятой модели Земли. Определённые теоретически они получают подтверждение путём наблюдения за последствиями мегалоземлетрясений. Сопоставление теоретических и наблюдательных данных решает вопрос о правильности или ошибочности принятых представлений о планете.

Мегалоземлетрясения всегда сопровождаются уникальными природными явлениями – извержениями вулканов, громадными обвалами, оползнями, цунами, снежными лавинами, протяженными разрывами земной поверхности и многим другим. Они приводят к изменению продолжительности земных суток. Так, землетрясение 2004 года на Суматре сократило земные сутки на 6,8 микросекунды, землетрясение 2010 года в Чили на 1,26 микросекунды, а землетрясение 2011 года в Японии на 1,8 микросекунды.

Отметим, оценивать величину землетрясений исходя из размеров принесённого ущерба неверно. Энергия землетрясения и потери от него чаще всего не адекватны друг другу. Суммарные человеческие потери от двух мегалоземлетрясений прошлого века не превысили десяти тысяч человек. Намного уступающие им по энергии землетрясения в Ашхабаде, Спитаке и других местах унесли в несколько раз больше жизней.

Крупный оползень в результате небольшого землетрясения сошел 18 февраля 1911 года на Памире – 2,2 миллиарда кубометров. Был завален кишлак Усой со всеми его жителями, их имуществом и домашним скотом. Скальные породы перегородили долину реки Мургаб с поперечником в 4 – 5 километров и высотой более 700 метров. Возникло новое озеро Памира – Сарезское. Оно стало быстро расти, и затопило кишлаки Сарез, Нисор-Дашт и Ирхт.

Относительно слабое Гиссарское землетрясение 23 января 1989 года с эпицентром в тридцати километрах юго-западнее столицы Таджикистана Душанбе с М=5,3 привело в движение лёссовидные толщи на горных склонах. Положение усугубило то, что из-за дождей произошло их сильное обводнение. Возник крупный оползень, заваливший поселок Шарора и погубивший более двухсот человек.

Вывод очевиден. Даже не очень сильное землетрясение там, где к нему не готовы, приносит несоизмеримый ущерб в сравнение с его энергией и тогда его называют катастрофическим.

Катастрофические землетрясения

Определение «катастрофическое» употребляется по отношению ко всем землетрясениям, независимо от их энергии повлекшим за собой обширные разрушения и многочисленные человеческие жертвы. Такие землетрясения могут привести к социальным потрясениям, вызвать нарушение естественных функций природного комплекса с неблагоприятными экологическими последствиями.


Сан-Франциско в огне, 1906 год (Public Domain).


Уже отмечалось, насколько судьбоносными для древних сообществ оказывались стихийные бедствия. Приходили в расстройство целые государства, уничтожалась их инфраструктура, возникали эпидемии и голод. В наши дни ситуация изменилась, природа тектонических землетрясений в целом понятна, а накопленные знания позволяют строить надежные дома и находить наиболее безопасные для их расположения места. Тем не менее, потери от стихийных бедствий растут пропорционально масштабам городских поселений, численности людей и определяются невозможностью большинства людей иметь безопасное жилье.

Особенностью катастрофических землетрясений является их каскадность. Иными словами, подземные удары влекут за собой новые беды, которые бывают опаснее самого землетрясения. Так произошло в США в 1906 году и в Италии в 1908 году, в Японии в 1923 году, когда убытки от пожаров намного превысили ущерб от самих землетрясений.


Сильное землетрясение и даже относительно слабое в горной местности во время затяжных дождей (частое явление на южно-американском континенте) или сильного снегопада (как это бывает в Афганистане) могут иметь дополнительные жертвы, а то и определить масштабы всего ущерба от них.

В апреле 1983 года в Колумбии землетрясение пришлось на период затяжных дождей от которых началось наводнение. Всего за 18 секунд административные и жилые здания в городе Папайян превратились в груду развалин.

13 января 2001 года морское землетрясение с магнитудой 7,6 по шкале Рихтера нанесло огромный ущерб Сальвадору. Хотя очаг располагался в Тихом океане на удалении в сто километров от побережья, землетрясение привело к многочисленным жертвам. Более тысячи человек оказались погребёнными под грязевым потоком в столице страны Сан-Сальвадор. Он накрыл около 400 домов не оставив никаких шансов на спасение людям.

На фоне тропических дождей в июне 1983 года произошло землетрясение на Тайване. С начала двадцатого столетия подобных дождей история острова не знала. Переувлажнение стало причиной возникновения гигантских земляных оползней, которые вместе с потоками воды унесли жизни многих людей.

В 1983 году на северо-востоке Турции подземный толчок совпал по времени с ненастной погодой. Обвалы и оползни в горах затруднили спасательные работы. Погибло и без вести пропало более 3,5 тысяч человек, а 120 тысяч осталось без крова.


С 1970 по 2013 годы по всему миру произошло 8835 стихийных бедствий с 1,9 миллионами человеческих жертв и экономическими потерями в 2,4 триллиона долларов (UN, 2014). Большинство жертв пришлось на бедные и развивающиеся страны.


17 августа 1999 года землетрясение произошло вблизи турецкого города Измит. Погибло около 17 тысяч человек, а общие убытки составили 8,5 миллиарда долларов США. Ситуацию усугубил мощный циклон. В черноморской провинции Самсун его скорость достигала 105 км/час. У многих домов были снесены крыши, оборваны линии электропередачи. Удар стихии чувствительно сказался на тех, кто пострадал от разрушительного землетрясения и жил во временных жилищах.

Цунамигентные землетрясения

Слово «цунами» произошло от японского слова «тсунамис». Это морские волны, возникающие при сдвиге вверх или вниз крупных участков дна при сильных морских землетрясениях и вулканических извержениях. Опускание дна приводит к резкому понижению уровня моря. Вода устремляется в образовавшийся провал, где потоки воды сталкиваются. Над местом провала образуется водяной холм. Затем происходит его опускание, ниже начального уровня и вокруг провала формируется концентрический водяной вал. Согласно законам гравитации и инерции место провала становится своеобразным генератором расходящихся и во все стороны и постепенно затухающих концентрических водяных валов. Это и есть цунами.

Волна цунами движется по водной поверхности со скоростью зависящей от её длины и периода. Если длина волны равна 100 км, а период равен 10 мин, то скорость движения такой волны около 600 км/час. Отмечены скорости движения цунами около 1000 км/час. В открытом море они практически незаметны, с приближением к пологому берегу, в заливах и бухтах, из-за уменьшения глубин, высота волн начинает расти. Формируется крутая водяная стена которая с колоссальной силой обрушивается на берег. Около 80% всех цунами возникает на периферии Тихого океана.

В России, США и Японии созданы службы предупреждения о цунами. Для извещения населения они используют тот факт, что скорость цунами намного меньше скорости сейсмических волн в земной коре. Поэтому, зарегистрировав морское землетрясение на сейсмической станции, можно успеть дать сигнал об опасности цунами.

Мощные цунами возникали в далёком прошлом из-за землетрясений, обвалов, падения метеоритов и др. В конце Ледникового периода, примерно десять тысяч лет назад, прорыв ледяной перемычки огромного озера Агассиз существовавшего на месте современной Канады привёл к возникновению мегацунами. По объему это озеро превышало все современные озера, включая Каспий и Байкал. Потепление или землетрясение разрушили ледяную дамбу между Агассиз и океаном. С площади более полумиллиона квадратных километров произошел быстрый слив воды в океан. Это мегацунами изменило направление океанических течений и климат на всей планете.

В XII веке до нашей эры сильное землетрясение, сопровождаемое разрушительным цунами и пожаром, уничтожило государство Угарит. Эта цивилизация сошла с исторической сцены.

Между 1660 и 1600 годами до нашей эры взорвался вулкан Стронгиле в архипелаге Санторин. Он буквально потряс всё Эгейское море. Вулканический остров взлетел в воздух. Выброс был таким, что облако пыли и пепла достигло Китая и Гренландии, и даже западного побережья США. По всему Средиземноморью прокатилась сизигийная волна – цунами. Её скорость достигала 566 км/ч, а высота составляла от 12 до 35 метров.

Руины дворца в Закро на острове Крит красноречиво говорят о буйстве стихии. Огромные куски массивных каменных стен были отброшены далеко от своих мест. На побережье каменные стены волной мегацунами были отброшены вглубь острова на 60 метров. Сильным разрушениям подверглись дворцы Кносса, Маллии, Феста, многие города, виллы и села. После этих событий торговые порты были заброшены, а минойская цивилизация пришла в упадок и ее остатки не смогли сопротивляться нашествию варваров.

После Лиссабонского землетрясения 1755 года возникло цунами. Примерно через час после главного удара море отступило, обнажив приливную полосу. Спустя некоторое время водные массы устремились назад и обрушились на берег несколькими волнами высотой от 5 до 7 метров. Они прокатились по улицам Лиссабона, неся смерть и разрушение.

В 1883 году заснувший в 1680 году вулкан Кракатау находился на плодородном, но малонаселённым острове. В начале июня расположенный на западном побережье Явы городок Аньер несколько дней сотрясали подземные толчки, которые не вызвали беспокойства у привыкших к землетрясениям индонезийцев. В конце июня природа предупредила людей в последний раз.

С покрытого толстым слоем вулканического пепла острова начали вздыматься две колонны дыма, а в бурлящей воде вокруг него плавали такие большие куски пемзы способные выдержать вес человека. Путешественники из Батавии (ныне Джакарта) сообщали: «Яростное пурпурное свечение, появлявшееся ненадолго каждые 5-10 минут, которое обрушивало во все стороны огненный дождь».

После полудня 26 августа остров Кракатау взорвался. Около двадцати кубических километров породы было выброшено в воздух на высоту до 80 километров. На площади диаметром 150 километров день превратился в ночь, а затем облако пыли окутало весь земной шар. Воды Зондского пролива обрушились в образовавшуюся гигантскую впадину и мгновенно испаряясь, вызвали новые взрывы.

Возникшее цунами достигало у берегов сорокаметровой высоты. Некоторые из ударных волн три раза обошли вокруг земного шара, а одна из них была зарегистрирована через полтора дня у побережья Франции. Точное число жертв катаклизма неизвестно. Считается, что погибло не менее 36 тысяч человек.

В России осталась малоизвестной трагедия вызванная землетрясением 4 ноября 1952 года с очагом в Тихом океане, недалеко от южной оконечности Камчатского полуострова, магнитудой 8,3 по шкале Рихтера. Его очаг находился в море за 130 км от мыса Шипунского на глубине 20 – 30 километров. Оно затронуло побережье на протяжении 700 километров – от полуострова Кроноцкого до северных Курильских островов. Подземные толчки продолжались примерно полчаса.

Само землетрясение не сопровождалось значительными разрушениями, однако спровоцировало мощное цунами. Через час после землетрясения пришла первая волна. Большинство жителей Северо-Курильска спаслось на близлежащих холмах, но затем вернулись в посёлок, не ожидая последующих волн. Вторая, самая высокая волна застигла людей врасплох, и уничтожила оставшиеся здания. Последняя третья волна была слабой, и не причинила значимого ущерба.

Сильные колебания уровня океана произошли 5 ноября в 700 километровой зоне побережья. Самые высокие волны были отмечены в бухтах Пираткова (10-15 метров) и Ольга (10-13 метров) на Камчатке. Погибло более двух тысяч человек, большинство из которых составляли военнослужащие и работники рыбообрабатывающих предприятий.

В 1958 году на залив Литуя на Аляске (США) обрушилось самое большое цунами современности. Почва и растительность оказались смыты с высоты 524 метра над уровнем моря. Волна распространялась со скоростью 160 км/ч. Причиной цунами стал вызванный землетрясением гигантский оползень. С высоты более 900 метров в бухту залива обрушилось более 30 миллионов кубических метров породы.

Самое смертоносное цунами современности произошло в канун 2005 года после землетрясения в Юго-восточной Азии. До него самым кровавым считалось цунами в Японии 1896 года унесшее жизни 27 тысяч человек.

В самый разгар рождественского курортного сезона 26 декабря 2004 года в 00:58:53 по Гринвичскому времени (07:58:53 по местному времени) произошло Суматранское землетрясение с магнитудой 8,9 по шкале Рихтера. Его очаг находился в Индийском океане на глубине 25 – 30 км, в 250 километрах к западу от северной оконечности острова Суматра в Индонезии.

Землетрясение было настолько сильным, что подземные колебания жители островов ощущали в течение семнадцати минут. Последовавшее за ним цунами прокатились через Индийский океан и достигло восточного побережья Африки. Высота волн достигала 34,6 метров. Они принесли страшные разрушения прибрежным районам Индонезии, Таиланда, Индии, Шри-Ланки, Малайзии и Мальдивских островов и унесли жизни по разным данным от 230 до 270 тысяч человек.

11 марта 2011 года произошло сильное землетрясение у восточного побережья острова Хонсю в Японии. Его очаг располагался в Тихом океане, в 130 километрах к востоку от города Сендай и в 373 километрах к северо-востоку от Токио, на глубине 32 километра. После основного толчка в 14:46 местного времени с магнитудой около 9,0 по шкале Рихтера последовала серия афтершоков с магнитудами от 7,2 до 4,5.

Землетрясение было вызвано тектонической подвижкой в тектонической зоне длиной 400 км и шириной 200 км и простирающейся от Иватэ до Ибараки. Она сдвинула часть северной Японии на 2,4 метра в сторону Северной Америки. Участок побережья протяженностью 400 километров опустился на 0,6 метра, а Тихоокеанская плита сдвинулась на восток на расстояние около 20 метров. Последовавшее цунами привело к многочисленным разрушениям на северных островах японского архипелага. Оно распространилось по всему Тихому океану.

В прибрежных странах, по всему тихоокеанскому побережью Северной и Южной Америки от Аляски до Чили, было объявлено предупреждение и эвакуировалось население. До побережья Чили, находившиеся от Японии на удалении в 17 тысяч километров, дошли двухметровые волны.

Цунами обрушились на префектуры Мияги и Фукусима, расположенные на северо-востоке Японии. По состоянию на 5 сентября 2012 года официальное число погибших в 12 префектурах Японии составило 15870 человек, 2846 человек числилось пропавшими без вести, а 6110 человек получили ранения. Ущерб от землетрясения оценён в 198-309 миллиардов долларов США.

В Японии 11 энергоблоков АЭС из 53 в стране были автоматически остановлены. На АЭС Фукусима-1 три из шести энергоблоков были сразу остановлены, другие три на этот момент события не работали. Из-за отказа системы охлаждения три работавших реактора оказались в аварийном состоянии. Они в разной степени оказались повреждены и стали источником радиоактивных выбросов.

Цунами случались в Средиземном, Чёрном и Каспийском морях. В Каспийском море в 957 году море в районе Дербента отошло при землетрясении на 150 метров. В 1868 году море возле Баку сначала поднялось, затем опустилось почти на полметра, а расположенная на 90 километров южнее Баку, так называемая Погорелая Плита, возвышавшаяся на 2 метра над уровнем моря, погрузилась в него. В время Красноводского землетрясения 1895 года волны покрыли поселок Узун-Ада, залив его постройки и пристань и образовав трясину. На улицах возникли двухметровой ширины трещины, из которых била вода. В 1933 году в 40 километрах от Красноводска (ныне Туркменбаши) наблюдался длившийся около десяти минут подъем уровня моря на 1,5 метра.

Маломощные цунами возможны в Балтийском море. Так, цунами, известное из записей летописцев, как «Морской Медведь» произошло в странах Балтии в 1497 году. Они происходили во второй половине XVII века. Имеются сообщения о трёх цунами случившихся в Балтийском море в XIX веке. В Ревеле, когда произошло в 1869 году землетрясение, на берег волной выбрасывало суда. На остров Кихну в 1877 году волной также было выброшено судно. Вблизи северного побережья Хийумаа в 1858 году наблюдались небольшие волны.

Мегацунами будут происходить в будущем. Учёными определены предполагаемые места их возникновения. Считается, что западный склон вулкана Кумбре Вьеха представляет собой наполовину отколовшуюся от тела горы скалу объемом в пятьсот кубических километров. Если она сорвется, то над Канарскими островами поднимется водный купол высотой в 900 метров, и возникнет самое высокое из всех когда-либо испытанных человечеством цунами.

Со скоростью 800 км/час оно устремится в океан. Водой будут затоплены береговые регионы за многие тысячи километров от Канарских островов. На север Бразилии обрушиться сорокаметровые волны, а побережье Флориды, Нью-Йорка, Бостона, востока Северной Америки и Гренландии накроет пятидесятиметровая волна. Цунами проникнет на глубину в десятки километров от береговой линии.

Если отломится и упадет в океан южный фланг другого вулкана Килауеа на Большом острове то на побережье Японии, Китая, Филиппин, Камчатки, США (Калифорния), Колумбии, Чили и Австралии обрушатся другое катастрофическое цунами.

Цунами это опасный спутник морских землетрясений, но их последствия можно значительно снизить путем совершенствования систем наблюдения и предупреждения населения. Специальным планированием расположения населенных пунктов на побережье и обучением населения правилам поведения при чрезвычайных ситуациях.

Горные удары

В недавнем прошлом проникновение в земные недра сравнивали с походом в царство мертвых Ад награжденное эпитетом: «Оставь надежду, всяк сюда входящий» и видимо не зря. В христианском и мусульманском вероучениях Ад это место вечного наказания отверженных ангелов и душ умерших грешников.

Оснований помещать «исправительное учреждение» именно в земные недра у наших предков было предостаточно. Оттуда приходили разрушительные удары и там же проживали изобретенные его воображением ужасные существа. К тому же, добывание подземных богатств это самое древнее и наиболее опасное из занятий человека. Даже в наше время неожиданные выбросы породы – горные удары ежегодно уносят жизни десятков и сотен шахтеров.

Горные удары чаще всего возникают на угольных шахтах, при глубинах разработки в 200 – 600 метров. Их число может достигать 60-70 ударов за год. С такой частотой они происходили в 1954 – 1955 годах на шахтах Кизеловского угольного бассейна. Тогда резкое увеличение производственного травматизма от горных ударов поставило вопрос о закрытии ряда участков, несмотря на то, что под землей оставались ещё большие запасы угля.

Горные удары это хрупкое разрушение предельно напряженной части пласта породы, прилегающей к горной выработке. Они сопровождаются резким звуком, выбросом породы, разрушением крепи, машин, оборудования, образованием пыли и воздушной волны. Проблема борьбы с горными ударами и их прогноз являются актуальной задачей для многих рудных и угольных районов мира.

С развитием горной науки стала понятна природа горных ударов. Выемка пород и создание свободного объема в пласте вызывают изменение структуры внутренних напряжений и перераспределение нагрузки. Её частично компенсирует специальный крепеж в шахтах. Не всегда удается добиться полной безопасности проходки с равномерным перераспределением на крепёж возникающей нагрузки. В такой ситуации происходят выбросы породы и обвалы шахт.

Горные удары возбуждают сейсмические колебания распространяющиеся на десятки и сотни километров от их источника. Но в отличие от вулканических и тектонических землетрясений их силы обычно недостаточно для нанесения существенного вреда на поверхности.

В попытке предугадать горные удары шахтеры заметили, что перед ними слышаться посторонние звуки – треск, хлопки и резкие удары. Не один раз это явление помогало им сохранить жизни. Нарастание акустических и сейсмических импульсов происходит при образовании в горной породе трещин, снижающих прочность проходки.

В 1951 году советский геофизик С.А.Назарный начал исследовать звуковые предвестники выброса с использованием акустических приборов – геофонов. Год спустя ему удалось записать сигналы перед выбросом угля и газа на шахте «Красный Профинтерн». Тогда почти двести тонн угля было выброшено в штрек, но уцелевший геофон смог записать все фазы этого явления.

В 60-х годах прошлого столетия только на Донбассе почти каждом втором угольном пласте происходило по одному – двум внезапных выбросов породы. Они возникают на шахтах в Германии, Англии, Китая, Польши, России, ЮАР, Японии и других стран.

На юго-востоке Австралии интенсивная угледобыча инициирует техногенные землетрясения. В 1989 году в центре Ньюкасла произошел толчок на глубине пяти километров. Погибло 12 человек, а двести получили ранения. Особенностью землетрясения было почти полное отсутствие повторных толчков, что не типично для тектонических землетрясений. Спустя несколько лет в Ньюкасле произошло новое землетрясение с М = 4 по шкале Рихтера.

Проблема борьбы с горными ударами остается актуальной для рудных и угольных регионов мира. Каждый год масс-медиа сообщают о внезапных авариях и гибели шахтеров.

Слабые землетрясения

Энергии слабых землетрясений недостаточно для возбуждения опасных сейсмических колебаний на земной поверхности, но они способны вызывать панику и беспокойство у людей. А там где есть неустойчивые горные склоны спровоцировать обвалы, снежные лавины, оползни и сели.

В зимний вечер 18 февраля 1911 года ничто не предвещало трагедии в Горном Бадахшане. В 23 часа 15 минут земля содрогнулась, и громадная масса горной породы обрушилась с правого склона долины реки Мургаб на небольшой таджикский кишлак Усой. Поднявшиеся клубы пыли несколько дней висели в долине густой пеленой. Когда они рассеялись, стало видно, что на месте погребенного с 57 жителями кишлака возникла гигантская каменная плотина перегородившая долину реки.

Ширина завала составила 3150 метров, высота около 750 метров, а длина 3750 метров. Сила удара была такова, что на озере Каракуль расположенном в 120 километрах от обвала был разбит и выброшен на восточный берег ледяной покров. В долине речки Шадаудара образовалось небольшое озеро Шадаукуль. Завал назван по имени погребенного кишлака Усойским. Спаслись только жители расположенного от него в 20 километрах кишлака Сарез успевшие выбежать из своих домов.

В сентябре 1911 года накапливавшиеся воды реки Мургаб затопили кишлак Срез и образовалось Сарезское озеро. Оно содержит 17 миллионов кубических метров воды и расположено на высоте около 3000 метров над уровнем моря. Озеро называют спящим драконом Центральной Азии из-за возможного прорыва водоёма при очередном землетрясении. Тогда будет затоплена часть территории Таджикистана, Узбекистана, Кыргызстана, Афганистана и Туркменистана.

В 1956 году в каньоне реки Ниагара слабое землетрясение вызвало растрескивание массива горных пород рядом с электростанцией Шуллкопф. Произошел резкий приток грунтовых вод нарушивших равновесие пород на горном склоне. На станцию обрушилось около 50 тысяч тонн скальных пород.

В 1958 году прорыв защитной дамбы вызвал выброс шести тысяч кубометров радиоактивного материала на 25-километровом участке узбекской реки Майли-Сай. Там же в 1992-1996 годах вызванные землетрясениями оползни привели к размыву и частичному разрушению хранилищ и выбросу токсичных материалов.

В апреле 1973 года цуг слабых землетрясений в Узбекистане вызвал Атчинский оползень. Природное и без того неустойчивое равновесие склона Кураминского хребта под воздействием многократно повторяющихся сейсмических толчков было нарушено и 700 миллионов кубических метров породы начали движение вниз. Оползень охватил площадь в восемь квадратных километров, а в месте отрыва возникли прямолинейные трещины глубиной более трёх метров, шириной более одного метра и протяженностью до 1700 метров. На территории шахтерского городка Тешикташ возникли валы и бугры высотой до полутора метров, вершины которых были рассечены трещинами протяженностью до 270 метров.


Землетрясения в Южной Калифорнии. Жёлтые пятна – эпицентры 23 тысяч слабых землетрясений зарегистрированных за 16 лет. Голубые линии это тектонические разломы, а красные – скрытые разломы в складках (Стейн, Йетс, 1989).


В 1983 году очаг землетрясения в Западном Туркменистане с М = 5,7 был расположен на глубине пяти километров. На поверхности образовались система разрывов протяженностью 27 километров. Основной разрыв пересек территорию поселка Кум-Даг и разорвал фундаменты, цоколь и стены домов. В его зоне металлические трубы газовых и водопроводных коммуникаций изогнулись, а местами разорвались.

Слабые землетрясения опасны тем, что возникают на малоизученных в сейсмическом отношении территориях. Для сильных землетрясений можно найти те или иные признаки их возникновения, но по слабым данных очень мало. Это вызывает тревогу, поскольку происходит интенсивное освоение залёжных территорий, на них размещают предприятия с опасным циклом производства.

Это касается объектов ядерной энергетики построенных в то время, когда представление о землетрясениях значительно отличались от современных. Они могут находиться в зонах подверженных «скрытым» землетрясениям. Подобные землетрясения уже происходили в Южной Калифорнии вблизи от могильников токсичных отходов промышленности.

Микроземлетрясения

Эти землетрясения неопасны и обнаруживаются только приборами. В отличие от сильных они происходят практически повсеместно. Здесь вопрос только в том насколько чувствительны сейсмоприёмники для их обнаружения. В зонах с активной тектоникой микроземлетрясений происходит намного больше, чем на асейсмичных территориях.

Микроземлетрясения вызываются силами способными оказывать влияние на структуру напряжений в горной породе. Например, ученые Университета Колумбии исследовали активный донный вулкан Axial на хребте Juan Fuca. Он расположен недалеко от побережья Вашингтона и Штата Орегон в Тихом океане. Было обнаружено, что между числом микроземлетрясений и приливами существует причинно-следственная связь. За период почти в десять лет они чаще всего происходили во время приливно-отливных изменений уровня воды.

Наблюдая за микроземлетрясениями можно выявить скрытую угрозу – «живой» тектонический разлом опасный возникновением сильного землетрясения. Зона разлома Сан-Андреас в США относится к таковым. Южнее Сан-Франциско на профиле длиной почти сто километров регистрируется огромное количество микротолчков. Хотя в последнее время здесь не происходили сильные землетрясения, но микросейсмичность является подтверждением потенциальной сейсмической опасности региона.

Японская сеть сейсмических станций гидрометеорологического агентства и университетов страны ежегодно регистрирует десятки тысяч микроземлетрясений. Было замечено, что их активность выше там, где происходили или происходят сильные землетрясения. Только в зоне активного разлома Неодани с 1963 года по 1972 годы было зарегистрировано более двадцати тысяч микроземлетрясений.

Изучение микроземлетрясений помогает разобраться в причинах возникновения более сильных. Иногда данные о микросейсмичности позволяют предугадать время возникновения сильных землетрясений.

В 1977 году в районе разлома Ямасаки в Японии по поведению слабых землетрясений сейсмологами было предсказано возникновение сильного землетрясения. При оценке сейсмической опасности в зоне будущего строительства крупного водохранилища на реке Герируд в пограничной области Ирана и Туркменистана в середине 90-х годов прошлого века автору благодаря высокочувствительным цифровым станциям удалось получить записи микроземлетрясений в зонах тектонических разрывов. Это само по себе оказалось очень важным, поскольку сведений о сейсмической активности этой территории не имелось.

Микросейсмы и сейсмический шум

Если вглядеться в сейсмограмму, то линии записи в отсутствии землетрясений никогда не бывают ровными. Это фиксируются очень слабые колебания, источниками являются различные явления – ветер, колебания воды в водоемах или удары воды о береговые линии и т. д. Микросейсмы начали исследовать в конце XIX века, когда Эмиль Вихерт предположил, они вызываются ударами морских волн о берега. Затем представления о природе генерации микросейсмических колебаний значительно расширилось. Оказалось, что часть из них возбуждаются стоячими морскими волнами в морях и океанах при прохождении циклонов.

Микросейсмы регистрируются в широком частотном диапазоне, и служат фоном определяющим порог чувствительности сейсмографов. Поэтому, при наблюдениях за землетрясениями стараются выбрать такую чувствительность приборов, чтобы записи не искажались помехами или шумами. Тем не менее, изучение микросейсм представляет самостоятельный интерес, так как механизмы их генерации и особенности спектрального распределения до сих пор не совсем ясны.

Было установлено повсеместное присутствие микросейсм. Также была обнаружена корреляция между характерными периодами микросейсм и средними периодами морских гравитационных волн. В 1989 году во время 45-го рейса научно-исследовательского судна «Дмитрий Менделеев» с помощью широкополосной донной станции удалось сделать уникальную запись микросейсмических шумов на дне Эгейского моря и практически одновременно гравитационных волн на его поверхности.

В 1913 году детальное изучение микросейсмических колебаний провёл академик Голицын на сейсмических станциях в Пулково, Иркутске, Ташкенте, Тифлисе и Баку. Им было высказано предположение, что помимо причин связанных с метеорологической обстановкой, микросейсмы могут быть связаны и с особенностями внутреннего строения планеты. Исследования волнового состава микросейсмических колебаний показали преобладание в их структуре поверхностных сейсмических волн (Релея и Лява), однако, отмечалось присутствие и объемных продольных и поперечных волн. Попытки определения направлений и расстояний до источников микросейсм давали противоречивые результаты.

Микросейсмы, вызываемые стоячими водяными волнами циклонов в океанах, распространяются на огромные расстояния. Область стоячих водяных волн генерирует периодически изменяющееся давление на дно океана, которое не затухает с глубиной. Под влиянием этого давления в земной коре возникают слабые колебания – штормовые микросейсмы. Их записывают все сейсмические станции мира. Например, микросейсмы от атлантических циклонов фиксируют не только станции, расположенные на европейском континенте, но и в Азии – Ашхабаде и Ташкенте, Сибири – в Иркутске и Новосибирске и многих других местах.

Другая часть микроколебаний, т.н. сейсмический шум, порождаются городами, транспортом всем тем, что так или иначе связано с деятельностью человека. Если посмотреть на записи подобных колебаний, то в них заметны «антропогенные циклы» – начало и конец рабочего дня, воскресные дни и, даже, перерывы на обеденное время. Шумы большого города связаны с одновременным действием большого количества источников. Поэтому сейсмические станции выносят за пределы городских территорий.

В зависимости от своей природы сейсмический шум может оказаться полезным для прогноза сильных землетрясений. Так, при анализе гидроакустических записей с шельфа Камчатского полуострова были выделены два типа сигналов, предваряющих землетрясения. Это микроземлетрясения с гипоцентрами близкими к очагу главного землетрясения и сейсмический шум, который сопровождает тектоническую подвижку.

Почти пятьдесят лет назад академик Гамбурцев предлагал различать микросейсмы глубинного и поверхностного происхождения. Им были обнаружены микросейсмические явления, названные им «сейсмоакустическими», которые иногда называют сейсмической или акустической эмиссией. Их исследование представляет интерес с точки прогноза землетрясений.

Традиционно высокочастотные сейсмические шумы (ВСШ) в диапазоне первых десятков герц рассматривались как помеха. Впервые они исследованы как источник геофизической информации группой ученых под руководством член-корреспондента РАН Л.Н.Рыкунова. Было обнаружено, что ВСШ модулируются длиннопериодными деформационными процессами, одним из которых является приливы.

На основе достижений в области средств цифровой регистрации микросейсмических шумов развивается технология пассивного сейсмического мониторинга разработок месторождений нефти и газа. Т.н. метод эмиссионной томографии. В нефтегазовой индустрии он применяется для диагностической визуализации гидроразрывов пластов при добыче углеводородов или трассировки потоков флюидов. Он используется для картирования термальных фронтов, обнаружения разломов в окрестности подземных газовых хранилищ и т. д.

Разработаны методы определения по микросейсмам частот колебаний грунтов или собственных колебаний уже построенного сооружения. Они отражают характерные периоды сотрясений всего комплекса, т.е. грунтов, фундамента и самого здания.

Зная диапазон периодов наиболее опасных колебаний от землетрясений, и сравнивая его с выявленными собственными микроколебаниями сооружения, можно заблаговременно принять меры к увеличению его сейсмостойкости. Подобные эксперименты проводились автором совместно с учеными Израиля для оценки сейсмической опасности территории города Ашхабада в Туркменистане.