Принцип относительности впервые. История открытия принципа относительности Галилея

Основные законы динамики - законы Ньютона - справедливы в инерциальных системах отсчета. Но инерциальных систем много. В какой именно инерциальной системе отсчета рассматривается изучаемое механическое движение - совершенно безразлично. Впервые это обстоятельство было осознано Галилеем.

В своей книге «Диалоги о двух системах мира - птолемеевой и коперниковой», вышедшей в свет в 1632 году, Галилей приводит описание различных механических опытов, производимых в закрытой каюте корабля, из которых следует вывод о том, что все явления происходят одинаково, независимо от того, покоится корабль или движется прямолинейно и равномерно.

Равноправие инерциальных систем. Галилей рассматривал следующие простые опыты. В неподвижном корабле капли воды из подвешенного к потолку ведерка попадают в сосуд с узким горлышком, подставленный внизу. Бросая предмет по направлению к носу корабля, не придется применять большего усилия, чем бросая его на то же расстояние в сторону кормы. Прыгая в длину, вы сделаете прыжок на одно и то же расстояние независимо от его направления. При равномерном движении корабля с какой угодно скоростью в отсутствие качки во всех этих явлениях не удается обнаружить ни малейшего изменения. Например, падающие капли будут по-прежнему попадать в горлышко подставленного сосуда, несмотря на то, что за время падения капли сосуд вместе с кораблем успевает переместиться на значительное расстояние. Ни по одному из этих явлений не удастся установить, движется ли корабль или по-прежнему стоит

на месте. Не помогут тут и самые тонкие механические опыты с точнейшими приборами.

Итак, находясь в закрытой каюте, с помощью механических опытов невозможно определить, стоит ли корабль или движется с постоянной скоростью. Другими словами, механические явления протекают одинаково во всех инерциальных системах отсчета в том смысле, что одинаковы описывающие их законы динамики. Поэтому все инерциальные системы отсчета эквивалентны, т. е. равноправны.

Это утверждение о механической эквивалентности всех инерциальных систем отсчета в механике и составляет содержание принципа относительности Галилея.

Абсолютные и относительные величины. Остановимся на вопросе о равноправии инерциальных систем отсчета несколько подробнее. Вспомним про относительность механического движения, которая проявляется в том, что одно и то же движение с точки зрения разных систем отсчета выглядит по-разному. Траектория мячика, который подбрасывает и ловит находящийся в движущемся вагоне мальчик, представляется ему отрезком прямой линии, в то время как для наблюдателя на платформе станции этот мячик движется по параболе. Утверждая, что движение мячика в любой из этих систем отсчета описывается одними и теми же законами, мы имеем в виду, что уравнение второго закона Ньютона в обеих системах отсчета имеет вид

Получающееся из него выражение для скорости мячика имеет вид

а для его радиуса-вектора

При этом некоторые из входящих в эти формулы величин одинаковы во всех инерциальных системах отсчета, т. е., как говорят, абсолютны. К ним в первую очередь относится время что уже обсуждалось в кинематике. Абсолютна и масса характеризующая инертные свойства тела. В классической механике абсолютна также и сила описывающая взаимодействие тел и поэтому зависящая от их взаимного расположения и, возможно, от их относительной скорости, которые одинаковы в обеих системах. Как мы видели в кинематике, ускорение а также одинаково во всех системах отсчета, движущихся прямолинейно и равномерно одна относительно другой.

Таким образом, уравнение (1), выражающее основной закон механического движения, удовлетворяет принципу относительности, ибо справедливо во всех инерциальных системах отсчета.

Другие величины, входящие в уравнения (2) и (3), - - имеют разные значения для одного и того же движения в зависимости от используемой системы отсчета. Законы их преобразования при переходе от одной системы отсчета к другой были рассмотрены в кинематике.

Движение в разных системах отсчета. В рассматриваемом примере с подбрасыванием мячика единственная действующая сила - это сила тяжести Мячик движется с одинаковым ускорением в обеих системах отсчета. Но начальная скорость мячика будет разной. В системе отсчета, связанной с движущимся вагоном, вектор направлен вертикально вверх. Из (2) при этом следует, что в любой момент времени скорость также направлена по вертикали - вверх или вниз, в зависимости от того, на каком участке траектории находится мячик. А из (3) видно, что относительно вагона траектория мячика представляет собой отрезок прямой. Обратим внимание на то, что в этой системе отсчета движение мячика описывается уравнениями, в которые скорость вагона V вообще не входит. Поэтому мячик будет двигаться одинаково как в неподвижном, так и в равномерно движущемся вагоне.

С точки зрения наблюдателя, стоящего на платформе, начальная скорость подбрасываемого мячика уже не направлена вертикально: она равна векторной сумме вертикальной начальной скорости мячика относительно вагона и горизонтальной скорости вагона. Поэтому в этой системе отсчета начальная скорость мячика направлена под углом к горизонту, и он, естественно, движется по параболе. В зависимости от значения скорости V вагона это будут разные параболы. Учитывая, что сам мальчик в этой системе отсчета движется горизонтально со скоростью вагона V, нетрудно показать, что, проделав свой путь по параболе, мячик опускается точно в руки мальчика. Докажите это самостоятельно и сравните, насколько проще оказывается математическое описание данного движения в одной системе отсчета по сравнению с другой, несмотря на то, что законы этого движения в обеих системах одинаковы.

Подводя итоги, можно сказать, что в разных инерциальных системах отсчета эволюция начального механического состояния происходит одинаково, по одним и тем же законам. Все различие заключается в виде начального механического состояния рассматриваемой физической системы. Именно различие начальных условий и приводит к тому, что одно и то же явление, описываемое одними и теми же законами, выглядит по-разному в разных инерциальных системах отсчета. В тех же случаях, когда в двух системах отсчета рассматриваются опыты, для которых и начальные условия совпадают, вся картина движения выглядит совершенно одинаково.

Принцип относительности на практике. Принцип относительности Галилея на практике можно использовать для упрощения решения многих физических задач. Удачный выбор одной из множества возможных инерциальных систем отсчета часто позволяет превратить сложную на первый взгляд задачу в почти очевидную. Более того, принцип относительности позволяет иногда получить ответ на вопрос о явлениях, для которых нам неизвестны описывающие их конкретные законы.

Задачи

1. Движение по ленте транспортера. Ленга горизонтального транспортера движется с постоянной скоростью V. На ленту влетает шайба со скоростью направленной поперек ленты. При какой ширине ленты шайба достигнет ее противоположного края, если коэффициент трения скольжения шайбы по поверхности ленты равен Какова траектория шайбы относительно земли?

Решение. В системе отсчета, связанной с землей, начальная скорость шайбы направлена поперек ленты, но в дальнейшем скорость не остается постоянной ни по модулю, ни по направлению. Поскольку сила сухого трения направлена противоположно скорости, то может показаться, что ускорение шайбы тоже все время меняется. А тогда уже становится совсем непонятно, как подступиться к этой задаче.

Задача становится совершенно очевидной, если перейти в систему отсчета, связанную с равномерно движущейся лентой транспортера. Такая система также является инерциальной.

Рис. 106. Скорость шайбы относительно ленты транспортера направлена под углом а к краю ленты

Рис. 107. Траектория шайбы в неподвижной системе отсчета

В этой системе отсчета начальная скорость шайбы направлена под углом а к краю ленты, тангенс которого равен отношению (рис. 106), а ее модуль

Сила трения постоянна по модулю и по направлению, так как она направлена противоположно скорости шайбы относительно ленты. Следовательно, в этой системе отсчета шайба движется прямолинейно с постоянным ускорением, модуль которого равен Очевидно, что пройденный шайбой до остановки (относительно ленты) путь дается выражением

2. Скорость струйки воды. Докажите, что скорость истечения воды из отверстия в стенке сосуда, находящегося в вагоне поезда, одинакова независимо от того, стоит поезд на месте или движется равномерно и прямолинейно.

Решение. Для доказательства не требуется умения находить само значение скорости истечения воды. Эта скорость одинакова в обоих рассматриваемых случаях вследствие принципа относительности. Действительно, измеряя эту скорость в неподвижном и в движущемся равномерно и прямолинейно вагоне, мы получим одинаковые значения. Иначе этот опыт позволял бы обнаружить факт равномерного движения поезда, не выглядывая в окно. Однако вследствие принципа относительности это невозможно. Подобные опыты дают возможность обнаружить ускорение вагона, но не его скорость.

Заметим, что скорость истечения одинакова, если в обоих случаях она измеряется в системе отсчета, связанной с вагоном. Скорость истечения воды относительно земли зависит, разумеется, от скорости вагона.

В чем заключается физическое содержание принципа относительности Галилея?

Приведите известные вам примеры явлений, подтверждающих принцип относительности.

Что конкретно имеют в виду, когда говорят, что механические явления описываются одними и теми же законами во всех инерциальных системах отсчета? Ведь для разных наблюдателей одно и то же явление может выглядеть по-разному.

Почему, находясь в закрытом купе поезда и не выглядывая в окно, можно обнаружить ускорение вагона, но не его скорость?

Великий ученый эпохи Возрождения, изобретатель первого телескопа, Галилео Галилей за свою жизнь совершил немало научных открытий, как в астрономии, так и физике, математике, других науках. И среди них, в том числе, один из краеугольных камней современной физики – классический принцип относительности Галилея, о нем наша сегодняшняя статья.

В чем состоит принцип относительности Галилея

Попробуем же сформулировать принцип относительности Галилея максимально кратко и доходчиво. Итак, он утверждает, что все механические процессы и явления протекают одинаково в инерциальных системах отсчета. Теперь давайте немножко расшифруем, начнем с инерциальных систем отсчета.

Что такое инерциальная система отсчета? Под ней в классической физике понимается система, где все тела движутся линейно и прямолинейно. Простым примером инерциальной системы может быть поезд, двигающийся по рельсам, или в глобальном масштабе – наша планета, вращающаяся вокруг Солнца. К слову все также относятся к инерциальной системе отсчета.

Для каких физических явлений применим принцип относительности Галилея

Но вернемся к принципу относительности Галилея, а точнее к его практическому применению. Представьте, что Вы едете в поезде или плывете на корабле. Если вы при этом в каюте корабля, либо вагоне поезда будет совершать какие-то простые физические опыты, даже банально подкидывать шарик, вы увидите, что результаты этих действий будут точно такими же как если бы Вы просто стояли на земле (тот же шарик в вагоне поезда будет падать вниз с такой же траекторией как и просто на земле). Иными словами, и каюта корабля и вагон поезда являются закрытыми инерциальными системами отсчета, и механические процессы внутри них протекают по одним и тем же законам.

Как мы уже говорили выше, наша планета Земля также является большой инерциальной системой, она движется вокруг Солнца, так и вращается вокруг своей оси, но мы ведь не ощущаем этого движения. А все потому, что для движения, как нашей Земли, так и других планет действенен принцип относительности Галилея, все механические процессы, несмотря на движение Земли, протекают одинаково.

История открытия принципа относительности Галилея

В далекие времена Галилея когда в науке того времени господствовали ложные идеи Аристотеля, считалось что именно Земля находится в центре Вселенной и пребывает в недвижимом положении. Идея же о том, что это именно Земля движется вокруг Солнца, вызывала у людей того времени смех, так как если она движется то почему мы не ощущаем этого движения, недоумевали они.

Опыты Галилея в области механики привели его к тому, что мы и зовем «принципом относительности», иными словами, главный физический смысл принципа относительности Галилея заключается в том, чтобы объяснить людям средневековья (ну и нам жителям 21-го века заодно) почему, несмотря на движение Земли, мы сами не замечаем и никак не ощущаем этого движения, почему все тела всегда падают перпендикулярно вниз, а не под наклоном и так далее.

Принцип относительности Галилея, видео

И в дополнение полезный видео урок об принципе относительности Галилея.

Протекают одинаково, независимо от того, неподвижна ли система или она находится в состоянии равномерного и прямолинейного движения.

Отсюда следует, что все законы природы одинаковы во всех инерциальных системах отсчёта.

Различают принцип относительности Эйнштейна (который приведён выше) и принцип относительности Галилея , который утверждает то же самое, но не для всех законов природы, а только для законов классической механики, подразумевая применимость преобразований Галилея , оставляя открытым вопрос о применимости принципа относительности к оптике и электродинамике .

В современной литературе принцип относительности в его применении к инерциальным системам отсчета (чаще всего при отсутствии гравитации или при пренебрежении ею) обычно выступает терминологически как лоренц-ковариантность (или лоренц-инвариантность).

История

С исторической точки зрения, к открытию принципа относительности привела гипотеза о движении Земли, особенно о её вращении вокруг оси . Вопрос заключался в следующем: если Земля вращается, то почему мы этого не наблюдаем в экспериментах, совершённых на её поверхности? Обсуждение этой проблемы привело ещё средневековых учёных Николая Орема (XIV в.) и Ала ад-Дина Али ал-Кушчи (XV в.) к выводу, что вращение Земли не может оказать никакого влияние на какие-либо опыты на её поверхности. Эти идеи получили в эпоху Возрождения . Так, в сочинении «Об учёном незнании» Николай Кузанский писал:

Наша Земля в действительности движется, хоть мы этого не замечаем, воспринимая движение только в сопоставлении с чем-то неподвижным... Каждому, будь он на Земле, на Солнце или на другой звезде, всегда будет казаться, что он как бы в неподвижном центре, а все остальное движется.

Аналогичные мысли содержатся и в диалоге Джордано Бруно «О бесконечности, Вселенной и мирах»:

Как это заметили древние и современные истинные наблюдатели природы и как это показывает тысячью способов чувственный опыт, мы можем заметить движение только посредством известного сравнения и сопоставления с каким-либо неподвижным телом. Так, люди, находящиеся в середине моря на плывущем корабле, если они не знают, что вода течет, и не видят берегов, не заметят движения корабля. Ввиду этого можно сомневаться относительно покоя и неподвижности Земли. Я могу считать, что если бы я находился на Солнце, Луне или на других звездах, то мне всегда казалось бы, что я нахожусь в центре неподвижного мира, вокруг которого вращается все окружающее, вокруг которого вращается этот окружающий меня мир, в центре которого я нахожусь.

Однако «отцом» принципа относительности заслуженно считается Галилео Галилей , который придал ему чёткую физическую формулировку, обратив внимание, что находясь в замкнутой физической системе, невозможно определить, покоится эта система или равномерно движется. В своей книге «Диалоги о двух системах мира» Галилей сформулировал принцип относительности следующим образом:

Для предметов, захваченных равномерным движением, это последнее как бы не существует и проявляет своё действие только на вещах, не принимающих в нём участия.

Идеи Галилея нашли развитие в механике Ньютона . В своих «Математических началах натуральной философии» (том I, следствие V) Ньютон так сформулировал принцип относительности:

Относительные движения друг по отношению к другу тел, заключенных в каком-либо пространстве, одинаковы, покоится ли это пространство, или движется равномерно и прямолинейно без вращения.

Во времена Галилея и Ньютона люди имели дело в основном с чисто механическими явлениями. Однако с развитием электродинамики оказалось, что законы электромагнетизма и законы механики (в частности, механическая формулировка принципа относительности) плохо согласуются друг с другом, так как уравнения механики в известном тогда виде не менялись после преобразований Галилея, а уравнения Максвелла при применении этих преобразований к ним самим или к их решениям - меняли свой вид и, главное, давали другие предсказания (например, измененную скорость света). Эти противоречия привели к открытию преобразований Лоренца , которые делали применимым принцип относительности к электродинамике (сохраняя инвариантной скорость света), и к постулированию их применимости также к механике , что затем было использовано для исправления механики с их учетом, что выразилось, в частности, в созданной Эйнштейном Специальной теории относительности . После этого обобщённый принцип относительности (подразумевающий применимость и к механике, и к электродинамике, а также к возможным новым теориям, подразумевающий также преобразования Лоренца для перехода между инерциальными системами отсчета) стал называться «принципом относительности Эйнштейна», а его механическая формулировка - «принципом относительности Галилея».

Принцип относительности, включающий явно все электромагнитные явления, был, по-видимому, впервые введен Анри Пуанкаре начиная с 1889 года (когда им впервые высказано предположение о принципиальной ненаблюдаемости движения относительно эфира) до работ , , , когда принцип относительности был сформулирован детально, практически в современном виде, в том числе введено его современное название и получены многие принципиальные результаты, повторенные позже другими авторами, такие, как, например, детальный анализ относительности одновременности, практически повторенный в работе Эйнштейна . Пуанкаре также, по признанию Лоренца, был человеком, вдохновившим введение принципа относительности как точного (а не приближённого) принципа в работе Лоренца , а впоследствии внёсшим необходимые исправления в некоторые формулы этой работы, в которых у Лоренца обнаружились ошибки.

В этой принципиальной статье Х. А. Лоренца (1904 г.), содержавшей вывод преобразований Лоренца и другие революционные физические результаты в достаточно завершённой форме (за исключением упомянутых технических ошибок, не следовавших из метода, исправленных Пуанкаре), он, в частности, писал: «Положение вещей было бы удовлетворительным, если бы можно было с помощью определенных основных допущений показать, что многие электромагнитные явления строго, то есть без какого-либо пренебрежения членами высших порядков, не зависят от движения системы. … На скорость налагается только то ограничение, что она должна быть меньше скорости света» . Затем, в работе 1904 года Пуанкаре дополнительно углубил результаты Лоренца, донеся значение принципа относительности до довольно широких кругов физиков и математиков. Дальнейшее развитие практического использования принципа относительности для построения новой физической теории было в 1905 г. в статье А. Пуанкаре «О динамике электрона» (), называвшего его в этой работе «постулатом относительности Лоренца», и в практически одновременной статье А. Эйнштейна «К электродинамике движущихся тел» .

Очевидно, принцип относительности Эйнштейна и выросшая из него идея геометризации пространства-времени сыграли важную роль при распространении на неинерциальные системы отсчета (учитывая принцип эквивалентности), то есть в создании новой теории гравитации - общей теории относительности Эйнштейна . Остальная теоретическая физика также ощутила влияние принципа относительности не только непосредственно, но и в смысле повышенного внимания к симметриям .

Можно заметить, что даже если когда-либо обнаружится, что принцип относительности не выполняется точно, его огромная конструктивная роль в науке своего времени (длящаяся по меньшей мере до сих пор) настолько велика, что ее даже трудно с чем-нибудь сравнить. Опора на принцип относительности (а потом также ещё и на некоторые его расширения) позволила открыть, сформулировать и продуктивно разработать такое количество первостепенных теоретических результатов, практически не мыслимых без его применения, во всяком случае, если говорить о реальном пути развития физики, что его можно назвать основой, на которой построена физика.

Примечания

Литература

  • Ландау, Л. Д. , Лифшиц, Е. М. Теория поля. - Издание 7-е, исправленное. - М .: Наука , 1988. - 512 с. - («Теоретическая физика» , том II). - ISBN 5-02-014420-7

Оригинальные источники и исторические обзоры в русском переводе

  • http://ivanik3.narod.ru/linksPrincipOtnositelnosty.html Принцип относительности. Сборник работ классиков релятивизма. Под редакцией В. К. Фредерикса и Д. Д. Иваненко . ОНТИ. Ленинград 1935 г. (pdf, русск.).
  • http://www.krelib.com/sborniki__obzory/4413 Принцип относительности. Сборник работ по специальной теории относительности. М., Атомиздат, 1973. 332 с. (djvu, русск.)

Оригинальные источники

Albert Einstein: Zur Elektrodynamik bewegter Körper , Annalen der Physik 17(1905), 891-921. Received June 30, published September 26, 1905. Reprinted with comments in , p. 276-306 English translation, with footnotes not present in the 1905 paper, available on the net Albert Einstein: Ist die Trägheit eines Körpers von seinem Energiegehalt abhängig? , Annalen der Physik 18(1905), 639-641, Reprinted with comments in , Document 24 English translation available on the net Lorentz, H. A. (1899) «Simplified Theory of Electrical and Optical Phenomena in Moving Systems», , I , 427-43. Lorentz, H. A. (1904) «Electromagnetic Phenomena in a System Moving with Any Velocity Less Than That of Light», Proc. Acad. Science Amsterdam , IV , 669-78. Poincaré, H. (1889) Théorie mathématique de la lumière , Carré & C. Naud, Paris. Partly reprinted in , Ch. 12. Poincaré, H. (1897) «The Relativity of Space» , article in English translation Poincaré, Henri (1900), "«La théorie de Lorentz et le principe de réaction» ", Archives néerlandaises des sciences exactes et naturelles Т. 5: 252–278, . Reprinted in Poincaré, Oeuvres, tome IX, pp. 464-488. See also the English translation Poincaré, Henri (1902), «Science and hypothesis» , London and Newcastle-on-Cyne (1905): The Walter Scott publishing Co., Poincaré, Henri (1904), "«L"état actuel et l"avenir de la physique mathématique»", Bulletin des sciences mathématiques Т. 28 (2): 302–324 English translation in Poincaré, Henri (1904), "«The present and the future of mathematical physics» ", Bull. Amer. Math. Soc. (2000) Т. 37: 25–38, Reprinted in «The value of science» (1905a), Ch. 7-9.de la Science"] Poincaré, Henri (1905), " ", Comptes Rendus Т. 140: 1504–1508, Reprinted in Poincaré, Oeuvres, tome IX, S. 489-493. See also the English translation by Logunov (pp. 241-253) . Poincaré, Henri (1906), "«Sur la dynamique de l"électron» ", Rendiconti del Circolo matematico di Palermo Т. 21: 129–176, Reprinted in Poincaré, Oeuvres, tome IX, pages 494-550. See also the partial English translation . Poincaré, Henri (1908), «Science and Method» , London: Nelson & Sons, Poincaré, Henri (1913), «Last Essays» , New York: Dover Publication (1963),

См. также


Wikimedia Foundation . 2010 .

РЕФЕРАТ

ПО КОНЦЕПЦИИ

СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ

На тему: «Принцип относительности и специальная теория относительности Эйнштейна»


План

1. Принцип относительности Эйнштейна....................................................... 3

2. Теория относительности............................................................................. 4

2.1 Понятие одновременности........................................................................ 5

2.2 Относительность расстояний.................................................................... 6

2.3 Относительность массы............................................................................. 7

3. ОТО.............................................................................................................. 9

Список использованной литературы........................................................... 12

Эйнштейн обобщил принцип относительности Галилея, сформулированный для механических явлений, на все явления природы. Принцип относительности Эйнштейна гласит: «Никакими физическими опытами(механическими, электрическими, оптическими), произведенными в какой-либо инерциальной системе отсчета, невозможно определить, движется ли эта система равномерно и прямолинейно, или находится в покое». Не только механические, но и все физические законы одинаковы во всех инерциальных системах отсчета.

Таким образом, принцип относительности Эйнштейна устанавливает полную равноправность всех инерциальных систем отсчета и отвергает идею абсолютного пространства Ньютона. Теорию, созданную Эйнштейном для описания явлений в инерциальных системах отсчета, называют специальной теорией относительности.

Теория относительности состоит из двух частей. Первая часть называется специальной (или частной) теорией (сокращенно – СТО). Она исследует быстрые равномерные прямолинейные движения вне гравитационных полей. Вторая часть – общая теория относительности (сокращенно – ОТО) охватывает неравномерные движения и гравитационные поля.

Начнем со специальной теории. Постараемся вкратце проследить логику ее построения и выводов.

Главное своеобразие физики Эйнштейна заключается в том, что движение вещества она сопоставляет с поведением света.

Фундаментом СТО служат два постулата, объединяющие основные свойства движения вещества и света.

Первый постулат: равномерные прямолинейные движения невозможно отличить от покоя. То и другое физически равноценно.

Второй постулат: скорость света не зависит от движения светового источника.

По отдельности постулаты ничуть не странны. В закрытой каюте невозможно узнать, движется корабль (плавно, без толчков и тряски) или стоит возле пристани. Вместе с тем легко поверить, что световые волны распространяются одинаково быстро от движущегося и неподвижного фонаря. Ведь именно так ведут себя звуковые волны, волны на воде и т.д.

Каждый постулат сам по себе понятен и логичен.

Однако соединенные вместе, они выглядят несовместимыми. Вторым, казалось бы, опровергается первый. В самом деле: резонно думать, что равномерное прямолинейное движение возможно обнаружить относительно световых волн и, значит, отличить его от покоя, что противоречит первому постулату.

Когда пилот быстроходного самолета перестает слышать рев собственных двигателей, он знает, что обогнал звук и мчится быстрее звуковых волн.

Со светом подобное невозможно (в 1881 г. американский физик Майкельсон доказал это экспериментом). Как бы быстро ни мчалась ракета, свет ее прожектора всегда бьет вперед с неизменной скоростью – 300000 км/сек. Изменить свою скорость относительно световых волн невозможно. Поэтому, воспользовавшись светом, невозможно отличить равномерное прямолинейное движение ракеты от покоя, несмотря на то, что скорость света не зависит от движения источника.

Из постулатов Эйнштейна вытекают очень важные следствия.

Рассмотрим теперь вопрос о сверке часов и об одновременности событий в разных системах отсчета с учетом постулатов Эйнштейна.

В механике Ньютона «истинный, или стандартный, процесс течения абсолютного времени не подвержен никаким изменениям» и не зависит « от того, быстры движения или медленны или их нет вообще». Считалось, что такие понятия, как «момент времени», «раньше», «позже», «одновременность», имеют сами по себе смысл, правомерный для всей Вселенной, и два каких-нибудь события, одновременные для одной системы, одновременны и во всех других системах. С точки зрения же теории относительности Эйнштейна нет такого понятия, как абсолютная одновременность, как нет абсолютного времени.

Чтобы решить, одновременно ли произошли в различных точках два события, необходимо иметь в каждой из этих точек точные часы, относительно которых можно быть уверенным, что они идут синхронно. Для этого можно перенести эти часы в одну точку, отрегулировать их так, чтобы они шли синхронно, и затем снова разнести их по разным помещениям. Можно также использовать сигналы времени. Позволяющие сравнивать показания часов в различных точках. На практике используют оба способа. На корабле, например, есть хронометр, который идет очень точно и отрегулирован по контрольным часам в порту отправления. Кроме того, для его проверки во время плавания используются сигналы точного времени по радио.

Так всеобщая абсолютная одновременность, возможность которой подразумевалась в классической физике, пропадает. Вместо нее выходит на сцену относительная одновременность событий, существующая лишь для какого-то конкретного, определенным образом движущегося наблюдателя.

Разные наблюдатели могут устанавливать даже неодинаковую очередность одних и тех же событий. Но все это чрезвычайно тонко и возможно отметить лишь при движении с гигантскими относительными скоростями, сравнимыми со скоростью света. Важно, чтобы наблюдатели успевали заметно сместиться за то крохотное время, пока световые вспышки пробегают расстояние между событиями.

Таким образом, согласно теории относительности в каждой из инерциальных систем, находящихся в относительном движении, существует собственное время системы, которое показывают часы, покоящиеся в этой системе. Следовательно, при определении времени событий в различных инерциальных системах события, одновременные в одной системе, могут оказаться неодновременными в другой системе отсчета. Другими словами, не существует абсолютной одновременности.

Рассмотрим пример: сверхбыстрый пароход движется мимо ленты, которую разложил на берегу бакенщик.

По измерениям бакенщика, длина ленты, допусти, 100 м. Но капитан с этим не согласен. Для капитана лента короче.

Чтобы измерить длину ленты с мчащегося корабля, капитан одновременно (для себя) засекает на палубе точки, совпадающие с ее концами, и потом спокойно отмеряет расстояние между засечками. Но для бакенщика засечки сделаны неодновременно. Сначала, по его мнению, засечено начало ленты (где-то против кормы проносящегося парохода), потом – конец. Между моментами засечек корабль успел сместиться вперед – вот и вышло, что на пароходе засечки ближе друг к другу, чем следовало бы по отсчетам бакенщика.

Однако ошибки в измерении капитана не было. Его отсчет исполнен точно. Разница же итогов измерений - результат относительности одновременности.

В свою очередь бакенщик, измеряя таким же способом длину парохода, найдет его более коротким, чем капитан.

По отсчетам любых наблюдателей, длины предметов, проносящихся мимо, сокращаются. Для каждого путешественника сокращается длина всего проходимого им расстояния. И тем заметнее, чем ближе его скорость к скорости света.

Согласно теории Эйнштейна, масса одного и того же тела есть величина относительная. Она имеет различные значения в зависимости от выбора системы отсчета, в которой проводится ее измерение. Или при измерении в одной и той же системе отсчета – в зависимости от скорости движущегося тела. При этом масса зависит только от величины скорости относительно этой системы и не зависит от направления скорости. Пока скорости движения малы по сравнению со скоростью света, массу тела можно считать постоянной и независящей от скорости движения, как это и делается в классической механике. По мере того. Как скорость движения тела приближается к скорости света, величина массы становится все больше и для одного и того же приращения скорости нужна все большая и большая сила. Чем ближе скорость тела к скорости света, тем труднее ее увеличить. Когда скорость тела достигает скорости света, его масса становится бесконечно большой. Отсюда следует, что невозможно заставить тело двигаться со скоростью света. Ничто вещественное не может даже догнать свет.

Отсюда можно сделать вывод, что при сообщении телу кинетической энергии его масса увеличивается. Получается, что кинетической энергии соответствует определенная масса. Рассмотрим, справедливо ли это утверждение в отношении других видов энергии?

С возрастанием скорости растет и энергия тела, его способность совершить работу. Значит, масса и энергия растут вместе. Вблизи скорости света то и другое стремительно увеличивается. Инерция становится непреодолимо огромной, энергия – сколь угодно большой.

Отсюда делается вывод об эквивалентности массы и энергии. Масса и энергия – две эквивалентные характеристики движущегося тела. Так, при нагревании тела его масса несколько увеличивается. Излучение, испускаемое Солнцем, содержит энергию и поэтому имеет массу; Солнце и звезды при излучении теряют массу. Камень, лежащий на ладони, лишь внешне спокоен. Он неподвижен лишь как целое тело. Внутри, в своем микромире, он насыщен незаметными для глаза движениями. Это внутреннее движение обусловливает существование внутренней энергии камня, которая тоже подчинена закономерностям СТО. Значит, и внутренняя энергия эквивалентна некоторой массе. Это и есть масса покоя.

Билет № 14. Принцип относительности.

Классический принцип относительности, который был сформулирован еще Галилео Галилеем, утверждает: "Никакими механическими опытами, произведенными в инерциальной системе отсчета, невозможно определить, движется ли эта система равномерно и прямолинейно, или находится в покое". Принцип относительности Галилея очень прост и всего лишь заявляет, что между покоем и движением, если оно прямолинейно и равномерно, нет никакой принципиальной разницы. Он может быть проиллюстрирован наглядными примерами. Так, путешественник в закрытой каюте спокойно плывущего корабля не замечает никаких признаков движения. Если на том же корабле подбросить мячик прямо вверх, он упадет прямо вниз, а не отстанет от корабля, не упадет ближе к корме. Для нашего путешественника книга, лежащая у него в каюте на столе, покоится, но для человека на берегу эта книга плывет вместе с кораблем. В данном примере бессмысленно спорить, движется или покоится книга. Такой спор – пустая трата времени. Наблюдателям нужно лишь согласовать свои позиции и признать, что книга покоится относительно корабля и движется относительно берега вместе с кораблем.

Таким образом, слово "относительность" в названии принципа Галилея не скрывает в себе ничего особенного. Оно не имеет никакого иного смысла, кроме того, который мы вкладываем в утверждение, что движение или покой – всегда движение или покой относительно чего-то, что служит нам системой отсчета. Это, конечно, не означает, что между покоем и равномерным движением нет никакой разницы. Но понятия покоя и движения приобретают смысл лишь тогда, когда указана точка отсчета.

Альберт Эйнштейн развил классический принцип относительности и пришел к выводу, что этот принцип является всеобщим, действует не только в механике, но и в электродинамике.Принцип относительности Эйнштейна гласит: "Никакими физическими опытами, произведенными в инерциальной системе отсчета, невозможно определить, движется ли эта система равномерно и прямолинейно, или находится в покое". Не только механические, но и все физические законы одинаковы во всех инерциальных системах отсчета.

Эйнштейну приписывается фраза: "Прости меня, Ньютон". За что великий физик одной эпохи просил прощения у великого физика другой эпохи? Может быть, за то, что одному из них пришлось исправлять другого? Ведь Эйнштейн, вскрыв закономерности развития физического мира, наглядно продемонстрировал незавершенность казавшейся незыблемой механики Ньютона. Эйнштейн – физик развил и дополнил физика Ньютона.

Хотя для Эйнштейна областью приложения знаний всегда была физика, он ставил перед собой вопросы, ответы на которые требовали энциклопедических подходов. Принципы относительности в виде теоретических построений из физики распространяются на все другие формы бытия материи. Например, уже сейчас они широко используются в биологии. Есть примеры их применения в социологии, политологии и т.д. По крайней мере, следствием развития принципов относительности уже является существенное изменение философского фундамента всей науки. В целом эта работа определила третью и нынешнюю четвертую революции в естествознании за счет создания специальной и общей теории относительности. Эти теории позволяют говорить, как минимум, о физических процессах как о свойствах пространства-времени.

Теория относительности стала результатом обобщения и синтеза классической механики Ньютона и электродинамики Максвелла, между которыми с середины XIX века возникли серьезные противоречия. В то время в механике господствовал классический принцип относительности Галилея, утверждавший равноправность всех инерциальных систем отсчета, а в электродинамике – концепция эфира – ненаблюдаемой среды, заполняющей мировое пространство, являющейся абсолютной системой координат. Иными словами, в электродинамике выделялась одна система координат, имевшая предпочтение перед всеми другими.

Существование эфира долгое время не подвергалось сомнению. Более того, после выдвинутого Максвеллом предложения, что свет – это электромагнитная волна, распространяющаяся в мировом эфире, казалось, позиции сторонников эфирной теории еще больше укрепились. Не хватало лишь решающего эксперимента, который доказал бы, что наша планета движется сквозь эфир. Считалось, что при этом порождается "эфирный ветер", сносящий свет, испускаемый источником на Земле, в направлении против движения нашей планеты. Поскольку скорость движения Земли вокруг Солнца составляет 30 км/с, то скорость света должна была уменьшиться на эту же величину. Такой эксперимент был проведен в 1887 г. А. Майкельсоном и Э. Морли. Они попытались обнаружить теоретически предсказанное смещение. Точность эксперимента для того времени была очень высока, но никакого "эфирного ветра" им обнаружить не удалось. Таким образом, опыт Майкельсона-Морли показал независимость скорости света от движения Земли. Отрицательный результат эксперимента, было невозможно объяснить ни в рамках классической механики, ни в рамках электродинамики. Получалось, что вопреки существующей в электродинамике концепции эфира для электромагнитных явлений не было выделенной системы координат. Классический принцип относительности Галилея должен был выполняться и для них.