Моя творческая лаборатория. Векторный потенциал и квантовая механика

Если верить квантовой физике, мы все одиноки в постоянно совершенствующихся личных Вселенных. Каждый из нас всего лишь одна из триллионов версий себя, существующих в различных частях макровселенной.

Очень страшно осознавать, что вы одиноки в личной версии реальности — реальности, созданной каждым вашим решением, не так ли? Именно это состояние описал французский философ Жан-Поль Сартр в своей лучшей работе «Бытие и ничто». Мы все существуем в состоянии экзистенциальной изоляции, т. е. предельного одиночества.

Если это так, то как объяснить, казалось бы, независимые действия других людей? Окружающие люди кажутся очень реальными и действующими в соответствии с личными мотивациями. У этих мотиваций есть причины и следствия, которые не должны зависеть от вас. Но все же не исключено, что эти сознания — не более чем бездумные призраки, отыгрывающие сложные пьесы для вашей реальности.

Так неужели все мы существуем в экзистенциалистском кошмаре? Неужели это правда, что все, кого вы любите и кто вам дорог, являются лишь тенями и призраками? К счастью, это не так. Хотя процесс, посредством которого мы можем делиться личными Вселенными, невероятно сложен для понимания.

Чтобы разобраться, как все это работает, нужно вернуться к квантовой физике, а точнее, обратиться к единственной жизнеспособной альтернативе — замечательной теории скрытых переменных, или скрытого порядка.

Бог не играет в кости

Альберт Эйнштейн так и не смог признать теории, которые развились на основе его первоначальной идеи. Часто цитируемая фраза «Бог не играет в кости» впервые появилась в письме, которое написал Эйнштейн в 1926 году.

На самом деле он писал следующее: «Квантовая механика действительно впечатляет. Но внутренний голос говорит мне, что это еще не идеал. Эта теория говорит о многом, но все же не приближает нас к разгадке тайны Всевышнего. Как бы там ни было, я убежден, что Он не играет в кости».

Из письма очевидно, что он считал, что в основе вероятностного поведения квантовых систем должен лежать объективный физический мир, нижний уровень реальности, частью которой является наблюдаемое неразумное поведение.

Причем этот уровень должен вести себя по законам классической физики. Именно последователи Эйнштейна, в частности Дэвид Бом, позже будут доказывать, что этот уровень, уровень «скрытых переменных», существует на самом деле.

Дэвид Бом, американец по рождению, поначалу поддержал копенгагенскую интерпретацию . Но завершив книгу в поддержку этой позиции, он начал серьезно сомневаться в нелогичном, на первый взгляд, поведении квантового мира. Затем он согласился с Эйнштейном, что под, казалось бы, случайным поведением частиц должна находиться реальность.

Это подобно тому, как движение завихрений на поверхности реки, если смотреть с моста, кажется случайным, но под поверхностью эти случайные вихри оказываются частью одного потока. Бом хотел копнуть глубже «под поверхность» квантового поведения, найти так называемые «скрытые переменные» и доказать, что законы классической механики сохраняются.

Способ взаимодействия частицы с окружающим миром Бом назвал квантовым потенциалом. Именно этим способом реализуются, все, казалось бы, странные дальнодействующие связи. Это как две волны, со стороны кажущиеся независимыми «водяными стенами», а в океанских глубинах оказывающиеся связанными между собой. Как же «глубоко» нужно копнуть, чтобы найти «дно» для квантовых волн?

Как считал Бом, скрытые переменные нужно искать между наименьшим расстоянием, которое способна измерить наука, и наименьшим возможным расстоянием, которое может «позволить» физика. На первый взгляд, это утверждение кажется очень странным. Похоже, в пределах 10—33 см пространство просто разрушается. Это настолько малая величина, что ее просто невозможно представить.

Бом утверждает, что наименьшее расстояние, которое способна измерить физика, составляет 10—17 см. Остается неведомая область, которая охватывает шестнадцать порядков относительных размеров. Это сопоставимо с разницей размеров нашего обычного макромира и наименьшего измеренного физического расстояния.

При отсутствии каких-либо эмпирических знаний об этой области нельзя исключать возможность того, что здесь кроются значимые факторы. Именно в пределах этой области действует квантовый потенциал.

Квантовый потенциал Бома

Квантовый потенциал Бома — это волнообразная информационная система, которая направляет электроны сквозь среду скрытой переменной. В поддержку своей теории он приводит аналогию с системой сопровождения самолетов. Авиалайнеры изменяют свой курс в соответствии с инструкциями, передаваемыми по радиоволнам.

Радиоволны не передают энергию, способную изменить курс самолета, они дают только информацию. Авиалайнер использует свою энергию для изменения курса. Точно так же квантовый потенциал информирует электрон, после чего происходят изменения в его состоянии.

Это, на первый взгляд, случайное событие, согласно копенгагенской интерпретации означает, что реальность в отсутствие наблюдения не существует. Прежде чем частица получит информацию, она обладает бесконечными потенциалами, но как только квантовая переменная передает ей информацию, происходит «коллапс» частицы в какое-то одно из потенциальных состояний.

В концепции квантовой механики Бома все частицы связаны квантовым потенциалом в пределах огромной взаимосвязанной сети. Это подобно тому, как паук может задавать движение в любом месте своей паутины. Согласно Бому, специальная теория относительности не нарушается, она просто не работает на более глубоком уровне, где оказывает свое влияние квантовый потенциал.

Сколько рыбок в аквариуме?

Как же можно представить действие этих скрытых переменных? Бом придумал оригинальный способ продемонстрировать, как наблюдатели, не имеющие под рукой всей информации, могут делать совершенно ложные предположения, неверно интерпретируя то, что видят.

Он предложил представить себе существ, живущих на другой планете, которые никогда не видели рыбу и не имеют понятия о том, что такое аквариум.

Поскольку мы не можем отправить им аквариум или рыбу, то единственным решением будет снять на две связанные видеокамеры реальную рыбу, плавающую в аквариуме.

Одна камера устанавливается перед аквариумом, а вторая — сбоку от него. Наши инопланетные друзья сооружают два телевизора: один — для приема сигнала с одной камеры, а второй — для приема сигнала с другой.

Не имея достаточных знаний, они вполне могут предположить, что смотрят на два разных существа, а не на одну рыбу.

Через некоторое время умные инопланетяне отмечают, что между этими двумя существами есть определенная связь. Хотя они не движутся в одном направлении и не выглядят одинаково в конкретный момент времени, они явно демонстрируют сходство.

К примеру, когда одна рыба плывет вперед, другая плывет в определенную сторону. В итоге братья по разуму приходят к выводу, что между ними происходит некая подсознательная мгновенная связь. Но это не так, ведь на самом деле это одна и та же рыба.

Этим примером Бом показывает, что очевидная связь между субатомными частицами говорит о том, что существует более глубокий и неизвестный доселе уровень реальности. Это более сложное измерение лежит за пределами нашего собственного — ситуация аналогична примеру с аквариумом.

Мы воспринимаем субатомные частицы отдельно друг от друга, потому что видим только часть их реальности. Но это не отдельные частицы, а только грани более глубокой и основополагающей целостности, которую Бом назвал «скрытым порядком».

На первый взгляд, кажется, что идеи Бома опираются на здравый смысл, ведь он показал, что на самом деле нет никакой связи, превышающей скорость света, равно как и «жуткого дальнодействия». Но он также уверяет, что между двумя частицами вообще отсутствует расстояние: они, как те рыбы, представляют собой один и тот же объект.

Так что же в идеях Дэвида Бома такого революционного?

Может, теория скрытого порядка, где снова правят бал причинность и классическая механика, — это ироничный консерватизм, а не революционное иконоборчество? Если бы Бом оставил все как есть, была бы вероятность того, что его теория будет принята. Однако, будучи независимым мыслителем, он довел свою концепцию до логического финала — и какого финала!

Революционная концепция Вселенной возникла в голове Бома во время... просмотра телевизора. Однажды вечером он смотрел телепрограмму на канале Би-би-си, где обсуждалось новоизобретенное устройство. Это был сосуд с вращающимся внутри него цилиндром.

Узкое пространство между цилиндром и стенками сосуда было заполнено глицерином, в котором неподвижно плавала капля чернил. Когда ручку цилиндра поворачивали, капля чернил размазывалась в глицерине до тех пор, пока не пропадала вовсе. Но как только ручку начинали поворачивать в другую сторону, чернильная траектория проявлялась и по мере движения превращалась в исходную каплю.

Бом сказал: «Этот опыт поразил меня тем, что в точности соответствовал моим представлениям о порядке, то есть, когда чернильное пятно расползалось, оно все-таки имело «скрытый» (то есть неявный) порядок, который проявлялся, как только капля восстанавливалась.

Попросту говоря, чернила приходили в состояние «беспорядка», растворяясь в глицерине. Этот опыт привел меня к новому определению порядка».

Бом подозревал, что все каким-то образом содержится в чем-то и содержит все остальное. Другими словами, все находится в «свернутом» состоянии. То, что мы видим как отдельные объекты, связано друг с другом на гораздо более глубоком уровне реальности.

Наша Вселенная — как рыба в аквариуме, которая была единым объектом, а воспринималась как два из-за отсутствия у наблюдателей полного комплекта инструментов восприятия. Как говорил Бом, за нашим восприятием отдельных объектов скрывается порядок единства.

По мнению Бома, свернутостью обладает все, что существует, в том числе и человеческое сознание: «В скрытом порядке целостность всего существующего свернута в каждой области пространства (и времени).

Так что, какой бы элемент или аспект мы ни извлекали мысленно, в нем по-прежнему будет свернуто все и, следовательно, он будет иметь неразрывную связь с целостностью, из которой был извлечен. Целостность пронизывает все с самого начала».

Преграды для восприятия целостности

Сначала Бому было трудно объяснить свои идеи, потому что они казались такими чуждыми привычному восприятию реальности. Он утверждал, что именно язык стал преградой для восприятия целостности. Европейские языки имеют установленную систему мер.

Такой подход сам по себе ведет к разделению действительности на категории и классификации. Некоторые языки, такие как санскрит, не имеют такой структуры. Они описывают мир как бесконечное целое.

В самом деле, в индийской культуре вся совокупность реальности воспринимается как иллюзия. Центральное место в ней занимает понятие «майя». У индусов слово «майя» означает «иллюзия», но его корень лежит в слове «матра», которое означает музыкальную единицу измерения. Кстати, это объясняет, почему измерения не играют существенной роли в восточном понимании реальности.

Это наводит на мысль, что в макромире все же существуют другие сознательные существа. Каждый живет в своей личной Вселенной, но в пределах скрытого порядка временная ось каждого сцепляется и перепутывается с другими осями.

Это значит, что любое возможное действие с вашей стороны будет отражаться во Вселенных тех существ, с которыми вы контактируете. Процесс понятен, но приходится иметь дело с настолько большими числами, что их невозможно себе представить.

Согласно многомировой интерпретации, Вселенная расщепляется на первоначально идентичные копии себя при каждом «наблюдении». Яблоком раздора в квантовой физике выступает вопрос, что называть наблюдением, или, точнее, что нужно для того, чтобы быть наблюдателем. Судя по теориям, наблюдателем должна быть сущность, обладающая сознанием, то есть живое «сознательное» существо.

Если согласиться с тем, что событие вызвано актом наблюдения сознательным существом, то большинство «событий» происходят на квантовом уровне с бесчисленным количеством последствий, а значит, каждое мгновение рождаются бесчисленные Вселенные. Все они развиваются, создавая свое собственное множество Вселенных.

За столь короткие сроки появляется так много Вселенных, что, бесспорно, их количество бесконечно.

И поскольку пространство кажется бесконечным, в нем более чем достаточно «места» для размещения такого экспоненциального расширения.

Каждый возможный исход каждого действия каждого разума в каждой Вселенной будет реализован.

Каждое перехлестное событие между Вселенными тоже будет реализовано. Ваши действия будут постоянно влиять на действия других людей, с которыми вы сталкиваетесь в жизни.

Это постоянное сцепление Вселенных происходит в бомовском скрытом порядке. Это позволяет постоянно и мгновенно передавать информацию через каждую Вселенную в постоянно расширяющейся и, следовательно, всеохватывающей макровселенной.

Бом пришел именно к такому выводу. Для него сознание и материя — это две разные грани одного и того же. Не существует дихотомии разум—материя, потому что на уровне сворачивания они идентичны.

Таким образом, квантовая физика, независимо от интерпретации, помещает сознание в центр всей реальности. Но то, как сознание создает эту реальность, остается тайной. Каждый отдельный человек рассчитывает прожить около 100 лет.

В момент его смерти сознание, кажется, просто исчезает. Но как можно, с одной стороны, заявлять, что сознание порождает Вселенную, а с другой — признавать, что сознание конечно? Это бессмысленно! Человек должен каким-то еще пока неизвестным образом влиять на реальность до своего рождения и после смерти. Существует теория, что так оно и есть…

⚓ Позволь себе роскошь стать собой

Когда мы от классической механики переходим к квантовой, то наши представления о важности тех или иных понятий во многом меняются. (Кое-какие из этих понятий мы уже рассматривали раньше.) В частности, постепенно сходит на нет понятие силы, а понятия энергии и импульса приобретают первостепенную важность. Вместо движения частиц, как вы помните, речь теперь идет уже об амплитудах вероятностей, которые меняются в пространстве и времени. В эти амплитуды входят длины волн, связанные с импульсами, и частоты, связываемые с энергиями. Импульсы и энергии определяют собой фазы волновых функций и по этой-то причине они важны для квантовой механики. Вместо силы речь теперь идет о том, каким образом взаимодействие меняет длину волны. Представление о силе становится уже второстепенным, если вообще о нем еще стоит говорить. Даже когда, к примеру, упоминают о ядерных силах, то на самом деле, как правило, работают все же с энергиями взаимодействия двух нуклонов, а не с силой их взаимодействия. Никому не приходит в голову дифференцировать энергию, чтобы посмотреть, какова сила. В этом параграфе мы хотим рассказать, как возникают в квантовой механике векторный и скалярный потенциалы. Оказывается, что именно из-за того, что в квантовой механике главную роль играют импульс и энергия, самый прямой путь введения в квантовое описание электромагнитных эффектов — сделать это с помощью А и φ.

Надо сперва слегка напомнить, как действует квантовая механика. Мы снова вернемся к описанному в вып. 3, гл. 37, воображаемому опыту, в котором электроны испытывали дифракцию на двух щелях. На фиг. 15.5 показано то же устройство. Электроны (все они обладают примерно одинаковой энергией) покидают источник и движутся к стенке с двумя узкими щелями. За стенкой находится «защитный» вал — поглотитель с подвижным детектором. Этот детектор предназначен для измерения частоты /, с которой электроны попадают в небольшой участок поглотителя на расстоянии х от оси симметрии. Частота эта пропорциональна вероятности того, что отдельный электрон, вылетевший из источника, достигнет этого участка «вала». Вероятность обладает распределением сложного вида (оно показано на рисунке), которое объясняется интерференцией двух амплитуд, по одной от каждой щели. Интерференция двух амплитуд зависит от их разности фаз. Иными словами, когда амплитуды равны С 1 е ¡ф 1 и С 2 е ¡ф 2 , разность фаз δ=Ф 1 —Ф 2 определяет интерференционную картину [см. вып. 3, гл. 29, уравнение (29.12)]. Если расстояние от щелей до экрана равно L , а разность длин путей электронов, проходящих через две щели, равна а (как показано на фигуре), то разность фаз двух волн дается отношением

Как обычно, мы полагаем λ = λ/2π, где λ — длина волны, отвечающая пространственному изменению амплитуды вероятности. Для простоты рассмотрим лишь те значения х, которые много меньше L ; тогда можно будет принять

Когда х равно нулю, то и δ равно нулю; волны находятся в фазе, а вероятность имеет максимум. Когда δ равно π, волны оказываются в противофазе, интерферируя деструктивно, и вероятность достигает минимума. Так электронная интенсивность получает волнообразный вид.

Теперь мы хотим сформулировать тот закон, которым в квантовой механике заменяется закон силы F = qv X В. Этот закон будет определять собой поведение квантовомеханических частиц в электромагнитном поле. Раз все происходящее определяется амплитудами, то закон должен будет объяснить, как сказывается на амплитудах влияние магнитного поля; с ускорениями же частиц мы больше никакого дела иметь не будем. Закон этот состоит в следующем: фазу, с какой амплитуда достигает детектора, двигаясь по какой-то траектории, присутствие магнитного поля меняет на величину, равную интегралу от векторного потенциала вдоль этой траектории, умноженному на отношение заряда частицы к постоянной Планка. То есть

Если бы магнитного поля не было, то наблюдалась бы какая-то определенная фаза прибытия. Если же где-то появляется магнитное поле, то фаза прибытия возрастает на величину интеграла в (15.29).

Хотя для наших теперешних рассуждений в этом нет необходимости, заметим все же, что влияние электростатического поля тоже выражается в изменении фазы, равном интегралу по времени от скалярного потенциала φ со знаком минус:

Эти два выражения справедливы лишь для статических полей, но, объединив их, мы получим правильный результат для любого, статического или динамического, электромагнитного поля. Именно этот закон и заменяет собой формулу F= q (E + v X В). Мы сейчас, однако, будем говорить только о статическом магнитном поле.

Положим, что опыт с двумя щелями проводится в магнитном поле. Мы хотим узнать, с какой фазой достигают экрана две волны, пути которых пролегают через две разные щели. Их интерференция определяет то место, где окажется максимум вероятности. Фазу волны, бегущей по траектории (1), мы назовем Ф 1 , а через ф 1 (В = 0) обозначим фазу, когда магнитного поля нет. Тогда после включения поля фаза достигает величины

Аналогично, фаза для траектории (2) равна

Интерференция волн в детекторе зависит от разности фаз

Разность фаз в отсутствие поля мы обозначим δ (В = 0); это та самая разность, которую мы подсчитали в уравнении (15.28). Кроме того, мы замечаем, что из двух интегралов можно сделать один, идущий вперед по пути (1), а назад — по пути (2); этот замкнутый путь будет обозначаться (1—2). Так что получается

Это уравнение сообщает нам, как под действием магнитного поля изменяется движение электрона; с его помощью мы можем найти новые положения максимумов и минимумов интенсивности.

Прежде чем сделать это, мы хотим, однако, поставить один интересный и важный вопрос. Вы помните, что в вектор-потенциальной функции есть некоторый произвол. Две разные вектор-потенциальные функции А и А′, отличающиеся на градиент vψ некоторой скалярной функции, представляют одно и то же магнитное поле (потому что ротор градиента равен нулю). Они поэтому приводят к одной и той же классической силе qv х В. Если в квантовой механике все эффекты зависят от векторного потенциала, то какая из многих возможных А-функций правильна?

Ответ состоит в том, что в квантовой механике продолжает существовать тот же произвол в А. Если в уравнении (15.33) мы заменим А на А′ = А + vψ, то интеграл от А превратится в

Интеграл от vψ вычисляется по замкнутому пути (1—2); но интеграл от касательной составляющей градиента по замкнутому пути всегда равен нулю (по теореме Стокса). Поэтому как А, так и А′ приводят к одним и тем же разностям фаз и к одним и тем же квантовомеханическим эффектам интерференции. И в классической, и в квантовой теории важен только ротор А; любая функция А, у которой ротор такой, как надо, приводит к правильной теории.

Тот же вывод становится очевидным, если мы используем результаты, приведенные в гл. 14, § 1. Там мы показали, что контурный интеграл от А по замкнутому пути равен потоку В через контур, в данном случае потоку между путями (1) и (2). Уравнение (15.33) можно, если мы хотим, записать в виде

где под потоком В, как обычно, подразумевается поверхностный интеграл от нормальной составляющей В. Результат зависит только от В, т. е. только от ротора А.

Но раз результат можно выражать и через В и через А, то может создаться впечатление, что В удерживает свои позиции «реального» поля, а А все еще выглядит искусственным образованием. Но определение «реального» поля, которое мы вначале предложили, основывалось на идее о том, что «реальное» поле не смогло бы действовать на частицу на расстоянии. Мы же беремся привести пример, в котором В равно нулю (или по крайней мере сколь угодно малому числу) в любом месте, где частицы могут оказаться, так что невозможно представить себе, что В непосредственно действует на них.

Вы помните, что если имеется длинный соленоид, по которому течет электрический ток, то поле В существует внутри него, а снаружи поля нет, тогда как множество векторов А циркулирует снаружи соленоида (фиг. 15.6). Если мы создадим такие условия, что электроны будут проходить только вне соленоида (только там, где есть А), то, согласно уравнению (15.33), соленоид будет все же влиять на их движение. По классическим же воззрениям это невозможно. По классическим представлениям сила зависит только от В. Чтобы узнать, течет ли по соленоиду ток, частица должна пройти сквозь него. А квантовая механика утверждает, что наличие магнитного поля в соленоиде можно установить, просто обойдя его, даже не приближаясь к нему вплотную!

Представьте, что мы поместили очень длинный соленоид малого диаметра прямо тут же за стенкой между двумя щелями (фиг. 15.7). Диаметр соленоида должен быть намного меньше расстояния d между щелями. В этих обстоятельствах дифракция электронов на щели не приведет к заметным вероятностям того, что электроны проскользнут где-то близ соленоида. Как же все это повлияет на наш интерференционный эксперимент?

Сравним два случая: когда ток по соленоиду идет и когда тока нет. Если тока нет, то нет ни В ни А, и получается первоначальная картина электронных интенсивностей вдоль поглотителя. Если мы включим ток и создадим внутри соленоида магнитное поле В, то снаружи появится поле А. Возникнет сдвиг в разности фаз, пропорциональный циркуляции А вне соленоида, а это означает, что картина максимумов и минимумов сдвинется на другое место. Действительно, раз поток В между любыми двумя путями постоянен, то точно так же постоянна и циркуляция А. Для любой точки прибытия фаза меняется одинаково; это соответствует тому, что вся картина сдвигается по х на постоянную величину, скажем, на х 0 . Эту величину х 0 легко подсчитать. Максимальная интенсивность возникает там, где разность фаз двух волн равна нулю. Подставляя вместо δ выражение (15.32) или (15.33), а вместо δ(B=0) выражение (15.28), получаем

Картина при наличии соленоида будет выглядеть так, как показано на фиг. 15.7. По крайней мере так предсказывает квантовая механика.

Недавно был проделан точно такой же опыт. Это чрезвычайно сложный опыт. Длина волны электронов крайне мала, поэтому прибор должен быть миниатюрным, иначе интерференции не заметишь. Щели должны лежать вплотную друг к другу, а это означает, что нужен необычайно тонкий соленоид. Оказывается, что при некоторых обстоятельствах кристаллы железа вырастают в виде очень длинных и микроскопически тонких нитей. Если эти железные нити намагнитить, они образуют маленький соленоид, у которого нет снаружи магнитного поля (оно проявляется только на концах). Так вот, был проделан опыт по интерференции электронов с железной нитью, помещенной между двумя щелями, и предсказанное смещение электронной картины подтвердилось.

А тогда поле А в нашем смысле уже «реально». Вы можете возразить: «Но ведь там есть магнитное поле». Да, есть, но вспомните нашу исходную идею — «реально» только такое поле, которое, чтобы определить собой движение частицы, должно быть задано в том месте, где она находится. Поле В в нити действует на расстоянии. Если мы не хотим, чтобы его влияние выглядело как действие на расстоянии, мы должны пользоваться векторным потенциалом.

Эта проблема имеет интересную историю. Теория, которую мы изложили, была известна с самого возникновения квантовой механики, с 1926 г. Сам факт, что векторный потенциал появляется в волновом уравнении квантовой механики (так называемом уравнении Шредингера), был очевиден с того момента, как оно было написано. В том, что он не может быть заменен магнитным полем, убеждались все, кто пытался это проделать; друг за другом все убеждались, что простого пути для этого не существует. Это ясно и из нашего примера, когда электрон движется по области, где нет никакого поля, и тем не менее подвергается воздействию. Но, поскольку в классической механике А, по-видимому, не имело непосредственного, важного значения и, далее, из-за того, что его можно было менять добавлением градиента, люди еще и еще раз повторяли, что векторный потенциал не обладает прямым физическим смыслом, что даже в квантовой механике «правами» обладают только электрические и магнитные поля. Когда оглядываешься назад, кажется странным, что никто не подумал обсудить этот опыт вплоть до 1956 г., когда Бом и Аронов впервые предложили его и сделали весь вопрос кристально ясным. Все это ведь всегда подразумевалось, но никто не обращал на это внимания. И многие были просто потрясены, когда всплыл этот вопрос. Вот по этой-то причине кое-кто и счел нужным поставить опыт и убедиться, что все это действительно так, хотя квантовая механика, в которую все мы верим вот уже сколько лет, давала вполне недвусмысленный ответ. Занятно, что подобные вещи могут тридцать лет быть на виду у всех, но из-за определенных предрассудков относительно того, что существенно, а что нет, могут всеми игнорироваться.

Сейчас мы хотим немного продолжить наш анализ. Мы продемонстрируем связь между квантовомеханическои и классической формулами, чтобы показать, почему оказывается, что при макроскопическом взгляде на вещи все выглядит так, как будто частицы управляются силой, равной произведению q v на ротор А. Чтобы получить классическую механику из квантовой, нам нужно рассмотреть случаи, когда все длины волн малы по сравнению с расстояниями, на которых заметно меняются внешние условия (например, поля). Мы не будем гнаться за общностью доказательства, а только покажем все на очень простом примере. Обратимся снова к тому же опыту со щелями. Но теперь вместо того, чтобы втискивать все магнитное поле в узкий промежуток между щелями, представим себе такое магнитное поле, которое раскинулось позади щелей широкой полосой (фиг. 15.8). Возьмем идеализированный случай, когда в узкой полосе шириной w , много меньшей L , магнитное поле однородно. (Это легко устроить, надо только подальше отнести поглотитель.) Чтобы подсчитать сдвиг по фазе, мы должны взять два интеграла от А вдоль двух траекторий (1) и (2). Как мы видели, они различаются просто на поток В между этими путями. В нашем приближении поток равен Bwd . Разность фаз для двух путей поэтому равна

Мы замечаем, что в принятом приближении сдвиг фаз не зависит от угла. Так что опять-таки эффект сводится к сдвигу всей картины вверх на величину Δх. Из формулы (15.28)

Подставляя δ—δ = 0) из (15.37), получаем

Такой сдвиг равноценен тому, что все траектории отклоняются на небольшой угол α (см. фиг. 15.8), равный

По классическим воззрениям мы тоже должны были ожидать, что узкая полоска магнитного поля отклонит все траектории на какой-то маленький угол, скажем α′ (фиг. 15.9,а). Когда электроны проходят через магнитное поле, они подвергаются действию поперечной силы qv X В в течение времени w / v . Изменение их поперечного импульса просто равно ему самому, так что

Угловое отклонение (фиг. 15.9,б) равно отношению этого поперечного импульса к полному импульсу р. Мы получаем

Этот результат можно сравнить с уравнением (15.39), в котором та же величина вычислялась квантово-механически. Но связь между классической и квантовой механикой в том и состоит, что частице с импульсом р ставится в соответствие квантовая амплитуда, изменяющаяся как волна длиной λ = h/р. В соответствии с этим уравнением α и α′ оказываются идентичными; и классические и квантовые выкладки приводят к одному и тому же.

Из этого анализа мы видим, как получается, что векторный потенциал, который в квантовой механике появляется в явном виде, вызывает классическую силу, зависящую только от его производных. В квантовой механике существенна только интерференция между соседними путями; в ней всегда оказывается, что эффект зависит только от того, как сильно поле А меняется от точки к точке, а значит, только от производных А, а не от него самого. Несмотря на это, векторный потенциал А (наряду с сопровождающим его скалярным потенциалом φ), по-видимому, приводит к более прямому описанию физических процессов. Чем глубже мы проникаем в квантовую теорию, тем яснее и прозрачней нам это становится. В общей теории — квантовой электродинамике — в системе уравнений, заменяющих собой уравнения Максвелла, векторные и скалярные потенциалы уже считаются фундаментальными величинами. Векторы Е и В постепенно исчезают из современной записи физических законов: их вытесняют А и φ.

– Ирина Каминкова

Лауреаты Нобелевской премии в области физики доказали, что, вне всяких сомнений, физический мир — это единый океан энергии, который возникает и спустя миллисекунды исчезает, пульсируя снова и снова.

Нет ничего сплошного и твердого. Таков мир квантовой физики.

Доказано, что только мысль позволяет нам собрать и удержать вместе те «объекты», которые мы видим в этом постоянно изменчивом поле энергии.

Так почему же мы видим человека, а не мигающий сгусток энергии?

Представьте себе катушку с фильмом.

Фильм — это набор кадров с частотой примерно 24 кадра в секунду. Кадры разделены интервалом времени. Однако, благодаря скорости, с которой один кадр сменяет другой, возникает обман зрения, и мы думаем, что видим непрерывное и движущееся изображение.

Теперь вспомните о телевидении.

Электронно-лучевая трубка телевизора – это просто трубка с множеством электронов, которые ударяются об экран определенным образом и создают тем самым иллюзию формы и движения.

Вот чем являются все объекты в любом случае. У вас есть 5 физических чувств (зрение, слух, осязание, обоняние и вкус).

Каждое из этих чувств имеет определенный спектр (например, собака слышит звук в другом диапазоне, чем вы; змея видит свет в другом спектре, чем вы, и так далее).

Иначе говоря, ваш набор чувств воспринимает окружающее море энергии с определенной ограниченной точки зрения и, исходя из этого, строит изображение. Это не полная, и совсем не точная картина. Это — всего лишь интерпретация.

Все наши интерпретации основаны исключительно на «внутренней карте» реальности, сформировавшейся у нас, а не на объективной истине. Наша «карта» — это результат накопленного в течение жизни опыта.

Наши мысли связаны с этой невидимой энергией, и они определяют то, что формирует эта энергия. Мысли буквально перебирают вселенную частица за частицей с тем, чтобы создать физическую жизнь.

Оглянитесь вокруг.

Все, что вы видите в нашем физическом мире, началось как идея, — идея, которая росла по мере того, как ею делились и выражали, пока не выросла достаточно, чтобы через несколько этапов стать физическим объектом.

Вы буквально становитесь тем, о чем больше всего думаете.

Ваша жизнь становится тем, во что вы больше всего верите.

Мир – это в буквальном смысле слова ваше зеркало, которое позволяет вам испытать в физическом плане то, что вы считаете истиной для себя … пока вы не измените точку зрения.

Квантовая физика демонстрирует нам, что окружающий мир – это не нечто жесткое и неизменное, как могло бы показаться. Напротив, это нечто непрерывно меняющееся, построенное на наших индивидуальных и коллективных мыслях.

То, что мы считаем истинным, на самом деле — иллюзия, почти цирковой трюк.

К счастью, мы уже начали раскрывать эту иллюзию и, самое главное, искать возможности изменить ее.

Из чего состоит ваше тело?

Человеческое тело состоит из девяти систем, включая кровообращение, пищеварение, эндокринную систему, мышечную, нервную, репродуктивную, дыхательную, скелетную системы и мочевые пути.

А из чего состоят они?

Из тканей и органов.

Из чего состоят ткани и органы?

Из клеток.

Из чего состоят клетки?

Из молекул.

Из чего состоят молекулы?

Из атомов.

Из чего состоят атомы?

Из субатомных частиц.

Из чего состоят субатомные частицы?

Из энергии!

Вы и я – это чистая энергия-свет в ее наиболее прекрасном и разумном воплощении. Энергия, постоянно изменчивая под поверхностью, но – под контролем вашего могущественного интеллекта.

Вы – это одно большое звездное и могущественное Человеческое Существо.

Если бы вы могли увидеть себя под мощным электронным микроскопом и проводить другие эксперименты над собой, вы бы убедились в том, что состоите из сгустка постоянно меняющейся энергии в виде электронов, нейтронов, фотонов и так далее.

Так же – и все, что вас окружает. Квантовая физика говорит нам, что именно акт наблюдения объекта заставляет его быть там и таким, где и каким мы его видим.

Объект не существует независимо от своего наблюдателя! Так что, как видите, ваши наблюдения, ваше внимание к чему-либо, и ваше намерение, буквально создает данный объект.

Это доказано наукой.

Ваш мир состоит из духа, разума и тела.

Каждый из этих трех элементов, дух, разум и тело, выполняет функцию, которая является уникальной для него и не доступна для остальных. То, что видят ваши глаза и ощущает ваше тело – это физический мир, который мы будем называть Тело. Тело – это эффект, созданный по причине.

Данная причина – это Мысль.

Тело не может создавать. Оно может только ощущать и быть ощущаемым … в этом его уникальная функция.

Мысль не может ощущать … она может только выдумывать, создавать и объяснять. Ей необходим мир относительности (физический мир, Тело), чтобы ощущать саму себя.

Дух есть Все Сущее, то, что дает Жизнь Мысли и Телу.

Тело не имеет власти создавать, хотя и дарит такую иллюзию. Эта иллюзия является причиной множества разочарований. Тело – это просто результат, и не в его власти стать причиной или создать нечто.

Ключевым во всей этой информации является возможность для вас научиться видеть Вселенную иначе, для того чтобы дать воплощение всему, что является вашим истинным желанием.

Лауреаты Нобелевской премии в области физики доказали, что, вне всяких сомнений, физический мир – это единый океан энергии, который возникает и спустя миллисекунды исчезает, пульсируя снова и снова.
Нет ничего сплошного и твердого. Таков мир квантовой физики.
Доказано, что только мысль позволяет нам собрать и удержать вместе те «объекты», которые мы видим в этом постоянно изменчивом поле энергии.

Так почему же мы видим человека, а не мигающий сгусток энергии?
Представьте себе катушку с фильмом. Фильм – это набор кадров с частотой примерно 24 кадра в секунду. Кадры разделены интервалом времени. Однако, благодаря скорости, с которой один кадр сменяет другой, возникает обман зрения, и мы думаем, что видим непрерывное и движущееся изображение.

Теперь вспомните о телевидении.
Электронно-лучевая трубка телевизора – это просто трубка с множеством электронов, которые ударяются об экран определенным образом и создают тем самым иллюзию формы и движения.

Вот чем являются все объекты в любом случае.
У вас есть 5 ФИЗИЧЕСКИХ ЧУВСТВ (зрение, слух, осязание, обоняние и вкус). Каждое из этих чувств имеет определенный спектр (например, собака слышит звук в другом диапазоне, чем вы; змея видит свет в другом спектре, чем вы, и так далее).

Иначе говоря, ваш набор чувств воспринимает окружающее море энергии с определенной ОГРАНИЧЕННОЙ точки зрения и, исходя из этого, строит изображение. Это не полная, и совсем не точная картина. Это - всего лишь интерпретация. Все наши интерпретации основаны исключительно на «внутренней карте» реальности, сформировавшейся у нас, а не на объективной истине. Наша «карта» – это результат накопленного в течение жизни опыта. Наши мысли связаны с этой невидимой энергией, и они определяют то, что формирует эта энергия. Мысли буквально перебирают вселенную частица за частицей с тем, чтобы создать физическую жизнь.

Оглянитесь вокруг. Все, что вы видите в нашем физическом мире, началось как идея, – идея, которая росла по мере того, как ею делились и выражали, пока не выросла достаточно, чтобы через несколько этапов стать физическим объектом. Вы буквально становитесь тем, о чем больше всего думаете. Ваша жизнь становится тем, во что вы больше всего верите. Мир – это в буквальном смысле слова ваше зеркало, которое позволяет вам испытать в физическом плане то, что вы считаете истиной для себя … пока вы не измените точку зрения.

Квантовая физика демонстрирует нам, что окружающий мир – это не нечто жесткое и неизменное, как могло бы показаться. Напротив, это нечто непрерывно меняющееся, построенное на наших индивидуальных и коллективных мыслях.

То, что мы считаем истинным, на самом деле – иллюзия, почти цирковой трюк. К счастью, мы уже начали раскрывать эту иллюзию и, самое главное, искать возможности изменить ее.
Из чего состоит ваше тело? Человеческое тело состоит из девяти систем, включая кровообращение, пищеварение, эндокринную систему, мышечную, нервную, репродуктивную, дыхательную, скелетную системы и мочевые пути.

А из чего состоят они?
Из тканей и органов.
Из чего состоят ткани и органы?
Из клеток.
Из чего состоят клетки?
Из молекул.
Из чего состоят молекулы?
Из атомов.
Из чего состоят атомы?
Из субатомных частиц.
Из чего состоят субатомные частицы?
Из энергии!

Вы и я – это чистая энергия-свет в ее наиболее прекрасном и разумном воплощении. Энергия, постоянно изменчивая под поверхностью, но – под контролем вашего могущественного интеллекта. Вы – это одно большое звездное и могущественное Человеческое Существо.

Если бы вы могли увидеть себя под мощным электронным микроскопом и проводить другие эксперименты над собой, вы бы убедились в том, что состоите из сгустка постоянно меняющейся энергии в виде электронов, нейтронов, фотонов и так далее.

Так же – и все, что вас окружает. Квантовая физика говорит нам, что именно акт наблюдения объекта заставляет его быть там и таким, где и каким мы его видим. Объект не существует независимо от своего наблюдателя! Так что, как видите, ваши наблюдения, ваше внимание к чему-либо, и ваше намерение, буквально создает данный объект.

Это доказано наукой. Ваш мир состоит из духа, разума и тела. Каждый из этих трех элементов, дух, разум и тело, выполняет функцию, которая является уникальной для него и не доступна для остальных. То, что видят ваши глаза и ощущает ваше тело – это физический мир, который мы будем называть Тело. Тело – это эффект, созданный по причине.

Данная причина – это Мысль. Тело не может создавать. Оно может только ощущать и быть ощущаемым … в этом его уникальная функция. Мысль не может ощущать... она может только выдумывать, создавать и объяснять. Ей необходим мир относительности (физический мир, Тело), чтобы ощущать саму себя.

Дух есть Все Сущее, то, что дает Жизнь Мысли и Телу. Тело не имеет власти создавать, хотя и дарит такую иллюзию. Эта иллюзия является причиной множества разочарований. Тело – это просто результат, и не в его власти стать причиной или создать нечто.

Ключевым во всей этой информации является возможность для вас научиться видеть Вселенную иначе, для того чтобы дать воплощение всему, что является вашим истинным желанием.

А так ли хорошо знаком вам потенциал? // Квант. - 1997. - № 3. - С. 32-33.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

Напряжение - ...усилие, производимое каждой точкой
наэлектризованного тела, чтобы избавиться от имеющегося
в ней электричества и передать его другим телам...
Алессандро Вольта
Электродвижущее действие проявляется в двоякого рода эффектах...
Я назову первый из этих эффектов электрическим напряжением...
Андре Мари Ампер
Учитывая, насколько желательно подчинить расчету...
силу столь универсального характера, как электричество,..
мы можем сосредоточить свое внимание на одной особой функции,..
вместо того чтобы рассеивать свое внимание,
исследуя каждую из этих сил в отдельности...
Джордж Грин
В каждой точке пространства имеется число, и, когда вы
переходите с места на место, это число меняется.
Если в какой-то точке пространства поместить предмет,
то на него будет действовать сила в том направлении,
в котором быстрее всего изменяется это число
(я дам ему обычное название - потенциал...).
Ричард Фейнман

Между первым и последним из приведенных высказываний - почти двести лет. Они вобрали в себя одну из самых интересных историй о становлении одного из самых замысловатых физических (и не только!) понятий. Согласитесь, нелегко обнаружить главного персонажа этой истории, скрывающегося под масками то напряжения, то электродвижущей силы, то некой загадочной функции. Все это - потенциал. А со сколькими его разновидностями вам, возможно, еще придется встретиться: контактная разность потенциалов, потенциал ионизации, гравитационный потенциал... А каковы имена ученых, распутывавших терминологический клубок и шлифовавших новое понятие, - Эйлер, Лаплас, Пуассон, Грин, Гаусс!..

Правда, не сразу поймешь, физики ли это или математики? Не удивляйтесь, универсальность этого понятия связана с огромной областью плодотворных его применений - в задачах о распространении тепла, о течении жидкости, в расчетах гравитационных, электрических и магнитных полей.

Пробуя свои силы в решении пусть пока простых проблем, не забывайте о том, что современная теория потенциала - весомый «камень» в фундаменте целой отрасли знаний, называемой математической физикой.

Вопросы и задачи

  1. Потенциал электрического поля некоторого заряда убывает по мере удаления от него. Каков знак этого заряда?
  2. Всегда ли между проводником, заряженным положительно, и проводником, заряженным отрицательно, есть разность потенциалов?
  3. На расстоянии r от центра изолированного проводящего незаряженного шара находится точечный заряд q . Чему равен потенциал шара?
  4. Имеется заряженная сфера. Зависит ли потенциал в центре сферы от распределения зарядов на сфере?
  5. Внутрь проводящей заряженной сферы через небольшое отверстие вносится (без соприкосновения) металлический шарик, заряд которого равен по величине, но противоположен по знаку заряду сферы. Как изменится потенциал сферы?
  6. Как меняется потенциал поля сферического конденсатора с радиусами внутренней обкладки R 1 , (заряд +q ) и внешней R 2 (заряд -q ) в зависимости от расстояния r от центра сфер? Начертите график.
  7. Двум удаленным друг от друга проводникам сообщены положительные заряды так, что потенциал первого 100 В, а второго 50 В. Будут ли положительные заряды переходить с первого проводника на второй, если привести их в соприкосновение (никаких других тел вблизи нет)?
  8. Пробный шарик соединяют проволочкой с электрометром и обводят по всему контуру заряженного тела, изображенного на рисунке. Будут ли при этом меняться показания электрометра? Почему для этого опыта берут длинную проволочку?

  9. В однородное электрическое поле плоского конденсатора помещен проводящий незаряженный шар так, что центр его находится на равных расстояниях от пластин конденсатора. Потенциалы пластин равны +100 В и -100 В соответственно. Что представляет собой поверхность нулевого потенциала?
  10. Упругий металлический шарик, несущий заряд q , закреплен на изолирующей упругой подставке. На него с высоты h падает точно такой же и так же заряженный второй шарик. На какую высоту поднимется второй шарик после удара о первый?
  11. По гладкой наклонной плоскости, составляющей угол 45° с горизонтом, соскальзывает небольшое тело, несущее заряд -q . Повлияет ли на его скорость у основания наклонной плоскости заряд +q , закрепленный так, как показано на рисунке?

  12. Между точками А и В некоторой цепи, содержащей конденсаторы, разность потенциалов равна U . Если к этим точкам присоединить конденсатор емкостью С , то будет ли его заряд равен CU ?
  13. Параллельно пластинам заряженного и отключенного от батареи плоского конденсатора вводят незаряженную металлическую пластину, толщина которой в два раза меньше расстояния между обкладками. Как изменится разность потенциалов между обкладками?
  14. Почему к оборванному трамвайному проводу, лежащему на земле, следует подходить все более мелкими шажками?
  15. Между любыми двумя точками однородного проволочного кольца разность потенциалов равна нулю, а ток в кольце существует. Когда это возможно?
  16. Можно ли, находясь в самолете, летящем в магнитном поле Земли, обнаружить разность потенциалов, возникающую между концами крыльев самолета?
  17. Вольфрамовый шарик, находящийся в вакууме, облучают ультрафиолетовым светом. Как со временем будет меняться потенциал шарика?
  18. Микроопыт

    Известно, что вблизи поверхности Земли напряженность электрического поля такова, что на расстоянии между уровнем вашего носа и уровнем пяток разность потенциалов составляет около 200 В. Сможете ли вы использовать это напряжение, чтобы зажечь электрическую лампочку? Не опасно ли такое напряжение для вас?

    Любопытно, что…

    Вольта, обнаруживший контактную разность потенциалов, введший в науку термин «напряжение», отмеченный потомками присвоением единице электрического напряжения наименования «вольт», создавший «вольтов столб» - «самый замечательный, - по словам французского ученого Доминика Араго, - прибор, когда-либо изобретенный людьми, не исключая телескопа и паровой машины», не имел ни малейшего представления о том, как и почему этот прибор работает.

    Прохождение тока через электролит приводит к появлению ЭДС, направленной «навстречу» приложенной извне. На это явление, названное гальванической поляризацией, натолкнулись в начале XIX века. В дальнейшем оно легло в основу изобретения кислотного аккумулятора.

    Задачу о распределении электричества на проводнике заданной формы наметил в свое время Кулон. Именно решая такого рода задачи, Пуассон, еще до Грина и Гаусса, пришел к мысли ввести некоторую функцию, зависящую от координат и принимающую постоянное значение на поверхности проводника.

    Свою работу «Опыт применения математического анализа к теориям электричества и магнетизма» Грин написал, будучи самоучкой. До сорока лет, когда он поступил (!) в Кембриджский университет, Грин работал пекарем и мельником, самостоятельно штудируя науки. Важно отметить, что, вводя понятие потенциальной функции, Грин не связывал его с понятием работы, еще не используемым в физике.

    Электрический ток может протекать не только в цепи, где разность потенциалов между двумя произвольно взятыми точками равна нулю, но и течь от меньшего потенциала к большему, как, скажем, внутри источников тока.

    Существуют такие электрические поля, для которых определить напряженность можно, а потенциал - нельзя. Например, поле, возникающее при электромагнитной индукции. Именно такие («непотенциальные») поля обеспечивают работу трансформаторов и электродвигателей.

    Крупный угорь «вырабатывает» напряжение до 600 вольт при токе до 1 ампера. Это оказывается возможным за счет множества цепочек из последовательно соединенных электрических клеток, в каждой из которых создается разность потенциалов около 0,15 вольта. Сами же цепочки «подключаются» параллельно, поэтому суммарным током угорь способен оглушить или даже убить жертву.

    Когда вы двигаетесь по ковру и, прикоснувшись к чему-либо, извлекаете электрические искры до сантиметра длиной, ваш потенциал составляет от 10000 до 20000 вольт.

    Разность потенциалов (например, между облаком и землей) при возникновении молнии достигает 4 миллиардов вольт, а типичное значение силы тока в молнии порядка 20000 ампер.