Использование теоремы Виета. Арифметические действия с числами

Неравномерным считается движение с изменяющейся скоростью. Скорость может изменяться по направлению. Можно заключить, что любое движение НЕ по прямой траектории является неравномерным. Например, движение тела по окружности, движение тела брошенного вдаль и др.

Скорость может изменяться по численному значению. Такое движение тоже будет неравномерным. Особенный случай такого движения - равноускоренное движение.

Иногда встречается неравномерное движение, которое состоит из чередования различного вида движений, например, сначала автобус разгоняется (движение равноускоренное), потом какое-то время движется равномерно, а потом останавливается.

Мгновенная скорость

Охарактеризовать неравномерное движение можно лишь скоростью. Но скорость всегда изменяется! Поэтому можно говорить лишь о скорости в данное мгновение времени. Путешествуя на машине спидометр ежесекундно демонстрирует вам мгновенную скорость движения. Но время при этом надо уменьшить не до секунды, а рассматривать гораздо меньший промежуток времени!

Средняя скорость

Что же такое средняя скорость? Неверно думать, что необходимо сложить все мгновенные скорости и разделить на их количество. Это самое распространенное заблуждение о средней скорости! Средняя скорость - это весь путь разделить на затраченное время . И никакими другими способами она не определяется. Если рассмотреть движение автомобиля, можно оценить его средние скорости на первой половине пути, на второй, на всем пути. Средние скорости могут быть одинаковыми, а могут быть различными на этих участках.

У средних величин рисуют сверху горизонтальную черту.

Средняя скорость перемещения. Средняя путевая скорость

Если движение тела не является прямолинейным, то пройденный телом путь будет больше, чем его перемещение. В этом случае средняя скорость перемещения отличается от средней путевой скорости. Путевая скорость - скаляр .


Главное запомнить

1) Определение и виды неравномерного движения;
2) Различие средней и мгновенной скоростей;
3) Правило нахождения средней скорости движения

Часто требуется решить задачу, где весь путь разбит на равные участки, даны средние скорости на каждом участке, требуется найти среднюю скорость движения на всем пути. Неверное решение будет, если сложить средние скорости и разделить на их количество. Ниже выводится формула, которую можно использовать при решении подобных задач.

Мгновенную скорость можно определить с помощью графика движения. Мгновенная скорость тела в любой точке на графике определяется наклоном касательной к кривой в соответствующей точке. Мгновенная скорость - тангенс угла наклона касательной к графику функции.


Упражнения

Во время езды на автомобиле через каждую минуту снимались показания спидометра. Можно ли по этим данным определить среднюю скорость движения автомобиля?

Нельзя, так как в общем случае величина средней скорости не равна среднему арифметическому значению величин мгновенных скоростей. А путь и время не даны.


Какую скорость переменного движения показывает спидометр автомобиля?

Близкую к мгновенной. Близкую, так как промежуток времени должен быть бесконечно мал, а при снятии показаний со спидометра так о времени судить нельзя.


В каком случае мгновенная и средняя скорости равны между собой? Почему?

При равномерном движении. Потому что скорость не изменяется.


Скорость движения молотка при ударе равна 8м/с. Какая это скорость: средняя или мгновенная?

Механическим движением тела называется изменение его положения в пространстве относительно других тел с течением времени. При этом тела взаимодействуют по законам механики.

Раздел механики, описывающий геометрические свойства движения без учета причин, его вызывающих, называется кинематикой.

В более общем значении движением называется любое пространственное или временное изменение состояния физической системы. Например, можно говорить о движении волны в среде.

Относительность движения

Относительность - зависимость механического движения тела от системы отсчёта Не указав систему отсчёта, не имеет смысла говорить о движении.

Траектория материальной точки - линия в трёхмерном пространстве, представляющая собой множество точек, в которых находилась, находится или будет находиться материальная точка при своём перемещении в пространстве. Существенно, что понятие о траектории имеет физический смысл даже при отсутствии какого-либо по ней движения. Кроме того, и при наличии движущегося по ней объекта, траектория сама по себе не может ничего дать в отношении причин движения, то есть о действующих силах.

Путь - длина участка траектории материальной точки, пройденного ею за определённое время.

Скорость (часто обозначается , от англ. velocity или фр. vitesse) - векторная физическая величина, характеризующая быстроту перемещения и направление движения материальной точки в пространстве относительно выбранной системы отсчёта (например, угловая скорость). Этим же словом может называться скалярная величина, точнее модуль производной радиус-вектора.

В науке используется также скорость в широком смысле, как быстрота изменения какой-либо величины (не обязательно радиус-вектора) в зависимости от другой (чаще изменения во времени, но также в пространстве или любой другой). Так, например, говорят о скорости изменения температуры, скорости химической реакции, групповой скорости, скорости соединения, угловой скорости и т. д. Математически характеризуется производной функции.

Единицы измерения скорости

Метр в секунду, (м/с), производная единица системы СИ

Километр в час, (км/ч)

узел (морская миля в час)

Число Маха, 1 Мах равен скорости звука в данной среде; Max n в n раз быстрее.

Как единица, зависящая от конкретных условий среды, должна дополнительно определяться.

Скорость света в вакууме (обозначается c )

В современной механике движение тела подразделяется на виды, и существует следующая классификация видов движения тела :

    Поступательное движение, при котором любая прямая линия, связанная с телом, остаётся при движении параллельной самой себе

    Вращательное движение или вращение тела вокруг своей оси, считающейся неподвижной.

    Сложное движение тела, состоящее из поступательного и вращательного движений.

Каждое из этих видов может быть неравномерным и равномерным (с не постоянной и постоянной скоростью соответственно).

Средняя скорость неравномерного движения

Средняя путевая скорость - это отношение длины пути, пройденного телом, ко времени, за которое этот путь был пройден:

Средняя путевая скорость, в отличие от мгновенной скорости не является векторной величиной.

Средняя скорость равна среднему арифметическому от скоростей тела во время движения только в том случае, когда тело двигалось с этими скоростями одинаковые промежутки времени.

В то же время если, например, половину пути автомобиль двигался со скоростью 180 км/ч, а вторую половину со скоростью 20 км/ч, то средняя скорость будет 36 км/ч. В примерах, подобных этому, средняя скорость равна среднему гармоническому всех скоростей на отдельных, равных между собой, участках пути.

Средняя скорость по перемещению

Можно также ввести среднюю скорость по перемещению, которая будет вектором, равным отношению перемещения ко времени, за которое оно совершено:

Средняя скорость, определённая таким образом, может равняться нулю даже в том случае, если точка (тело) реально двигалась (но в конце промежутка времени вернулась в исходное положение).

Если перемещение происходило по прямой (причём в одном направлении), то средняя путевая скорость равна модулю средней скорости по перемещению.

Прямолинейное равномерное движение – это движение, при котором тело (точка) за любые равные промежутки времени совершает одинаковые перемещения. Вектор скорости точки остаётся неизменным, а её перемещение есть произведение вектора скорости на время:

Если направить координатную ось вдоль прямой, по которой движется точка, то зависимость координаты точки от времени является линейной: , где - начальная координата точки, - проекция вектора скорости на координатную ось x.

Точка, рассматриваемая в инерциальной системе отсчёта, находится в состоянии равномерного прямолинейного движения, если равнодействующая всех сил, приложенных к точке, равна нулю.

Вращательное движение - вид механического движения. При вращательном движении абсолютно твердого тела его точки описывают окружности, расположенные в параллельных плоскостях. Центры всех окружностей лежат при этом на одной прямой, перпендикулярной к плоскостям окружностей и называемой осью вращения. Ось вращения может располагаться внутри тела и за его пределами. Ось вращения в данной системе отсчёта может быть как подвижной, так и неподвижной. Например, в системе отсчёта, связанной с Землей, ось вращения ротора генератора на электростанции неподвижна.

Характеристики вращения тела

При равномерном вращении (N оборотов в секунду),

Частота вращения - число оборотов тела в единицу времени,

Период вращения - время одного полного оборота. Период вращения T и его частота v связаны соотношением T = 1 / v.

Линейная скорость точки, находящейся на расстоянии R от оси вращения

,
Угловая скорость вращения тела.

Кинетическая энергия вращательного движения

Где I z - момент инерции тела относительно оси вращения. w - угловая скорость.

Гармонический осциллятор (в классической механике) - это система, которая при смещении из положения равновесия испытывает действие возвращающей силы, пропорциональной смещению.

Если возвращающая сила - единственная сила, действующая на систему, то систему называют простым или консервативным гармоническим осциллятором. Свободные колебания такой системы представляют собой периодическое движение около положения равновесия (гармонические колебания). Частота и амплитуда при этом постоянны, причём частота не зависит от амплитуды.

Если имеется ещё и сила трения (затухание), пропорциональная скорости движения (вязкое трение), то такую систему называют затухающим или диссипативным осциллятором. Если трение не слишком велико, то система совершает почти периодическое движение - синусоидальные колебания с постоянной частотой и экспоненциально убывающей амплитудой. Частота свободных колебаний затухающего осциллятора оказывается несколько ниже, чем у аналогичного осциллятора без трения.

Если осциллятор предоставлен сам себе, то говорят, что он совершает свободные колебания. Если же присутствует внешняя сила (зависящая от времени), то говорят, что осциллятор испытывает вынужденные колебания.

Механическими примерами гармонического осциллятора являются математический маятник (с малыми углами смещения), груз на пружине, торсионный маятник и акустические системы. Среди других аналогов гармонического осциллятора стоит выделить электрический гармонический осциллятор (см. LC-цепь).

Звук , в широком смысле - упругие волны, продольно распространяющиеся в среде и создающие в ней механические колебания; в узком смысле - субъективное восприятие этих колебаний специальными органами чувств животных или человека.

Как и любая волна, звук характеризуется амплитудой и спектром частот. Обычно человек слышит звуки, передаваемые по воздуху, в диапазоне частот от 16 Гц до 20 кГц. Звук ниже диапазона слышимости человека называют инфразвуком; выше: до 1 ГГц, - ультразвуком, более 1 ГГц - гиперзвуком. Среди слышимых звуков следует также особо выделить фонетические, речевые звуки и фонемы (из которых состоит устная речь) и музыкальные звуки (из которых состоит музыка).

Физические параметры звука

Колебательная скорость - величина, равная произведению амплитуды колебаний А частиц среды, через которую проходит периодическая звуковая волна, на угловую частоту w :

где В - адиабатическая сжимаемость среды; р - плотность.

Как и световые волны, звуковые тоже могут отражаться, преломляться и т.д.

Если Вам понравилась эта страница, и Вам захотелось, чтобы Ваши друзья тоже её увидели, то выберите внизу значок социальной сети, где вы имеете свою страницу, и выразите своё мнение о содержании.

Ваши друзья и случайные посетители благодаря этому добавят Вам и моему сайту рейтинг

Понятие скорости − одно из главных понятий в кинематике.
 Многим наверняка известно, что скорость − это физическая величина, показывающая насколько быстро (или насколько медленно) перемещается в пространстве движущееся тело. Разумеется, речь идет о перемещении в выбранной системе отсчета. Известно ли, однако, Вам, что используются не одно, а три понятия скорости? Есть скорость в данный момент времени, называемая мгновенной скоростью, и есть два понятия средней скорости за данный промежуток времени − средняя путевая скорость (по английски speed) и средняя скорость по перемещению (по-английски velocity).
 Будем рассматривать материальную точку в системе координат x , y , z (рис. а).

Положение A точки в момент времени t характеризуем координатами x(t) , y(t) , z(t) , представляющими три составляющих радиуса-вектора (t ). Точка движется, ее положение в выбранной системе координат с течением времени изменяется − конец радиуса-вектора (t ) описывает кривую, называемую траекторией движущейся точки.
 Траектория, описанная за промежуток времени от t до t + Δt , показана на рисунке б.

 Через B обозначено положение точки в момент t + Δt (его фиксирует радиус-вектор (t + Δt )). Пусть Δs − длина рассматриваемой криволинейной траектории, т. е. путь, пройденный точкой за время от t до t + Δt .
 Среднюю путевую скорость точки за данный промежуток времени определяют соотношением

 Очевидно, что v п − скалярная величина; она характеризуется только числовым значением.
 Показанный на рисунке б вектор

называют перемещением материальной точки за время от t до t + Δt .
 Среднюю скорость по перемещению за данный промежуток времени определяют соотношением

 Очевидно, что v ср векторная величина. Направление вектора v ср совпадает с направлением перемещения Δr .
 Заметим, что в случае прямолинейного движения средняя путевая скорость движущейся точки совпадает с модулем средней скорости по перемещению.
 Движение точки по прямолинейной либо криволинейной траектории называют равномерным, если в соотношении (1) величина vп не зависит от Δt . Если, например, уменьшить Δt в 2 раза, то и длина пройденного точкой пути Δs уменьшится в 2 раза. При равномерном движении точка проходит за равные промежутки времени пути равной длины.
Вопрос :
 Можно ли считать, что при равномерном движении точки от Δt не зависит также вектор ср средней скорости по перемещению?

Ответ :
 Так можно считать только в случае прямолинейного движения (при этом, напомним, модуль средней скорости по перемещению равен средней путевой скорости). Если же равномерное движение совершается по криволинейной траектории, то с изменением промежутка усреднения Δt будут изменяться как модуль, так и направление вектора средней скорости по перемещению. При равномерном криволинейном движении равным промежуткам времени Δt будут соответствовать разные векторы перемещения Δr (а значит, и разные векторы v ср ).
 Правда, в случае равномерного движения по окружности равным промежуткам времени будут соответствовать равные значения модуля перемещения |r| (а значит, и равные |v ср | ). Но направления перемещений (а значит, и векторов v ср ) и в данном случае будут различными для одинаковых Δt . Это видно на рисунке,

 Где равномерно движущаяся по окружности точка описывает за равные промежутки времени равные дуги AB , BC , CD . Хотя векторы перемещений 1 , 2 , 3 имеют одинаковые модули, однако направления у них различны, так что о равенстве этих векторов говорить не приходится.
Примечание
 Из двух средних скоростей в задачах обычно рассматривают среднюю путевую скорость, а среднюю скорость по перемещению используют довольно редко. Однако она заслуживает внимания, так как позволяет ввести понятие мгновенной скорости.

Есть средние величины, неправильное определение которых вошло в анекдот или в притчу. Любые неверно произведённые расчёты комментируются расхожей общепонятной ссылкой на такой заведомо абсурдный результат. У каждого, к примеру, вызовет улыбку саркастического понимания фраза "средняя температура по больнице". Однако те же знатоки нередко, не задумываясь, складывают скорости на отдельных отрезках пути и делят подсчитанную сумму на число этих участков, чтобы получить столь же бессмысленный ответ. Напомним из курса механики средней школы, как найти среднюю скорость правильным, а не абсурдным способом.

Аналог "средней температуры" в механике

В каких случаях каверзно сформулированные условия задачи подталкивают нас к поспешному необдуманному ответу? Если говорится о "частях" пути, но не указывается их протяжённость, это настораживает даже мало искушённого в решении подобных примеров человека. А вот если в задаче прямо указывается на равные промежутки, например, "первую половину пути поезд следовал со скоростью...", или "первую треть пути пешеход прошагал соскоростью...", и далее подробно расписывается, как объёкт передвигался на оставшихся равных участках, то есть известно соотношение S 1 = S 2 = ... = S n и точные значения скоростей v 1, v 2, ... v n , наше мышление нередко даёт непростительную осечку. Считается среднее арифметическое скоростей, то есть все известные значения v складываются и делятся на n . В итоге ответ получается неверный.

Простые "формулы" расчёта величин при равномерном движении

И для всего пройденного пути, и для отдельных его участков в случае усреднения скорости справедливы соотношения, написанные для равномерного движения :

  • S = vt (1), "формула" пути;
  • t=S/v (2), "формула" расчёта времени движения;
  • v=S/t (3), "формула" определения средней скорости на участке пути S , пройденном за время t .

То есть для нахождения искомой величины v с использованием соотношения (3) нам нужно точно знать две другие. Именно решая вопрос, как найти среднюю скорость движения, мы прежде всего должны определить, каков весь пройденный путь S и каково всё время движения t .

Математическое обнаружение скрытой ошибки

В решаемом нами примере пройденный телом (поездом или пешеходом) путь будет равен произведению nS n (так как мы n раз складываем равные участки пути, в приведённых примерах - половинки, n = 2 , или трети, n = 3 ). О полном же времени движения нам ничего не известно. Как определить среднюю скорость, если знаменатель дроби (3) явно не задан? Воспользуемся соотношением (2), для каждого участка пути определим t n = S n: v n . Сумму рассчитанных таким образом промежутков времени запишем под чертой дроби (3). Ясно, что, для того чтобы избавиться от знаков "+", нужно приводить все S n: v n к общему знаменателю. В результате получается "двухэтажная дробь". Далее пользуемся правилом: знаменатель знаменателя идёт в числитель. В итоге, для задачи с поездом после сокращения на S n имеем v ср = nv 1 v 2: v 1 + v 2 , n = 2 (4) . Для случая с пешеходом вопрос -, как найти среднюю скорость, решается ещё сложнее: v ср = nv 1 v 2 v 3: v 1v2 + v 2 v 3 + v 3 v 1 , n = 3 (5).

Явное подтверждение ошибки "в числах"

Для того чтобы "на пальцах" подтвердить, что определение среднего арифметического - ошибочный путь при расчёте v ср , конкретизируем пример, заменив абстрактные буквы числами. Для поезда возьмём скорости 40 км/ч и 60 км/ч (ошибочный ответ - 50 км/ч ). Для пешехода - 5 , 6 и 4 км/ч (среднее арифметическое - 5 км/ч ). Нетрудно убедиться, подставив значения в соотношения (4) и (5), что верными ответами будут для локомотива 48 км/ч и для человека - 4,(864) км/ч (периодическая десятичная дробь, результат математически не слишком красивый).

Когда среднее арифметическое "не подводит"

Если задача формулируется так: "За равные промежутки времени тело двигалось сначала со скоростью v 1 , затем v 2 , v 3 и так далее", быстрый ответ на вопрос, как найти среднюю скорость, может быть найден неправильным способом. Предоставим читателю самостоятельно в этом убедиться, просуммировав в знаменателе равные промежутки времени и воспользовавшись в числителе v ср соотношением (1). Это, пожалуй, единственный случай, когда ошибочный метод приводит к получению корректного результата. Но для гарантированно точных расчётов нужно пользоваться единственно правильным алгоритмом, неизменно обращаясь к дроби v ср = S: t .

Алгоритм на все случаи жизни

Для того чтобы наверняка избежать ошибки, при решении вопроса, как найти среднюю скорость, достаточно запомнить и выполнить простую последовательность действий:

  • определить весь путь, просуммировав длины отдельных его участков;
  • установить всё время пути;
  • поделить первый результат на второй, неизвестные, не заданные в задаче величины при этом (при условии корректной формулировки условий) сокращаются.

В статье рассмотрены простейшие случаи, когда исходные данные приводятся для равных долей времени или равных участков пути. В общем случае соотношение хронологических промежутков либо пройденных телом расстояний может быть самым произвольным (но при этом математически определённым, выраженным конкретным целым числом или дробью). Правило обращения к соотношению v ср = S: t абсолютно универсально и никогда не подводит, сколь бы сложные на первый взгляд алгебраические преобразования ни приходилось выполнять.

Напоследок отметим: для наблюдательных читателей не осталась незамеченной практическая значимость использования верного алгоритма. Правильно рассчитанная средняя скорость в приведённых примерах оказалась несколько ниже "средней температуры" на трассе. Поэтому ложный алгоритм для систем, фиксирующих превышения скорости, означал бы большее число ошибочных постановлений ГИБДД, высылаемых в "письмах счастья" водителям.

Очень просто! Нужно весь путь разделить на время, которое объект движения находился в пути. Выражаясь иначе, можно определить среднюю скорость как среднее арифметическое всех скоростей движения объекта. Но существуют некоторые нюансы при решении задач данного направления.

Например, для вычисления средней скорости даётся такой вариант задачи: путник сначала шёл со скоростью 4 км в час в течение часа. Затем попутная машина «подобрала» его, и остаток пути он проехал за 15 минут. Причём автомобиль шёл со скоростью 60 км в час. Как определить среднюю скорость перемещения путника?

Не следует просто складывать 4 км и 60 и делить их пополам, это будет неверный ход решения! Ведь пройденные пути пешком и на автомашине нам неизвестны. Значит, сначала нужно вычислить весь путь.

Первую часть пути найти легко: 4 км в час Х 1 час = 4 км

Со второй частью пути небольшие проблемы: скорость выражена в часах, а время движения - в минутах. Этот нюанс частенько мешает найти правильный ответ, когда поставлены вопросы, как найти среднюю скорость, путь или время.

Выразим 15 минут в часах. Для этого 15 мин: 60 мин = 0,25 часа. Теперь рассчитаем, какой же путь путник проделал на попутке?

60 км/ ч Х 0,25ч = 15 км

Теперь найти весь преодолённый путником путь не составит особого труда: 15 км + 4 км = 19 км.

Время движения также довольно легко вычислить. Это 1 час + 0,25 часа = 1,25 часа.

И теперь уже понятно, как найти среднюю скорость: нужно весь путь поделить на время, которое путник затратил на его преодоление. То есть, 19 км: 1,25 часа = 15,2 км/час.

Есть такой анекдот в тему. Мужчина, торопящийся на спрашивает владельца поля: «Можно ли мне пройти к вокзалу через ваш участок? Я немного опаздываю и хотел бы сократить свой путь, пройдя напрямую. Тогда я определённо успею к электричке, которая отходит в 16 часов 45 минут!» - «Конечно, вы можете сократить свой путь, пройдя через мой луг! И если вас там заметит мой бык, то вы успеете даже на ту электричку, которая отходит в 16 часов 15 минут».

Эта комичная ситуация, между тем, имеет самое прямое отношение к такому математическому понятию, как средняя скорость движения. Ведь потенциальный пассажир пытается сократить свой путь по той простой причине, что он знает среднюю скорость своего движения, например, 5 км в час. И пешеход, зная, что обходной путь по асфальтированной дороге равняется 7,5 км, произведя мысленно простые вычисления, понимает, что ему потребуется на эту дорогу полтора часа (7,5 км: 5 км/час = 1,5 час).

Он же, выйдя из дома слишком поздно, ограничен во времени, поэтому и решает сократить свой путь.

И вот тут мы сталкиваемся с первым правилом, которое диктует нам, как найти среднюю скорость движения: учитывая прямое расстояние между крайними точками пути или именно просчитывая Из вышесказанного всем ясно: следует вести расчёт, принимая во внимание именно траекторию пути.

Сократив путь, но не изменяя свою среднюю скорость, объект в лице пешехода получает выигрыш во времени. Фермер же, предполагая среднюю скорость убегающего от разъярённого быка «спринтера», также делает простые расчёты и выдаёт свой результат.

Автомобилисты часто используют второе, немаловажное, правило вычисления средней скорости, которое касается времени нахождения в пути. Это касается того вопроса, как найти среднюю скорость в случае, если объект имеет во время пути остановки.

В этом варианте обычно, если нет дополнительных уточнений, для расчёта берут полное время, включая остановки. Поэтому водитель авто может сказать, что его средняя скорость движения утром по свободной дороге намного выше, чем средняя скорость движения в час-пик, хотя спидометр показывает одну и ту же цифру в обоих вариантах.

Зная эти цифры, опытный шофёр никогда и никуда не опоздает, заранее предположив, какова будет его средняя скорость передвижения в городе в разное время суток.